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AbstrAct

Lung cancer is the leading cause of cancer mortality worldwide. Treatment pathways include regular cross-sectional 
imaging, generating large data sets which present intriguing possibilities for exploitation beyond standard visual inter-
pretation. This additional data mining has been termed “radiomics” and includes semantic and agnostic approaches. 
Textural analysis (TA) is an example of the latter, and uses a range of mathematically derived features to describe an 
image or region of an image. Often TA is used to describe a suspected or known tumour. TA is an attractive tool as 
large existing image sets can be submitted to diverse techniques for data processing, presentation, interpretation and 
hypothesis testing with annotated clinical outcomes. There is a growing anthology of published data using different TA 
techniques to differentiate between benign and malignant lung nodules, differentiate tissue subtypes of lung cancer, 
prognosticate and predict outcome and treatment response, as well as predict treatment side effects and potentially 
aid radiotherapy planning. The aim of this systematic review is to summarize the current published data and understand 
the potential future role of TA in managing lung cancer.
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introduction
Lung cancer is the second commonest cancer diagnosed in 
the UK after prostate cancer in males and breast cancer in 
females. It has a very poor prognosis.1,2 Patients undergo 
regular cross-section imaging to diagnose, stage, assess 
response and undertake surveillance after treatment for 
lung cancer, which leads to a pool of imaging data that 
potentially has significant value beyond accurate staging of 
the patient. CT is a central tool in managing lung cancer. It is 
relatively inexpensive, quick and widely available. [18F]−2-
fluoro-2-deoxy-D-glucose positron emission tomography/
computed tomography (FDG PET-CT) superposes a func-
tional assessment of tumour metabolism. It can greatly aid 
in, e.g. the identification of malignant lung nodules with a 
sensitivity of 95% and specificity of 82%,3 but is less widely 
available and considerably more expensive. Value-based 
care provides incentives to maximize information from 
standard investigations. Radiomics aims to extract and 
analyse large amounts of advanced quantitative data from 
medical imaging.4 Textural analysis (TA) is a subtype of 
radiomics, an example of an agnostic, rather than semantic, 

approach within this field, based on mathematical deriva-
tions rather than prior clinical concepts.5

TA can be used on existing data sets with no further 
dedicated or specialist imaging required. A considerable 
body of literature has accumulated in this field. TA has 
the potential to differentiate between benign and malig-
nant lung nodules6–15 prognosticate outcome,16–28 aid 
improved radiotherapy planning,29 predicting radiotherapy 
side effects30 and give a greater understanding of response 
assessment.31–40 The aim of this review is to explain how 
different TA methods have been investigated in non-small 
cell lung cancer (NSCLC), and to describe their current 
applicability and future potential.41

Methods And MAteriAls
PubMed, Medline and Web of Science were searched 
using the search terms “textural analysis”, “texture anal-
ysis” and “radiomics” with MeSH terms “lung neoplasms”, 
“non-small cell lung cancer” and “small cell lung cancer”. 
The search period was January 2010 to December 2016. 
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Table 1. Categories of textural analysis. Adapted from Alobaidli et al42

Feature Name of feature Definition
First-order Mean Average intensity of values of an image

Variance Spread or variation around the mean

Skewness Symmetry of intensity values in an image. Skewness = 0 if 
histogram is symmetrical

Kurtosis Indication of histogram flatness, Leptokurtic curves are steeper 
and platykurtic curves are flatter/less peaked

Energy Uniformity of intensity values

Second-order local Contrast Measures amount of local variation in intensity values

Angular second moment (energy or uniformity) Measures homogeneity of intensity value distribution in an image

Homogeneity (inverse difference moment) Measures the homogeneity of the intensity values of the pixel pair

Correlation Measures the linear dependencies of intensity values in an image

Entropy Measure of randomness of intensity values in an image

Sum of first-order features (squares, average, entropy, 
variance)

Higher-order (local) Complexity Measures amount of information in texture

Busyness Measures the rate of change in intensity values

Contrast Measures the variation of intensity values in an image

Coarseness Measures the density of edges in an image

Texture Strength Measures how definable (distinguishable) primitive texture is

High-order (regional) Grey-level non-uniformity: Represents the similarity of intensity values in an image

Run length non-uniformity: Measures the run length similarity

Run percentage Ratio of total number of runs to the total number of possible 
runs, measuring the homogeneity of runs. For images with most 
linear structure, the value of run percentage is lowest.

