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Objective: Free-breathing abdomen imaging requires 
non-rigid motion registration of unavoidable respiratory 
motion in three-dimensional undersampled data sets. In 
this work, we introduce an image registration method 
based on the convolutional neural network (CNN) to 
obtain motion-free abdominal images throughout the 
respiratory cycle.
Methods: Abdominal data were acquired from 10 volun-
teers using a 1.5  T MRI system. The respiratory signal 
was extracted from the central-space spokes, and the 
acquired data were reordered in three bins according 
to the corresponding breathing signal. Retrospective 
image reconstruction of the three near-motion free 
respiratory phases was performed using non-Cartesian 
iterative SENSE reconstruction. Then, we trained a CNN 
to analyse the spatial transform among the different 
bins. This network could generate the displacement 
vector field and be applied to perform registration on 
unseen image pairs. To demonstrate the feasibility of 
this registration method, we compared the performance 
of three different registration approaches for accurate 
image fusion of three bins: non-motion corrected (NMC), 
local affine registration method (LREG) and CNN.
Results: Visualization of coronal images indicated 
that LREG had caused broken blood vessels, while the 
vessels of the CNN were sharper and more consecu-
tive. As shown in the sagittal view, compared to NMC 

and CNN, distorted and blurred liver contours were 
caused by LREG. At the same time, zoom-in axial images 
presented that the vessels were delineated more clearly 
by CNN than LREG. The statistical results of the signal-
to-noise ratio, visual score, vessel sharpness and regis-
tration time over all volunteers were compared among 
the NMC, LREG and CNN approaches. The SNR indi-
cated that the CNN acquired the best image quality 
(207.42 ± 96.73), which was better than NMC (116.67 
± 44.70) and LREG (187.93 ± 96.68). The image visual 
score agreed with SNR, marking CNN (3.85 ± 0.12) as 
the best, followed by LREG (3.43 ± 0.13) and NMC (2.55 
± 0.09). A vessel sharpness assessment yielded similar 
values between the CNN (0.81 ± 0.03) and LREG (0.80 ± 
0.04), differentiating them from the NMC (0.78 ± 0.06). 
When compared with the LREG-based reconstruction, 
the CNN-based reconstruction reduces the registration 
time from 1 h to 1 min.
Conclusion: Our preliminary results demonstrate the 
feasibility of the CNN-based approach, and this scheme 
outperforms the NMC- and LREG-based methods.
Advances in knowledge: This method reduces the regis-
tration time from  ~1 h to  ~1 min, which has promising 
prospects for clinical use. To the best of our knowledge, 
this study shows the first convolutional neural network-
based registration method to be applied in abdominal 
images.
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Introduction
Respiratory motion is a significant source of error for the 
MRI of the upper abdomen. The scans are commonly 
performed during a breathholding period, and a 

healthy adult can hold his/her breath for approximately  
20~30 s,1 which could limit the image quality, resolution and 
coverage.2 In addition, it is difficult for them to hold their 
breath if they are critical or paediatric patients. For free-
breathing acquisition, respiratory gating is commonly used to 

Received: 
12 October 2017

Accepted: 
12 December 2017

Revised: 
07 December 2017

© 2018 The Authors. Published by the British Institute of Radiology

https://doi.org/bjr.20170788
mailto:zhangjue@pku.edu.cn
mailto:cjr.wangxiaoying@vip.163.com


2 of 9 birpublications.org/bjr Br J Radiol;91:20170788

BJR  Lv et al

scan. However, it only accepts data at end-expiration, minimizing 
the motion artefacts at the expense of additional scan time. Addi-
tionally, respiratory gating does not always perform well if the respi-
ratory rhythm is irregular.3 To overcome this problem, navigator 
echoes are integrated into the imaging sequence.4–8 However, the 
drawbacks of the navigator include not only the low efficiency of 
the scan9 but also the ignorance of the time difference between the 
motion and navigator acquisition. Recently, self-navigation tech-
niques10,11 have been proposed to extract the respiratory motion 
signal9,12,13 from the acquired data itself.

According to the respiratory signal, each spoke is related to the 
breathing position at which it was acquired. The respiratory signal 
is discretized into a set of bins, which allows the reconstruction of 
near motion-free images in each bin. One high-quality datum is 
acquired at an end-expiratory acceptance window which is called 
BHQ. Then, several lower quality images which are obtained at 
reaming respiratory positions will be registered to BHQ. Thus, an 
accurate registration method has great meaning for facilitating 
an accurate diagnosis.

