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Introduction
The mutation status of the epidermal growth factor 
receptor (EGFR) gene is crucial for tailoring treatments for 
advanced lung adenocarcinoma, since the tyrosine kinase 
inhibitors (TKI) could improve the survival of patients 
who have sensitive mutations, such as exon 19 deletions 
(19 del) and exon 21 amino acid substitution at position 
858 in the EGFR gene, from a leucine (L) to an arginine 
(R) (21L858R).1–5 Currently, EGFR mutation tests requires 
invasive operations such as punctuation or resection, which 
could be difficult or impossible for some patients. Besides, 

invasive operations may not offer information of occur-
rence of new mutations (especially TKI resistive muta-
tion) in time, this is because invasive operation may not be 
repeated frequently. As a result, a non-invasive test method 
for EGFR mutation is in need.

Two non-invasive techniques are under development for 
testing the EGFR gene mutation status, liquid biopsy and 
radiomics. Liquid biopsy tests circulating tumor DNA 
(ctDNA) or circulating tumor cells (CTC) from blood and 
other body liquid samples.
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Objective: Genetic phenotype plays a central role in 
making treatment decisions of lung adenocarcinoma, 
especially the tyrosine-kinase-inhibitors-sensitive muta-
tions of the epidermal growth factor receptor (EGFR) 
gene. We constructed three-dimensional convolutional 
neural networks (CNN) to analyze underlying patterns in 
CT images that could indicate that EGFR gene mutation 
status but are invisible to human eyes.
Methods: From 2012 to 2015, 503 Chinese patients 
with lung adenocarcinoma that had underwent surgery 
were included. Pathological types and EGFR mutation 
status were tested from surgical resections. EGFR muta-
tions (exon 19 deletion or exon 21 L858R) were found 
in 215/345 (62.3%) and 91/158 (57.6%) patients in the 
training and independent validation set, respectively. CT 
images were taken before any invasive operation. The 
patients were randomly chosen to train the CNNs or 
validate the CNNs’ performance. The performance was 

quantified using area under receiver operating charac-
teristic curve (AUC), sensitivity, specificity, and accuracy.
Results: The CNNs showed an AUC of 0.776 (range: 
0.702–0.849, p< 0.0001) in the independent validation 
set and a fusion model of CNNs and clinical features (sex 
and smoking history) showed an AUC of 0.838 (range: 
0.778–0.899, p< 0.0001), accuracy of 77.2%, sensitivity 
of 75.8% and specificity of 79.1% at the best diagnostic 
decision point.
Conclusion: The CNN exhibits potential ability to iden-
tify EGFR mutation status in patients with lung adeno-
carcinoma which might help make clinical decisions.
Advances in knowledge: The CNN showed some diag-
nostic power and its performance could be further 
improved by increasing the training set, optimizing 
the network structure and training strategy. Medical 
image based CNN has the potential to reflect spatial 
heterogeneity.
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Much effort was contributed to the testing of ctDNA and CTC to 
detect EGFR gene mutations (exon 19 deletions, 21L858R) and 
some experiments showed remarkable results.6–8 One report of 
droplet digital PCR reached a level of sensitivity and specificity, 
compared with the matched tumor tissues tested by amplifica-
tion refractory mutation system, of 81.8% (59.7–94.81)] and 
98.4%CI (91.6–99.96)], respectively,9 a higher level compared 
with the matched tumor tissues tested by amplification refrac-
tory mutation system. However, liquid biopsy lacks the ability to 
show spatial information and is unable to locate the position of 
mutation.

Another approach is based on medical images. Radiomics was 
inspired by the idea that medical images contain information that 
reflects underlying pathophysiology and that these relationships 
can be revealed by quantitative image analyses.10 By studying CT, 
MRI, or positron emission tomography-CT (PET-CT) images, 
hundreds of quantitative image features could be extracted and used 
for finding information of tumor phenotype, heterogeneity, sensi-
tivity to treatment etc. In a study analyzing CT images of non-small 
cell lung cancer, researchers found that a prognostic radiomics 
signature which captures intratumor heterogeneity was associated 
with underlying gene-expression patterns11 In two recent studies, 
quantitative image features extracted from CT images were found 
to be associated with the EGFR mutation status in lung adenocar-
cinomas.12,13 These studies showed that, an underlying difference 
might exist in terms of radiomics between the two EGFR mutation 
statuses (wild type vs TKI sensitive mutation).

In this study, we used convolutional neural networks (CNN) as 
the analyzing tool for EGFR mutation status using non-contrast 
enhanced CT images.