341 papers were identified, which were filtered using the terms 
oncology and English. Papers discussing other primary cancers 
and duplicates were excluded. This left 104 papers.

What is textural analysis (TA)?
TA uses a range of mathematically calculated features to 
describe an image or region of an image. Often TA is used to 
describe a suspected or known tumour. The complexity of the 
analysis depends on the feature being described. Although 
different textural features have been generated from a wide 
range of sources, they can be broadly divided into three catego-
ries: first-order (least complex), second-order and higher-order 
(most complex). Different subcategories of TA are summarized 
in Table  1. First-order features are often calculated as a single 
figure describing the texture of the whole volume being anal-
ysed. Second-order features describe the relationship between 
two points, such as two pixels or voxels within the same image. 
Higher-order features describe the relationship between a pixel 
and more than one other pixel, i.e. a minimum of three points 
in space.

First-order textural features use a range of basic statistical 
methods to express a single measure, including: energy, kurtosis, 
maximum and minimum intensity, average intensity (median 
and mean), range of intensities, skewness, SD, uniformity, 

entropy (irregularity of intensity value distribution) and vari-
ance. SD, variance and mean absolute deviation express how 
the range of intensities are distributed. Skewness measures how 
much histogram asymmetry there is around the mean. Kurtosis 
measures the sharpness of the histogram. Randomness can be 
computed using uniformity and entropy. Entropy is a measure 
of disorder. The higher the entropy the greater the disorder or 
heterogeneity. The lower the entropy, the higher the homo-
geneity. First-order features do not take account of any spatial 
relationship between different points in an image. Much of the 
published TA work, particularly related to lung nodules focuses 
on first-order features of TA.43–48

Second-order textural features describe a relationship between 
two points within the same region of interest. It can describe the 
three-dimensional size and shape and a range of values within a 
tumour. By deriving a region of interest, measurements can be 
taken of variations across the tumour volume, including entropy, 
compactness, sphericity, surface area and surface to volume 
ratio. Describing higher-order textural features is more complex 
than first- or second-order features, as it involves identifying the 
relationship between 3 or more points.

TA often requires complex interpretation. It is common to 
compare clinical interpretation with clinical interpretation 
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combined with TA. The impact of TA can be assessed by various 
tools including receiver operating characteristic area under the 
curve (ROC-AUC) and concordance index (CI). ROC-AUC is 
an explanation of the “usefulness” of a test assessing sensitivity 
and specificity, assuming a test can be defined in a binary way, 
i.e. “positive” or “negative”. ROC-AUC gives a test four outcomes: 
true negative, true positive, false negative and false positive. The 
ROC-AUC analyses the true positive rate against the false posi-
tive rate, deriving values between 0.5 and 1.0. 0.5 shows a poor 
test as true positives = false positives, 1 is a perfect test with no 
false positives. Generally 0.6–0.7 = poor test, 0.7–0.8 = a fair 
test, 0.8–0.9 = a good test,  >0.9  = an excellent test. A second 
measure is CI, which measures how well a prognostic test distin-
guishes individuals from a population with or without a partic-
ular outcome. Values range from 0.5 (no discrimination) to 1.0 
(perfect discrimination).49 To be significant, a CI measurement 
should exclude 0.5 from its confidence interval.

Pre-treatment textural analysis (TA)
A wide range of studies have used TA to attempt to define 
different aspects of lung lesions seen on pre-treatment imaging. 
TA has been used to differentiate benign or minimally invasive 
lesions from malignant tissue (particularly lung nodules) using 
CT,6,8–10,12–15,50,51 FDG PET-CT52 ultrasound53 and different 
types of tumour histology,54–56 to aid assessment of the tumour 
and aid treatment decisions. These features can be combined to 
predict the likelihood of a nodule being malignant.