Former researches14,15 has usually used the hierarchical adaptive 
local affine registration method (LREG).16 LREG is an optimi-
zation-based method, in which the transformation parameters 
are iteratively updated to optimize an objective function that 
reflects the accuracy of the registration. Thus, LREG requires a 
high computational cost and could not acquire registration data 
in real-time, which significantly limits its clinical application. 
Recently, the effectiveness of CNN has been shown in a wide 
range of medical image processing tasks, such as left ventricle17/
brain18–21/prostate22 segmentation, disease classification23–25 
and registration26,27 tasks. However, to the best of our  knowl-
edge, it has not been applied to the abdominal image registration. 
To address these problems, we adopted a convolutional neural 
network (CNN) regression approach for real-time registration. 
The whole structure of our registration network consists of a 
CNN (ConvNet) regressor, a spatial transformer, and a resam-
pler, as in.27 The network takes pairs of fixed (BHQ) and moving 
(BLQ) images as inputs, and it outputs moving images that are 
warped to the fixed images.

We believe that the strong non-linear modelling capability of 
the CNN will directly estimate the transformation parameters 
among the images of different bins. The registration process will 
be accomplished within submilliseconds. To demonstrate the 
feasibility of our introduced approach, we compared the CNN 
against a non-motion corrected (NMC) method and the LREG-
based method using the measures of signal-to-noise ratio (SNR), 
assessment of image sharpness, visual image quality rated by two 
experienced radiologists and registration time.

Methods and materials
Data acquisition
27 healthy volunteers (21 males, 6 female, 36 years) took part in 
this experiment and informed consent was obtained from each 
participant. The participants were told to keep still and breathe 
normally. The study was approved by the local ethical review 
committee. All of the scans were performed on a clinical 1.5 T 

MRI system (Ingenia, Philips Healthcare, Best, Netherlands) 
equipped with a 16-channel anterior coil and a 16-channel 
posterior coil. MR data acquisition was performed using a three- 
dimensional (3D) golden angle-radial stack-of-stars (SOSs)28 
sequence (Figure 1a). The relevant imaging parameters were as 
follows: slice thickness = 3 mm with over contiguous sampling; 
flip angle = 10 degrees; field of view = 450 × 450 × 249 mm2; 
sense factor along z = 1.41; number of read-out points in each 
spoke = 400 with two times oversampling; spatial resolution = 
1.00  ×  1.00  ×  3.00 mm3; and repetition time (TR)/echo time 
(TE) = 4.88/2.06 ms. A total of 751 spokes were acquired for each 
partition, with a total scan time of 216.22 s. Another group of 
acquisitions with the higher F–H resolution doubled was also 
applied to the same volunteers. All of the other parameters of 
these scans were identical.

Data binning
In our work, an adaptive method was used to estimate the respi-
ratory signal. The one-dimensional fast Fourier transform along 
the feet–head (FH) direction to the centre k-space profiles was 
applied to compute the projection profiles of the 3D volume. The 
respiratory motion detection was performed by first aligning 
the projection profiles into a two-dimensional (2D) image 
(Figure  1b), for which no a priori respiratory training phase 
was required. Following by envelope extraction of the image, 
the respiratory motion signal would be acquired (Figure  1c). 
Then, the continuously acquired golden-angle radial data  sets 
were divided into three respiratory bins (Figure 1d), in which the 
spokes were in the same motion position, similar to a previous 
work.13

Reconstruction of the respiratory bins
Reconstruction was developed and performed using the 
Recon2.0 platform by Philips. 3D undersampled data (Figure 1d) 
for each bin were reconstructed by gridding29 followed by SENSE 
to unfold the warped image along the F-H direction. It took ~80 
s to reconstruct a 3D volume using a workstation equipped with 
16 GB DDR RAM and 2 intel XEON E5-1620 CPUs.

Motion modelling
Unlike Buerger et al9 where the LREG tool16 was directly used to 
register reconstructed bin images to a common respiratory posi-
tion, here, we proposed to introduce a CNN-based registration 
algorithm (Figure 1e).

