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Objective: To evaluate the geometric change of osteoporotic bone trabecular
patterns using root mean square (RMS) values, first moment power spectrum (FMP)
values and fractal dimension values. With the use of these methods, we attempted
computerised analysis of osteoporotic bone patterns using texture parameters
characterising bone architecture and computer-aided diagnosis of osteoporosis.
Methods: 32 patient cases from Korea University Guro Hospital were analysed. Patient
ages ranged from 51 to 89 years, with a mean age of 65 years. Receiver operating
characteristic curve analysis was performed with determination of the area under the
curve (AUC).
Results: The bone mineral density (BMD) measurement (AUC50.78) was a better
indicator of bone quantity than the RMS, FMP and fractal dimension values (AUC50.72)
for diagnosis; therefore the combination of RMS, FMP and fractal dimension values was
a better indicator of bone quality.
Conclusion: Measurements that combined BMD measurement and RMS values and
combined FMP and fractal dimension values (AUC50.85) together produced better
results than the use of the two parameter sets separately for a diagnosis of
osteoporosis.
Advances in knowledge: For more effective application, additional study on more
cases and data will be required.
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Osteoporosis is a condition in which the decreases in
bone strength and density ultimately lead to fragile bones
and subsequent fractures. Osteoporosis has been recog-
nised as an established and well-defined disease that affects
.75 million people in USA, Europe and Japan, and causes
.4.5 million fractures annually in the USA and Europe [1].

Osteoporosis does not only cause fractures, it also
results in elderly subjects becoming bedridden with
potentially life-threatening secondary complications.
Since osteoporosis also causes back pain and loss of
height, prevention of the disease and its associated
fractures is essential in order to maintain health, quality
of life and independence among the elderly [2].

There are commonly used methods in diagnosing
osteoporosis. The most widely utilised method to assess
the bone mass is the determination of bone mineral density
(BMD). This method is readily available and popular for its
non-invasive means to identify osteoporosis in a patient.
BMD is only one contributor towards determining bone
strength and fracture risk reduction. In fact, BMD by dual-
energy X-ray absorptiometry (DXA) is widely used for
diagnosing osteoporosis. The World Health Organization
(WHO) defines osteoporosis as a BMD that is 2.5 standard

deviations (SD) or more below the mean of a young adult
of the same sex (T-score) [3, 4].

Although the use of BMD is becoming much
more frequent, there are several key concerns that need
to be addressed before this method of diagnosis is
undertaken. Routine DXA scanning sporadically identi-
fies individuals with extremely high BMDs, which are
not always explained by artefactual causes such as
osteoarthritis (OA), the syndesmophytes of ankylosing
spondylitis or surgically implanted metalwork. Paget’s
disease, certain malignancies and rare conditions such as
myelofibrosis and hepatitis C osteosclerosis can also
raise BMD [5–8].

Heterogeneity of density due to osteoarthritis or a
previous fracture can often be detected on a scan, and can
sometimes be excluded from the analysis [3]. Because of
osteoarthritis, features such as soft-tissue calcification, the
presence of overlying metal objects, or the presence of
compression fractures and previous fractures, it can be
difficult to diagnose osteoporosis using only DXA.

The other diagnostic method for both osteoporosis and
the assessment of bone mass is through the use of
radiography. In this procedure, the Jikei University
classification or Itami index is used [9], which radio-
graphically classifies the stage of bone loss in a vertebral
body (Figure 1). Approximately 25% of the vertebral
bodies classified as first stage based on the Itami index,
60% of the vertebral bodies classified as second stage and
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90% of the vertebral bodies classified as third stage have
been reported to have suffered traumatic fractures.

Caligiuri et al [10] previously reported that using
computerised radiographic methods to evaluate bone
structure, such as fractal analysis, might be more helpful
to determine fracture risk in osteoporosis. Takigawa et al
[11] quantitatively evaluated trabecular patterns by
spectral analysis of the patterns on lateral views of the
lumbar vertebrae. Ishida et al [12, 13] evaluated the
patterns of power spectra with a two-dimensional fast
Fourier transform (2DFFT) and a one-dimensional max-
imum entropy method (1DMEM). Nishihara et al [14]
developed an algorithm that distinguished the central
part of the vertebral body using abdominal X-ray CT
images in order to determine whether it was possible to
aid in the diagnosis of osteoporosis. Dougherty and
Henebry [15] reported that the maximum deviation of the
lacunarity from a neutral (fractal) model used with bone
mineral density may have diagnostic value in characteris-
ing osteoporosis and predicting fracture risk. Ito et al [16]
reported that vertebral microarchitecture can be visua-
lised through multidetector CT (MDCT), and that micro-
structure parameters obtained by MDCT, together with
volumetric BMD, provide better diagnostic performance
for assessing fracture risk than DXA measurement. Recent
studies have demonstrated that microarchitectural mea-
surements acquired using high-resolution MDCT imaging
available in vivo correlate strongly with those assessed
using high-resolution peripheral quantitative CT [17, 18].