TA has also been employed to help classify histological images. 
An automatic classifier of squamous cell and adenocarcinoma 
helped aid tissue classification57 and TA of nucleus features has 
been shown to predict early recurrence of NSCLC.58

Lung nodules
TA has been used to differentiate between different tissues and 
determine the risk of malignancy of small pulmonary nodules. 
Pulmonary nodules are focal opacities appearing on imaging that 
are defined as less than 3 cm in axial diameter; they can be solid, 
semi-solid or non-solid in appearance.59 CT density [measured 
in Hounsfield units (HU)] and morphology can be used to assess 
pulmonary nodules. Solid cancer, non-solid lepidic adenocar-
cinoma, blood and inactive fibrous tissue all have different HU 
measurements.60 However, it is still difficult to predict with 
certainty the pathology of small lung lesions, because up to 39% 
of lung nodules with a benign CT morphological appearance can 
be malignant.61

As the use of medical imaging increases, more lung nodules are 
likely to be identified. Lung cancer screening using low-dose CT 
has a relative risk reduction of 20% for lung cancer specific survival, 
when compared with chest radiography in a high risk popula-
tion. In each of the 3 years of screening, identification of a nodule 
occurred in 27.3%, 27.9% and 16.8% of the trial population in years 
1–3, respectively. Individuals in whom a nodule was identified in 
years 1 and 2 were not automatically excluded from continuing with 
screening, but more than 95% of these nodules would be benign.62 
TA may aid risk stratification of these lung nodules. This has signif-
icant potential to improve the predictivity of screening and reduce 
the morbidities rendered by biopsy and surgical resection

As stated, lung nodules can be broadly divided into solid, semi-
solid and non-solid. Several studies have aimed to help classify 
lung nodules into broad categories before further analysis.44, 63 
Ground glass nodules (GGNs) are non-solid and can be difficult 
to extract from an image accurately.45, 64 Three studies suggest 
TA can convincingly determine malignant from non-malignant 
nodules. The first study capitalized on potential differences in 
heterogeneity between the nodule edge and centre. The differ-
ence was much greater in malignant nodules when compared 
with inflammatory nodules with ROC-AUC of 0.836.65 In a 
second study, computer-aided diagnosis of whether a lesion 
was benign or malignant achieved 94% accuracy in correctly 
identifying all non-cancerous lesions as benign using a single 
image slice.66 These results were achieved using all slices of the 
abnormal lesion.48

In a cohort of 55 patients, CT TA improved specificity from 38.5 to 
100% when compared with a FDG PET-CT-CT in differentiating 
primary lung tumours from granulomatous lung lesions.47 Sensi-
tivity was similar in both groups (75% using five TA features  vs  
79 with FDG PET-CT %). High entropy (high level of disorder) 
was more common in primary NSCLCs. Interestingly in this 
study, using a combination of three textural features generated 
from a contrast-enhanced CT scan rather than a non-contrast CT 
scan reduced the sensitivity from 88 to 38%. The reason for this is 
not clear, but the presence of contrast may obscure the texture of 
the region of interest. Contrast could potentially act as a marker 
of vascularity, but as this study suggests, it could obscure textural 
information. The effect of contrast is not necessarily binary, as 
the results using contrast could depend on contrast-related 
factors such as speed of infusion, contrast agent used, amount 
of infusion given; image-related factors such as delay between 
contrast and image acquisition and patient-related factors such 
as cardiac output and body habitus. These factors may require 
standardization so that they do not unduly influence the TA.

GGNs have a higher malignant probability than solid nodules, 
while a combination of GGN and solid nodule have an even 
higher malignant potential (62.5–89.6%),67 although at least 
half (49–70%) of these partial solid ground glass nodules disap-
pear within 3 months. Analysis was performed aiming to iden-
tify textural features that may predict persistent  vs  transient 
partial solid ground glass nodules. When textural features were 
combined with clinical and CT features, differentiating perfor-
mance significantly increased from 79 to 92.9% (p < 0.05). 
As with the previous study, Wang et al68  showed that TA can 
improve diagnostic certainty. In contrast to the previous study, 
this study analysed the whole tumour, instead of a single image 
slice. This technique improved sensitivity and specificity from 
0.82 and 0.47 to 0.95 and 0.71, respectively.68 3D TA has also 
been used to differentiate between pre malignant adenocarci-
nomas and early invasive adenocarcinomas.56 It is not currently 
clear how large a region of interest needs to be analysed. There 
are three possible approaches, 2D analysis of a single slice, 2D 
analysis of multiple slices or 3D analysis of the whole region of 
interest. If a single slice is being used, then often this is the largest 
slice, but cross-sectional area does not definitely correlate with 
the greatest amount of extractable information. Han et al showed 
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that generating 2D textural features on multiple slices from 3D 
data was better than generating them from a single 2D slice. 
Although 3D data did not improve on multiple 2D slices, it can 
potentially analyse extra features not available in a 2D analysis. 
2D analysis on a single plan on a single slice would not detect 
differences in other planes, e.g. if the axial plane was used, data 
regarding the coronal or sagittal plane of the tumour could not 
be generated. Analysing multiple 2D slices may help identify the 
most representative 2D slice, but does not overcome the limita-
tions regarding information in 3D.