Figure  2 illustrates the whole structure of the convolutional 
neural network. First, the network takes concatenated pairs of 
moving (Bin2/Bin3) and fixed (Bin1) images as its input, which 
is then followed by five hidden layers: (1) convolutional layer 
with 64 3 × 3 filters; (2) max-pooling layer of 2 × 2; (3) convolu-
tional layer with 128 3 × 3 filters per map; (4) convolutional layer 
of 128 maps of filter size 3 × 3 ; and (5) max-pooling layer of 2 × 
2. Finally, the output layer includes two kernels that indicate the 
2D displacement of the input image pairs.

Next, as shown in Figure  1, the spatial transformer generates 
a dense displacement vector field that will be used to warp the 
moving image to the fixed image. Since abdominal motion 
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Figure 1. The process used to reconstruct the free-breathing 3D MRI data set. (a) Golden-angle radial SOS trajectory. (b) Projection 
profiles of the 3D volume derived from the K-space centre [central line in (a)]. (c) Respiratory signal is binned into three bins. (d) 
According to the respiratory position, the corresponding K-spaces are obtained for each bin. Each of them is reconstructed sepa-
rately. (e) The CNN Net estimates the spatially corresponding image patches from the moving (Bin2/Bin3) and fixed images (Bin1). 
(f) The spatial transformer generates the DVF which will be used to warp the moving image to the fixed image. (g) The network is 
trained by back propagating a similarity metric as a cost function.3D, three-dimensional; CNN, convolutional neural network; DVF, 
displacement vector field; SOS, stack-of-star.
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Figure 2. 2D convolutional neural network structure. The network takes two 2D patches from moving (Bin2/Bin3) and fixed (Bin1) 
images at the same location and generates two 2D momentum predictions of the patches in the x and y spatial directions. C: 2D 
convolution layer. S: pooling layer. Parameters for the C and S layers: number and size of the filter kernel. 2D, two-dimensional.

Figure 3. Coronal reconstruction image from Subject 1. The 
rectangles indicate the signal  (top left) and noise  (bottom 
left) intensity, respectively. The 1D intensity profiles  (three 
slashed lines) were manually defined to estimate the vessel 
sharpness. 1D, one-dimensional.

leads to a large amount of local variation, we adopted a cubic 
B-spline30 transformer.

In the training stage, the normalized cross-correlation (NCC) 
between pairs of moving and fixed images using minibatch 
stochastic gradient descent (Adam)31 was implemented as a cost 
function that must be optimized.

Therefore, NCC was adopted as our cost function while 
performing the actual registration in this study. The NCC of the 
fixed image and the moving image is defined by
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where I1 is the fixed image, I2 is the moving image, and σI1 and 
σI2  are the standard deviations of I1  and  I2, respectively. After 
training, the network can be applied to the registration of the 
test images.

Network training and testing
To evaluate the effects of various sizes of image patches, several 
additional experiments were conducted. Experiment 1 was 
designed with overlapping patches of size  28 × 28; Network 2 
used image patches of 64 × 64; and Network 3 analysed the full 
image as input. We performed the registration in the coronal 
view for each experiment. Thus, we trained two networks in all. 
When referring to the motion in the axial and sagittal view, we 
used only the 2D affine registration.

We trained each of the networks using a data set of 2490 images 
with size of 448 × 448. We randomly split the data set into the 
training set (80% of the original data  set) and test set (20% of 
the original data set). During the training stage, the moving and 
the reference image patch were randomly selected, which corre-
sponded to slices of the same subject but belonging to different 
bins. Each CNN was trained until convergence with batches of 
256 image pairs in 2000 iterations. The training took approxi-
mately 18, 6, and 2 h on NVIDIA GPUs (GTX 1080), separately. 
The filter weights of each layer were initialized by drawing 
randomly from a Gaussian distribution with zero mean and 
standard deviation 0.001 (and 0 for biases). In this study, Tensor-
flow32 was used for implementing this model with a learning rate 

of 10–4 on a Linux machine (64-bit  Ubuntu 14.04 LTS; Cuda 
7.5).

Statistical analysis
The introduced method was compared with the NMC approach 
and reconstruction framework of  Buerger’s    9 in terms of the 
SNR, image sharpness, and visual image scoring by two experi-
enced radiologists with 12 and 10 years of experience in clinical 
MRI interpretation and registration time.