In the recent years, CNNs has shown superior performance 
in pattern recognition problems to other algorithms in many 
worldwide computer vision-competitions. CNNs have been used 
in medical image research as well.14 In a study of skin cancer 
diagnosis, CNNs achieved performance comparable to expe-
rienced doctors.15 However, differences involving dimension, 
range of gray levels, size of data set etc. lies between medical and 
natural images. Much work is needed to gain the experience for 
applying CNNs in medical image analysis. To our knowledge, no 
research was found by us to be using CNNs for EGFR mutation 
status test.

In this study, we adopted a CNN that was developed in natural 
image problems to the analysis of three-dimensional CT 
images. The CNN was trained to identify patients with EGFR 
mutations from wild type and tested using an independent 
patient set.

methods and materials
The workflow
The workflow of our study is shown in Figure  1. It contains 
the following major steps: (1) patient dataset construction 
(including the selection of patients and the gathering of clin-
ical information); (2) The region of interest (ROI) definition 
and preprocessing of CT images; (3) the training of the CNN; 
(4) performance validation. Further details are described in the 
following sections.

Patients
Patients with Stage I–IV primary lung adenocarcinoma who were 
treated with surgery-based strategy at Shanghai Chest Hospital 
between 2012 and 2015 were enrolled in this study.

Figure 1. The workflow of our method. (a) The patient set was divided into training and validation sets. (b) The training set was 
studied by the multi CNN. (c) Performance of the CNN was test on the validation set. (d) In the fusion model, clinical features 
were fused to the CNN. AUC, area under ROC curve; CNN, convolutional neural network; ROC, receiver operating characteristic.
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Patients with multiple lesions, or the only lesion being smaller 
than 8mm, or found having a ground glass component was 
excluded. Patients with tuberculosis or previous tumor history 
on other sites were also ruled out.

The patients were divided into training and validation groups using 
random stratified sampling considering: EGFR mutation status 
(19del or 21L858R vs wild type), sex, TNM staging (I~IIvs III~IV), 
and smoking history. The rand() function of MATLAB® was used 
to select the patients for different groups randomly.

In order to gain statistical significance for an area under 
receiver operating characteristic curve (AUC) larger than 0.72 
(slightly higher than Ying Liu et al13) in a sample size of 503, 
157 samples were needed for performance validation. Stratified 
sampling was applied to randomly select 158 samples for valida-
tion and 345 samples for training. The criteria for the stratified 
sampling included sex, smoking history, EGFR mutation status, 
and TNM staging. The TNM staging was based on the seventh 
edition of International Association for the Study of Lung Cancer 
non-small cell lung cancer TNM staging. The Stage IV was based 
on the latest follow-up.

From 2012 to 2015, 503 patients were included in our study. 
Among them, 254(50.5%) were male, 78(15.5%) were smokers, 
307(61.0%) had EGFR mutation (19del or 21L858R). Most 
patients were in Stages I (237, 47.1%) and III (159, 31.6%). 
Tumor size (diameter) varied from 0.9to10.5cm (median, 2.5cm). 
Performance status score was 1 point for all the patients. The 
difference of clinical features of training and validation groups 
had no statistical significance, as is shown in Table 1.

The test for EGFR gene mutation status
The EGFR test was based on surgical resections via fluorescence 
PCR (ARMS) using Stratagene Mx3000PTM (Agilent) and the 
Human EGFR Gene Mutation Detection Kit (Amoy Diagnostics 
Co., Ltd) in the lab of Shanghai Chest Hospital.

Statistical analysis
The statistical analysis consisted of three parts.

First, we compared the clinical features of the training and vali-
dation groups to find out if there was any difference that reached 
statistical significance. Fisher’s exact test was used to compare 

Table 1. Comparison of clinical features between training and validation groups

Training group (n=345) Validation group (n=158) p-value
Sex (n/%) 0.443

 � Male 170(49.3) 84(53.2) Fisher’s exact test

 � Female 175(50.7) 74(46.8) Two-sided Prp 0.443

Smoking history 1.00

 � Yes 55(15.9) 25(15.8) Fisher’s exact test

 � No 290(84.1) 133(84.2) Two-sided Pr 1.00

EGFR mutation status 0.496

 � Wild type 130(37.7) 67(42.4) Χ2

 � 19del 103(29.8) 40(25.3)

 � 21L858R 112(32.5) 51(32.3)

TNM staging 0.811

 � I 165(47.8) 74(46.8)

Wilcoxon two-sample test
Normal approximation (Z 0.239)

One-sided Pr>Z 0.406
Two-sided Pr > |Z| 0.811

 � II 47(13.6) 25(15.8)

 � III 113(32.8) 45(28.5)