FDG PET-CT is another type of imaging used to assess lung 
nodules. In many institutions worldwide FDG PET-CT is less 
available than CT, but is a very useful tool in identifying malignant 
lung nodules, with a sensitivity of 95% and specificity of 82%.3 
Tracer uptake can be heterogeneous within a tumour because 
of areas of necrosis, differences in blood flow, cellular activity, 
microvessel density or hypoxia. Whilst this review focuses on the 
exploitable TA features of standard CT scans, where PET-CT data 
sets are available, additional value can be extracted from these 
scans. Fractal analysis is a TA modality that has been studied in 
this setting. Morphological fractal dimension and density fractal 
dimension can be generated from CT and PET images of pulmo-
nary images. Combining morphological fractal dimensions and 
FDG PET-CT or density fractal dimensions improves diagnostic 
accuracy to above 90% when comparing benign nodules with a 
primary NSCLC69 using FDG-PET alone.

MRI is not routinely used to assess lung tumours before treat-
ment. However, a small single institution series suggests that 
entropy derived from dynamic contrast enhanced MRI may 
predict progression free survival (PFS).70

Pre-treatment textural analysis (TA) of primary lung 
tumours using CT
TA has been shown to have potential as an imaging biomarker 
to identify the histological subtype of NSCLC. Although many 
of these studies are relatively small, CT TA radio-genomics is a 
rapidly expanding field. CT TA has helped to differentiate KRAS 
oncogene-mutated tumours from pan-wild type tumours,71 
epidermal growth factor receptor (EGFR)  mutant tumours from 
wild type tumours,72,73 EGFR-mutated tumours from anaplastic 
lymphoma kinase (ALK) () rearranged tumours,74 lepidic adeno-
carcinomas from non-lepidic adenocarcinomas75 and ALK 
rearranged tumours from unrearranged tumours.76,77 Work in 
progress has identified a correlation between kurtosis (a first-
order textural feature) in NSCLC and the expression of a gene 
coding for a protein that regulates mucin production, Mucin5AC. 
The expression of this gene is considered a marker of the activa-
tion of the MAP kinase signalling pathway. Increased presence of 
mucin produces lower attenuation with X-rays than soft tissue. 
This begins to demonstrate the potential for radio-pathological 
correlation through advanced imaging analysis.78

Conventional predictors of outcome in NSCLC include TNM 
staging, AJCC stage, age, sex, histology, comorbidities and 
performance status. The use of a biomarker from CT imaging to 
prognosticate patients’ outcomes, risk of distant metastases and 
overall survival (OS) is attractive. CT texture features have been 

correlated with PET-CT SUVmax, tumour staging and degree of 
tumour hypoxia.16,79 A combination of TA features have been 
identified that predict recurrence in surgical patients17 and 
overall survival in patients with adenocarcinoma.80

TA can assess many different features and this presents a chal-
lengingly large experimental space. In 98 patients with stage 
I-III NSCLC receiving radical radiotherapy, the 15 most predic-
tive textural features were chosen from over 600 features, from 
pre-treatment CT scans.19 Risk of distant metastases were 
divided into high risk and low risk with a CI of 0.62. Use of 
simple radiomic features were able to predict risk of distant 
metastases in a discovery and validation set of patients. In a 
similar study in Stage 3 patients, receiving chemo-radiotherapy, 
textural features extracted from the gross tumour volume, 
patients could be divided into high and low risk based on tradi-
tional prognostic factors such as staging and features from TA,20 
with a CI of 0.89 and 0.91 for overall survival and locoregional 
control, respectively. Grove et al showed that morphologically 
similar tumours could be divided into better and worse prog-
nosis groups and validated this at a separate institution, using 
convexity and central tumour entropy. More irregular tumours 
conferred a worse prognosis.21