As seen in Figure 3, the SNR was calculated based on two sepa-
rate regions of interest from a single image: one (the rectangle at 
the top left) in the tissue to determine the signal intensity and the 
other (the rectangle at the bottom left) in the image background 
to measure the noise intensity.33,34 The image sharpness was esti-
mated using the CoroEval software.35 The vessel sharpness was 
measured based on 25 manually defined 1D intensity profiles, 
similar to  Buergers’  works13,36 (Figure  3). The overall vessel 
sharpness was determined as the mean sharpness over each of 
the 25 selected profiles. The two radiologists were asked to “score 
the sharpness of the main boundaries and features of the images” 
on a scale of 0 (extreme blurring) to 4 (no blurring). The scores 
by the two observers were averaged for evaluation. The SNR 
values, vessel sharpness and registration time were compared 
using repeated measures analysis of variance (post hoc Bonfer-
roni correction) with Greenhouse-Geisser correction, which was 
used to test for differences between the reconstruction methods. 
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Figure 4. Normalized cross-correlation value over 2000 iterations for the three experiments. (a) Image patch of size 28. (b) Image 
patch of size 64. (c) Whole image as input.

Figure 5. The corresponding undersampled image reconstructions of pre- and post-registration are shown in a coronal view.

The visual score measurements were evaluated using a Wilcoxon 
signed-rank test, with a significance threshold of p < 0.05.

Results
Figure 4 shows the normalized cross-correlation value over 2000 
iterations during training for the three experiments. All the 
networks converged quickly at first and then stabilized, which 
shows that the NCC loss of all of the models converges as the 
number of iterations increases. However, each network has a 
different NCC value. The network with the 64 × 64 patch size 
(Figure 4b) has the highest performance, followed by the 28 × 28 
patch size (Figure 4a) and the whole image network (Figure 4c).

As seen in Figure 5, the longer dashed line delineates the upper 
edge of the liver in Bin1, and the shorter dashed line represents 
the upper edge of the liver in each bin. Before registration, the 
locations of the shorter dashed lines have large variations among 
the different bins. However, after registration, Bin2 and Bin3 
have nearly been corrected to almost the same place.

All the bins were combined to form a high-quality composite 
image. Multiple slice orientations for the NMC, LREG-based 
reconstruction and CNN-based reconstruction for volunteers 1, 
6, 8 are shown in Figure 6. In Figure 6, it can be seen that clear 
noise and the obscure edge of the liver are still remaining in the 
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Figure 6. Coronal (top), sagittal (middle) and axial (bottom) slices for volunteers 1, 6 and 8 (including zoom-in images; arrows note 
some main differences). (a, d, g, j, m, p) NMC (non-motion corrected): Several structures in the image are corrupted by motion. 
(b, e, h, k, n,  q) LREG: Some structures appear sharper than NMC, but presents vessel broken and distorted. (c, f, i, l, o and r) CNN: 
a sharper reconstruction is obtained. CNN, convolutional neural network; LREG, local affine registration method; NMC, non-motion 
corrected.

NMC reconstruction. While the LREG and CNN yield images 
with similar quality, they reduce most of the noise presented in 
the NMC reconstruction. However, the coronal images indicate 
that LREG has caused broken blood vessels, while the vessels of 
CNN are sharper and more consecutive, as highlighted by the 
red arrows in Figure 6b,c. As shown in the sagittal view, LREG 
has distorted and blurred the liver contours compared with 
NMC and LREG (indicated with red arrows). At the same time, 

zoom-in axial images present that vessels (indicated with the red 
arrow) were delineated more clearly by CNN than LREG.

The vessel sharpness and registration time both differed signifi-
cantly among the methods when tested with repeated measures 
analysis of variance with the Greenhouse-Geisser correction  
(p = 0.013 < 0.05 and p = 2.6e-4 < 0.001, respectively). Post hoc 
testing with the Bonferroni correction was significant for the 
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comparison of vessel sharpness as measured by LREG compared 
with CNN (p = 0.003  <  0.05) and all of the registration time 
comparisons (p = 1.98e-6 and 2.36e-6  <  0.001, respectively), 
with the exception of the measurement that compared NMC 
with CNN (p = 1). Higher visual scores were obtained using 
CNN compared with LREG, and comparisons yielded statisti-
cally significant differences (p = 0.03 < 0.05). Although there was 
a general trend towards improved SNR values using the CNN 
compared with the LREG, no statistically significant differences 
were obtained. When compared with the LREG-based recon-
struction, the CNN-based reconstruction remarkably reduces 
the registration time, from ~1 h to ~1 min (p = 2.36e-6 < 0.001).