 � IVa 20(5.8) 14(8.9)

Age 0.797

 � Median 60 61 Wilcoxon two-sample test
Normal approximation (Z 0.257)

One-sided Pr>Z 0.399
Two-sided Pr > |Z| 0.797

 � Min 28 32

 � Max 82 79

Tumor size (cm) 0.462

 � Median 2.6 2.5 Wilcoxon two-sample test
Normal approximation (Z −1.31)

One-sided Pr <Z 0.095
Two-sided Pr > |Z| 0.191

 � Min 0.9 1

 � Max 10.5 7

EGFR, epidermal growth factor receptor; 
aIn the 34 Stage IV patients, 32 were found with pleural nodules, parietal pleura, lung, pericardium, or diaphragm metastases during surgery, the 
other 2 were found with brain or bone metastases by PET-CT and had wedge cutting.
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sex and smoking history, Wilcoxon two sample test was used 
to compare age and TNM stages, and Χ2 was used to compare 
EGFR mutations status.

Second, we compared the clinical features between the EGFR wild 
type group and the mutant groups to select the clinical features 
that had statistically significant difference between the groups. 
Such features were assumed to have discriminative power and 
would be used to build the classifier. p<0.05 was considered to be 
statistically significant.

Third, the receiver operating characteristic (ROC) curve and 
AUC was used to validate the performance of the models and the 
comparison of ROC curves were pairwise compared by using the 
DeLong test16 and the corresponding AUC difference, standard 
error, 95%CI, z-statistic, and p-value were calculated.

The acquisition of CT images
The CT scans were taken about one week before surgery, most 
of the scans were contrast enhanced but 20–30% were not, these 
scans were used to build the classification model.

The scans were taken with a voltage between 120 and 140 kV, a 
current of 170 mA, scan layer thickness of 5mm, and a spatial 
resolution of about 1mm using the Brilliance iCT and Brilliance 
64 CT from PHILIPS.

In three-dimensional analysis, the spatial resolution should be 
identical in all dimensions. However, the resolution in the x- and 
y-axis varied from 0.578to0.934mm/pixel and the resolution in 
zaxis was 5mm/pixel. Linear interpolation was therefore applied 
and the resulting resolution was 2×2×2mm. The Hounsfield unit 
(HU) of each voxel was linearly uniformed to [0, 1].

Definition of ROI
Considering the input of the CNN was cubic which encloses 
the tumor area regardless of its actual shape, a precise defini-
tion of the tumor contour was not necessary. In other words, a 
roughly defined region could work just as well as a region that 
closely conforms to the tumor. On the Pinnacle 2 platform from 
Varian®, the ROI was defined by radio-oncologists in the lung 
window (−300~1301HU).

The CNN model construction
Our classification method consisted of a multilevel CNN 
(denoted as MCNN) containing three CNNs denoted as M21, M31, 
and M41 with input patches of 21×21×21 voxels (42×42×42mm), 
31×31×31 voxels (62×62×62mm), and 41×41×41(82×82×82mm) 
voxels, respectively. These CNNs were tailored to match different 
sized tumors. The input size of 42×42×42mm, 62×62×62mm, 
and 82×82×82mm covers 58%, 92%, and 99% of all the tumors 
in the data set, respectively. The tumor size varied in a large range 
of 8–103mm among the patients in our data set. The required 
input image size of traditional CNNs needs to be same. Hence, 
the image lose some tumor information or contain too much 
noise if we only use one CNN with only one specific size. Specif-
ically, on one hand, the image cannot contain the whole tumor 
(the size>21 voxels) if we only used the CNN with input size 

of 21×21×21 voxels. The image may include too much back-
ground noise for the small tumor (size<21 voxels) if a CNN 
with input size of 41×41 × 41 voxels were to be used. To alleviate 
this problem, we used three CNNs with different input sizes to 
construct our multilevel CNN model. The input patches (ROI of 
the CT images) flow from left to right and the CNN would give 
probabilities of mutation (19del or 21L858R) or wild type. The 
three networks were combined to obtain a multilevel CNN based 
model denoted as MCNN, as shown below:

	﻿‍ MCNN = w21M21 + w31M31 + w41M41‍� (1)

where w21, w31, and w41 denotes each network’ contribution to 
the multilevel CNN model. These weight parameters were opti-
mized by using a grid search method from the range 0.0–1.0 with 
a step size of 0.1.

Detailed description can be found in the supplementary mate-
rial (The details of multilevel CNN). Smaller input patches 
corresponded with fewer hidden layers since they contained less 
information to analyze.