TA in combination with machine learning has been shown to 
predict recurrence with a high degree of accuracy (CI 0.81)41 
and OS,81 using the pre-treatment image of a single CT slice of 
101 patients who underwent resection of Stage I primary lung 
adenocarcinoma. The TA used a second-order feature called 
Riesz wavelets, which were chosen to differentiate between solid 
component and ground glass opacities. Support vector machine 
(SVM, a form of machine learning) has been used to classify high 
risk and low risk lesions, as well as risk of recurrence.23,24 The 
benefit is that SVM can separate non-linear data; it can sepa-
rate data into two groups that are not obviously distinct when 
plotted, when methods such as logistic regression are less useful. 
The more round the tumour (spherical disproportionality) and 
the greater the tumour heterogeneity, the less likely the response, 
in patients undergoing neo-adjuvant chemo-radiotherapy for 
NSCLC. The strength of this study was that treatment effect was 
assessed by pathological assessment of the surgically resected 
specimen. In a separate study, CT TA measures were able to 
predict tumour shrinkage after radical radiotherapy.25

A range of TA studies have been performed with broadly similar 
methodology. A patient cohort with a known outcome measure 
is identified. A single slice or whole tumour is segmented out 
from the rest of the scan. A range of first-, second- and high-
er-order textural features can then be extracted. In many cases, 
a large number of TA features can be calculated. Features are 
chosen that correlate with outcome. The difficulty is that different 
TA features are significant in different studies, using different 
methods of analyses. An association between TA features and 
outcome could be statistically significant by chance, if very 
large numbers of parameters are analysed. Some TA features are 
dependent on preprocessing of the image before TA is performed, 
whereas others are independent,26 which means the independent 
features were more likely to be robust, as they are not prone to 
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variations in preprocessing. These concerns limit the reproduc-
ibility of many studies and their applicability as a practical clin-
ical tool. Large robust data sets may help to overcome some of 
these limitations. For example, Palmar et al were able to analyse 
lung tumours and head and neck tumours in 878 patients with 
training and validation sets for both tumour types. In this study, 
radiomic parameters were correlated with stage and prognosis.82 
Reproducibility is a key element in using such a biomarker more 
widely.

TA can potentially increase the accuracy of nodal staging as 
lymph nodes can be auto-mapped and identified.83 TA has been 
shown to predict whether a lymph node is malignant or not in 
biopsy proven nodes, with a sensitivity of 81% and specificity of 
80% (AUC = 0.87, p < 0.0001). This was achieved using a combi-
nation of three textural features: entropy, grey level non-uni-
formity and run length non-uniformity with three features of 
shape, which assessed the degree to which a lymph node was 
circular. Using this combination, 84% of malignant nodes and 
71% of benign nodes were correctly classified on a non-contrast 
CT.84 However, only half the patients (22 of 43 patients) received 
a staging PET-CT scan. PET imaging shows a small improve-
ment in diagnostic efficacy when compared with measuring 
nodal dimensions alone. A published study using commercially 
available software called TexRAD has shown that it is possible 
to differentiate malignant nodes from benign nodes with a low 
sensitivity of 53%, but much improved specificity of 97%, with 
an ROC-AUC of 83%.85 TA based on endobronchial ultrasound 
has been shown to differentiate between benign and malignant 
nodes using fractal dimension.53

Pre-treatment textural analysis (TA) of primary lung 
tumours using PET-CT
FDG PET-CT is used as standard to stage patients potentially 
suitable for radical treatment for NSCLC. It is becoming increas-
ingly used in managing treatment in NSCLC. Using simple PET 
metrics such as mean and maximum SUV would not be defined 
as TA, but analysing tracer uptake can identify heterogeneity 
across the tumour.

Extracting texture features is dependent on the size and FDG 
uptake seen on FDG PET-CT imaging.86–88 FDG-PET texture 
features have been found to be prognostic20,89–93 and provides 
more accurate prognostication than CT TA alone.94,95 Simple 
measures such as SUVmax and metabolically active tumour 
volume have been associated with OS after radiotherapy and 
response rates after palliative chemotherapy in metastatic lung 
cancer.88,96–98  In one study, these metabolic measures have 
also been found to correlate with first-order textural features,99 
however additional work has suggested that only second-order 
features correlate with OS.100 FDG PET-CT-CT has high test-re-
test and high interobserver stability. In contrast, Cook et al101 
showed that FDG PET parameters (such as SUVmax) did not 
predict the outcome.FDG PET-CT studies have also been shown 
to aid the diagnosis of mediastinal lymph nodes.102,103Although 
FDG is the commonest tracer used in clinical practice, other 
tracers such as F-fluromisonidazole, a marker of tumour 
hypoxia, are available. F-fluromisonidazole uptake can vary 
across tumours and therefore, it is possible to assess tracer uptake 