Discussion
In this study, we introduced a novel registration method based 
on the CNN to improve the alignment of the images derived 
from different bins. First, three highly undersampled images that 
cover the whole respiratory signal were reconstructed. Second, 
the CNN-based registration approach was employed to combine 
all three bin images. This technique was validated on 10 healthy 
subjects and was compared with the NMC method as well as the 
LREG method.

The training loss converged well and quickly in each experi-
ment, and the network with image patches of 64 × 64 shows the 
highest NCC value. Kervrann et al37 demonstrated that image 
patch-size selection is a complex problem, since it depends on 
the image contents. Zhao et al indicated that a larger patch (65 
× 65 × 3) provided more information and helped improve the 
network’s performance. During the forward pass of a pooling 
layer, although an image patch-size of 28 can represent fine 
details,38 it might neglect the relationships between the local 
textures. Additionally, a network that uses the whole image as 
input will not catch up the textures of the image pairs, which 
leads to the poorest result. However, in the case of patches with 
the larger size of 64, it can take care of the local geometries and 
maintain global consistency.38 Thus, this type of size of patch 
image is fully adaptive for our image registration. Remarkably, 
as can be observed in Figure 5, with the proposed method, the 
Bin2 and Bin3 images at different positions of the breathing 
cycle have been registered well to the high-quality Bin1 image. 
To train the network in the coronal position is reasonable, since 
the principal respiratory motion predominately occurs in the 
FH direction.39 Considering the image quality, obviously, the 
CNN registration method gave significantly better results than 
the NMC and LREG methods. The high score of the SNR in the 
CNN and LREG indicates that non-rigid registration can remove 
misalignments induced by noise and blurring of the liver in both 

the centre position and edge location. The vessel sharpness values 
of the CNN and LREG are similar, and they are distinguished as 
superior to the NMC. The inaccuracy of the local registration 
is responsible for the broken and distorted vessels in the LREG 
group. The visual quality of the images of different groups was 
evaluated by two radiologists. Both radiologists scored the CNN 
group higher than the NMC and LREG groups. These results 
make sense because the purpose of using the CNN network is 
to learn discriminative features that represent complex morpho-
logical features in image patches accurately and concisely. This 
deep network is working to acquire the non-linear relationship 
between the moving and fixed image patch: first, it will learn the 
hierarchical image patterns by seeking simple features. Then, 
from the previous layers, it could acquire more complex repre-
sentations.26 In addition, Wu et al26 indicated that the trained 
deep learning network selected features that more accurately 
capture the complex morphological patterns in the image 
patches. Thus, this approach resulted in better anatomical corre-
spondences, which ultimately improved the image registration 
performance. In regard to the registration time, the proposed 
method acquired remarkably higher computational efficiency 
than the LREG method in that the execution time was reduced 
from ~1 h to ~1 min. This finding can be explained by the fact 
that in the testing state, our method does not require any training 
images. The CNN-based image registration is executed with the 
well-trained model in one pass.40–42 However, LREG must solve 
these complex optimization problems iteratively.

Our study has several limitations. One limitation is that the 
introduced method is based on 2D images, which transforming 
the 3D volume one by one to a reference image using an NCC 
metric. Thus, to extend the applicability of our method, registra-
tion based on the 3D network will be investigated. If we can adopt 
a 3D network architecture, we will train the network only once. 
The network takes two 3D patches from the moving and target 
image as the input, and outputs three 3D initial momentum 
patches (one for each of the x,y,z dimensions). Another limita-
tion is the lack of real data sets from patients. Different results 
might occur when performing the same testing and training 
steps in a group of patient subjects. Future studies will include 
the use of real patients with different lesions.

Conclusions
In conclusion, a CNN-based approach for real-time registration 
has been introduced to improve the alignments of the images. 
Our preliminary results demonstrate that the feasibility of the 
CNN-based method and that this scheme outperforms the 
NMC- and LREG-based methods. In addition, this method 

Table 1. Comparison between the NMC reconstruction, the LREG tool-based reconstruction and our introduced method (CNN)

NMC LREG CNN
SNR 116.67 ± 44.70 187.93 ± 96.68 207.42 ± 96.73

Visual score 2.55 ± 0.09 3.43 ± 0.13 3.85 ± 0.12

Vessel sharpness 0.78 ± 0.06 0.80 ± 0.04 0.81 ± 0.03

Registration time 0.23 ± 0.02 s 67.14 ± 23.03 min 1.09 ± 0.21 min

CNN, convolutional neural network; LREG, local affine registration method; NMC, non-motion corrected.
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