Clinical feature selection
According to the reports in,12,13 sex and smoking history have a 
high correlation with the EGFR mutation status. Moreover, we 
assessed the classification potential of each clinical feature by 
analyzing their difference between the EGFR-wild subset and 
EGFR-mutant subset before we constructed a clinical feature 
based classifier.

The statistical analysis methods and results are shown in Table 2. 
Among these features, only sex and smoking history showed 
significant difference and would be used to build the clinical 
feature-based model.

We also built a simple clinical feature based model, which was 
based on sex and smoking history. We assigned scores to each 
sample according to the clinical feature, female non-smokers 
given 1.00, the female smokers and male non-smokers were 
given 0.50, and male smokers were given 0.00. The scoring for 
this clinical feature based model (denoted as MClinical) is summa-
rized in the following equation:

	﻿‍
MClinical =




1.00 female & non− smoking
0.50 either feamle or non− smoking
0.00 male & smoking ‍�

(2)

Another fusion Model of multilevel CNN and clinical feature 
was assessed to see if clinical features could help improve 
the performance of the CNNs. The fusion model (denoted 
as MFusion)  is defined as a weighed summation of MCNN and 
MClinical:

	﻿‍ MFusion = wCNNMCNN + wClinicalMClinical‍� (3)

where wCNN and wClinical denotes how much each model contrib-
utes to the fusion model. The weights were selected to optimize 
the performance of MFusion. They were optimized from 0.00to1.00 
with step size 0.1.

http://birpublications.org/bjr
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The performance was validated on the validation set using AUC, 
accuracy, sensitivity and specificity.

Results
Model performance
The weight parameters, w21, w31, and w41, in Equation (1) were 
0.3, 0.4, 0.3, respectively. The weight parameters, wCNN and wClin-

ical, in Equation (3) were 0.8 and 0.2, respectively.

Tested by the independent validation set, CNN resulted in 
an AUC of 0.776, accuracy of 0.715, sensitivity of 57.1%, and 

specificity of 91.0%, which is much better than using clinical data 
alone. Combining CNN and clinical features, the fusion model 
offered a performance upgrade. Detailed performance assess-
ment is shown in Table 3 and Figure 2.

The fusion model gave the best performance with an AUC 
of 0.838 (accuracy 0.776), better than clinical model (0.652) 
and multi-CNN (0.778). Its sensitivity and specificity are 
75.8and79.1% at the best diagnostic decision point. Table 3 shows 
the detailed performance of the multilevel CNN, clinical feature 
based, and fusion models. Figure 2 shows the ROC curves of the 

Table 2. Comparison of clinical features between EGFR mutant and wild type

Wild type (n=197) Mutant (n=306) p
Sex (n/%) <.0001

 � Male 130(66.0) 124(40.5) Fisher’s exact test

 � Female 67(34.0) 182(59.5) Two-sided Pr 2.32E-08

Smoking history <0.0001

 � Yes 52(26.4) 28(9.2) Fisher’s exact test

 � No 145(73.6) 278(90.8) Two-sided Pr 3.95E-07

TNM staging 0.664

 � I 90(45.7) 149(48.7)
Wilcoxon two-sample test

Normal approximation (Z 0.435)
One-sided Pr>Z 0.332

Two-sided Pr > |Z| 0.664

 � II 30(15.2) 42(13.7)

 � III 65(33.0) 93(30.4)

 � IV 12(6.1) 22 (7.2)

Age 0.355

 � Median 61 61 Wilcoxon two-sample test
Normal approximation (Z 0.435)

One-sided Pr >Z 0.332
Two-sided Pr > |Z| 0.664

 � Min 32 28

 � Max 82 82

EGFR, epidermal growth factor receptor; 

Table 3. Performance of CNN, clinical feature-based model, and fusion model

Models Multi-CNN&clinical features Multi-CNN Clinical features
AUC 0.838 0.776 0.654

SE 0.031 0.037 0.041

95%CI 0.778to0.899 0.702to0.849 0.575to0.734

p <0.0001 <0.0001 <0.0001

Accuracy 77.2% 71.5% 63.9%

Sensitivity 75.8% 57.1% 59.3%

Specificity 79.1% 91.0% 70.1%

Comparison Multi-CNN&clinical featuresvs 
multi-CNN

Multi-CNN&clinical 
featuresvsclinical features

Multi-CNNvsclinical 
features

AUC difference 0.063 0.184 0.121

SE 0.025 0.0418 0.0602

95%CI 0.014to0.111 0.102to0.266 0.003to0.239

Z statistic 2.504 4.393 2.016

p- value 0.0123 <0.0001 0.044

AUC, area under receiver operating characteristic curve; CI, confidence interval; CNN, convolutional neural network; SE, standard error.
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clinical feature-based model (orange), multi-CNN (green), and 
the fusion model (blue).