heterogeneity and to use TA to generate textural features.104,105 
FDG images take 15–20 min to acquire. As a result, tumour move-
ment caused by respiration during image acquisition appears to 
affect some, but not all textural measures,106 e.g. busyness (a 
measure of intensity change between a voxel and those around 
it) was 20% higher in the 4D scan, suggesting that as possibly 
expected blurring means these measures are sensitive to motion. 
Fried et al identified that a combination of histogram features, 
co-occurrence matrices (using 2D relationships), shape and 
volume correlated with OS and locoregional control, but was not 
externally validated. Further studies have shown that SUVmax 
and mean, total lesional glycolysis (TLG) and metabolic tumour 
volume correlated positively with entropy. Energy and contrast 
had an inverse relationship107 and that the FDG PET and CT 
heterogeneity assessments can separately predict OS.

In a pilot study, Wu et al29 segmented subregions of tumour 
based on similarity of appearance, using CT and FDG PET-CT.
Each tumour was over-segmented into multiple super pixels 
using K clustering of the FDG PET and CT images. The volume 
of the metabolically active subregion predicted OS in this 
patient cohort, with a CI 0.67 and hazard ratio of 2.79 (log rank  
p = 0.004). These regions appear to be robust against a degree of 
misregistration, but the PET data does not appear to account for 
tumour movement. In supporting the use of TA in radiotherapy 
planning, some CT texture features are robust enough to be iden-
tified on linear accelerator based cone beam CT scans from on 
treatment imaging during radiotherapy.108 Image quality and the 
ability to quantify an image is likely to improve as cone beam CT 
technology quality improves.

The majority of these studies are retrospective. Many studies also 
use a lot of clinical data alongside to stratify outcome, adding 
in TA then slightly improves prediction of outcome compared 
with clinical data alone, rather than the tumour textural features 
alone predicting outcome. These studies are heterogeneous. They 
utilize different standards, measurements, equipment and tech-
niques. For this reason, it is difficult to achieve accurate repro-
ducibility. Some studies have heterogeneous cohorts receiving 
different treatment, either combining tumours that received 
radiotherapy alone with chemo-radiotherapy or different radio-
therapy schedules. Accurate localization and segmentation of 
tumours on CT imaging is easier to overcome using appropriate 
windowing, than differences on FDG PET-CT, particularly if 3D 
PET is used. Some studies have specifically looked at reproduc-
ibility and this is an important area of further research.109,110 At 
present, it is unlikely that TA assessment is sufficiently robust to 
act as a biomarker.

Assessing treatment response
Follow-up CT and PET-CT scans both provide additional oppor-
tunities for assessment of treatment response beyond simple visual 
interpretation. SUV intensity on FDG PET-CT imaging may give a 
faster response than decrease in tumour volume.111 Early predic-
tion of response to chemo-radiotherapy has been made using 
PET heterogeneity. In a study by Dong et al, patients undergoing 
an on treatment FDG PET-CT scan (after receiving approxi-
mately two-thirds of total radiation dose), certain textural features 
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indicated response to treatment with a higher sensitivity (92 vs 
73%) and specificity (84 vs 80%) than baseline PET features.112

Identifying early recurrence after radical radiotherapy can be 
complex, particularly after stereotactic ablative body radiotherapy 
(SABR).113 SABR describes a battery of methods that facilitate 
the highly targeted delivery of a high dose of radiotherapy in 
fewer larger doses to an early stage lung tumour. The centre of the 
tumour often receives two or three times the biological equiva-
lent dose compared with standard radiotherapy. Pre-treatment 
textural features can improve prediction of outcome, compared 
with SUVmax alone.28 Compared with other treatment response 
assessments, the evidence base for using radiomics and textural 
features in SABR response assessment is relatively advanced. 
Treatment-related toxicity is also amenable to assessment by TA. 
Radiation induced lung injury (RILI) consolidation commonly 
occur after SABR.114 Differentiating RILI and tumour recur-
rence is difficult. When comparing areas of ground glass opacity 
and consolidation, recurrences were denser and had different 
textural features than areas of RILI and early response could be 
predicted.31–33 FDG PET SUV >5 or SUV higher than the diag-
nostic FDG PET-CT suggest recurrence.113 Radiomic features 
have been extracted, which predict early recurrence and are able 
to improve sensitivity when compared with physician assessment 
(AUC 0.85, false negative rate 23% vs 99%).33 Another study has 
suggested that perfusion characteristics of RILI and recurrence 
are different, with the areas of recurrence exhibiting changes in 
perfusion termed as wash-in and wash out phenomenon, not 
seen in areas of RILI.34 Lung CT TA changes can be identified 
in patients receiving radical radiotherapy to the oesophagus, 
this technique not only identified patients who did, and did not, 
develop radiation pneumonitis, it also quantified it.115 It achieved 
this by comparing randomly generated regions of interest in both 
pre and post treatment imaging.

In advanced NSCLC tumours, neither volumetric measurements 
on CT nor RECIST criteria predicted OS.35 PET SUVmax has 
been associated with response to chemotherapy and TKIs,36,37 
but not with OS.38,97 TA could identify response of adenocarci-
nomas in the metastatic setting but could not identify response 
in non-adenocarcinomas..38 Different textural features have been 
identified in assessing response to chemo-radiotherapy (found 
tumour volume, mass, kurtosis and skewness) or an EGFR 
tyrosine kinase inhibitor (heterogeneity).39 11 C erlotinib PET 
requires further investigation but has been shown to poten-
tially identify TKI responders and non-responders in a murine 
model.40 Kurtosis after neoadjuvant chemotherapy and inten-
sity variability after tyrosine kinase Inhibitor therapy have been 
shown to independently predict pathological response.39 Having 
a predictor of response is useful as non-responders could poten-
tially avoid a toxic treatment, which would not benefit them and 
reduce costs of futile therapy.

Future perspective
The use of TA and radiomics is rapidly evolving. It is attractive as 
it uses existing imaging data to gain greater information about a 
tumour or disease state. There has been sufficient work to establish 
that certain textural features can act as biomarkers. Indeed tumour 

kurtosis and entropy are entering real-world clinical evaluation as 
markers of poor prognosis.78 However, to become more widespread 
a range of obstacles require attention. It is important to consider 
standardization of each step in the process including: acquisition, 
segmentation (ideally auto-segmentation), analysis and interpreta-
tion of the data. TA techniques often require an expert to accurately 
delineate the tumour. TA requires a significant degree of computing 
power to generate the analysis, it is not currently integrated into 
current assessment of imaging in diagnosis and response assess-
ment and TA potentially makes workflow with a radiology depart-
ment more complex.

Some of these challenges can be overcome. For example, 
extracting textural features automatically reduces or eliminates 
interobserver error,116 using an automated technique to delineate 
tumour volume is more robust than manual delineation117 and 
commercialization and user interface optimization may facili-
tate the incorporation of TA into radiology department work-
flows. Many studies have analysed the primary tumour and so at 
present are more likely to be useful for pre-treatment prognosti-
cation, rather than post treatment assessment.

To gain the full benefit of textural features, identification and 
classification of features need to be sufficiently robust to over-
come variables such as patient factors (including positioning, 
respiration phase and motion management and effects or lack of 
IV contrast), acquisition and processing variables such as image 
acquisition power, image slice thickness, image reconstruction 
algorithms, use of segmentation software and operator variability 
in tumour delineation. Some texture features are reproducible, 
while others are highly variable and do not generate the same 
results with repeat testing.118,119 To minimize these variables and 
identify the changes related to tumours alone many studies stan-
dardize their image acquisition process.110 Useful biomarkers 
need to overcome these features or have to be standardized to 
ensure accurate interpretation of this information.

TA of routine imaging is likely to have a range of uses in the future 
both within and outside of oncology. With more robust measures 
of texture it may be helpful in differentiating between benign and 
malignant lesions, identifying subtypes of malignancy. It will aid 
surgical and radiotherapy planning and hopefully provide more 
accurate response assessment. Response assessment is becoming 
more important as treatment becomes increasingly complex. 
Standard RECIST size criteria are not adequate for assessing 
response in immunotherapy as standard RECIST criteria under-
estimate benefit.120 Texture could potentially have a role in 
assessing how a lesion changes rather than just using size assess-
ment. Assessing response after stereotactic radiotherapy is diffi-
cult because of the localized radiotherapy change induced by the 
treatment. Differentiating between inflammation and tumour is 
difficult, particularly if a biopsy is inconclusive.

Outside of oncology, TA has already been used to assess hepatic 
and pulmonary fibrosis121 and to see if different lung patholo-
gies can be diagnosed on imaging alone. It can potentially have 
a role in differentiating tissue anywhere in the body, potentially 
preventing the need for more invasive tests.

http://birpublications.org/bjr
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