We also assessed how much benefit we could get by using three 
CNNs. Figure 3 shows the ROC curves of CNN 21, CNN 31, and 
CNN 41 and the corresponding performance data are listed in 
Supplemental Table S1. The test result confirmed our assump-
tion that multiple CNNs that are adapted to the size of the tumor 
could improve performance.

Discussion
Performance regards
The multi-CNN showed diagnostic power but its current sensi-
tivity and specificity is not good enough for clinical use of the 
multi-CNN.

Three former reports used radiomics to identify EGFR muta-
tions. Velazquez E R’s study13 (n=258) used independent vali-
dation and reached an AUC of 0.67. Ying Liu’s study12 (n=298) 
did not use independent validation and reached an AUC of 0.709 
in the training set. The study17 using CNNs (each CNN has the 
same convolution layers) with a smaller sample size (n=405) had 
an AUC of 0.767 (p<0.001). In this study, the best model reached 
an AUC of 0.838 and used an independent set for performance 
validation. The improvement of performance gave us hope that 
CNN and other medical image-based analysis could achieve 
better results and tackle more difficult tasks.

CNN vs liquid biopsy
CNN and liquid biopsy are two non-invasive testing methods for 
the test of EGFR gene. To our knowledge, ddPCR had reached a 
sensitivity of 81.8% and specificity of 98.4%,9 which is obviously 
superior to the CNN-clinical model in our study. However, liquid 
biopsy lacks the ability to show spatial information and could not 
tell the position of the mutation. In medical image analysis, using 
CNN or other modeling algorithms, the spatial heterogeneity 
was reserved and could even be quantified. Imaging analysis has 
the potential to suggest which lesion needs close follow-up or 
immediate treatment.

Clinical significance
This study showed that it is feasible to use CT images and CNNs 
to identify EGFR mutations (19del/21L858R) in lung adenocar-
cinoma. This medical image-based method has many advantages 
over other testing methods. First, it had the potential to support 
treatment decisions when surgery resection and puncture biopsy 
are difficult or not available since it is non-invasive. Second, it 
could be applied during the entire treatment as a monitoring 
tool for EGFR mutation status since CT images are repeatedly 
captured in clinical practice. Third, this CNN tool analyzed the 
entire tumor instead of just tissue samples and might have the 
ability to overcome the problem of heterogeneity. Fourth, using a 
CNN is fast, convenient and low cost.

As the field of radiomics is expanding new methods of extracting 
information from medical images, these methods benefit the 
diagnosis, treatment, and prognosis of diseases. Tumor pheno-
types, including aggressiveness, driver gene, heterogeneity, 
response to treatment, and recurrence, could be identified and 
defined more precisely with the help of quantified analysis of 
medical images.

Impact on future studies
A unique advantage of CNN compared to the radiomics method 
is its loose requirement of ROI delineation, because the data for 
analysis consist of a cube that bounds the region of the tumor.

Apart from the gene mutation status, other characteristics of 
the disease are also probable to be revealed by the CNN analysis 
of medical images (CT, MR or PET/CT). These include tumor 
proliferative activity, hypoxia status and the surrounding tumor 
environment. We believe the development of CNN could vigor-
ously advance the development and clinical application of indi-
vidualized medicine.

Figure 2. The ROC curves of the clinical feature based model 
(gray solid), multi-CNN (black dotted), and the fusion model 
(black solid). CNN, convolutional neural network; ROC, 
receiver operating characteristic curve.

Figure 3. The ROC curves of the multi-CNN (black solid), CNN-
21 (gray solid), CNN-31 (black dotted), CNN 41 (gray dotted). 
CNN, convolutional neural network; ROC, receiver operating 
characteristic.
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of 1mm rather than 5mm. Although this study assessed only 
radiomics features, their findings might be true for the features 
learned by CNN as well. In our study, the CT scan layer thick-
ness was 5mm, thus making the features unstable. Besides, for 
tumors smaller than 20mm, there may only be two to three 
layers, which could make the features insufficient for describing 
tumor characteristics.

Conclusion
Our CNN classifier for EGFR mutation exhibited a favorable 
AUC. We also showed that the sensitivity and specificity could 
be further improved by adding clinical features.

Our research showed that genetic differences among tumors 
could be identified by CNNs. For patients where puncture biopsy 
of the primary tumor is dangerous, this medical image-based 
approach might provide an alternative. We believe the CT image-
based approach for EGFR mutation test has room for improve-
ment and could be useful in clinics in the future.
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