In this paper, we have attempted to evaluate the
geometric change of trabecular patterns using root mean
square (RMS), first moment power spectrum (FMP) and
fractal dimension.

Materials and methods

Database

We studied 32 patient cases from Korea University
Guro Hospital. All patients were post-menopausal
females with ages ranging from 51 to 89 years, and the
mean age of the group was 65 years. All of the patients
who participated in the examination gave their consent.

All patients had already undergone a lumbar spine CT
examination within a few months of BMD. 5 of the
patients had a normal diagnosis and 12 were diagnosed
with osteopenia. The remainder of the patients were
diagnosed with osteoporosis. General diagnostic cate-
gories that had been proposed by the WHO and
modified by the International Osteoporosis Founda-
tion were followed for assessments performed with
DXA [1, 2].

Bone densitometry and multidetector CT imaging

The measurements of BMD were determined using a
DXA system (Discovery A; Hologic, Bedford, MA). The
diagnosis was performed in a standard anterior–poster-
ior projection of the lumbar spine with attention to the
L2–L4 levels. The volume measurements of the lumbar
vertebra were examined through the use of a 15-slice
MDCT scanner (Sensation15; Siemens, Erlangen,
Germany). The tube voltage was 120 kVp and the matrix
size used was 5126512 pixels. The slice thickness was
originally 0.5 mm. This meant that the interval of each
slice was 0.5 mm on z-axis. However, the pixel spacing
on x, y-axis was 0.25 mm by magnification. Lumbar
vertebrae 2–4 were considered appropriate for compar-
ing the CT image with the BMD. The analysis was
conducted by BMD without any diagnosed or observed
conditions (e.g. surgically implanted metalwork, com-
pression fracture and osteoarthritis) that could be
capable of affecting the bone density of the spine.

Processing for regions of interest

Data pertaining to CT volume and sagittal images
were reconstructed by using the Jikei University classi-
fication (Figure 1). The matrix size for the region of
interest (ROI) regarding data input was determined as
64664 pixels6100 slices (32.0632.0650.0 mm; pixel spacing
was 0.5 mm). All ROIs were corrected for a non-uniform
background trend by using a two-dimensional surface-
fitting technique. A background trend correction through
the use of a second-order polynomial least-squares fit
[19] was performed on the ROIs prior to texture analysis.
The purpose of this correction was to remove any trends
varying slowly in the image due to variations in bone
thicknesses and the anode-heel effect. Subsequently, the
Blackman window function [20] was applied to the ROIs.
When the frequency image was transformed back to the
spatial domain, it contained spatial distortion artefacts
because of an edge effect. The edge effect was minimised
by using the sampled image in a frequency domain by a
window function. The Blackman window function
results in poor frequency resolution; however, it can be

(b)

(e)(d)

(a) (c)

Figure 1. (a) Normal: there are dense trabecular patterns in
both the horizontal and vertical direction. (b) Early stage:
bone images become lower in clarity and trabeculae become
thinner. (c) First stage: trabeculae decrease in the horizontal
direction and become more isolated in the vertical direction.
(d) Second stage: in the horizontal direction, trabeculae
continue to decrease. Also, in the vertical direction, they
become thinner. (e) Third stage: trabeculae become distin-
guishable in both the horizontal and vertical direction. Bone
images appear blurred. Scheme and details of the Jikei
University classification or Itami index, which classifies
radiographically the stage of bone loss in a vertebral body.
Source: Itami and Ohata [9].
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applied in a wide dynamic range because small ROIs
(64664 pixels) of data were used.

Root mean square and first moment of the power
spectrum

Fast Fourier transformation was then performed, and
the resulting power spectrum was analysed in order to
yield the RMS [21]:

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið?
{?

ð?
{?

f m,vð Þj j2dmdv

s
ð1Þ

The FMP was calculated as:

FMP~

Ð?
{?

Ð?
{?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2zv2

p
f m,vð Þj j2dmdvÐ?

{?

Ð?
{? f m,vð Þj j2dmdv

ð2Þ

where f(m,n) corresponds to the Fourier transform for the
background-corrected ROI of the trabecular pattern, and
m and n are indices of the ROI array [21].

Fractal dimension

When we used the fractal dimension, background
trend correction images were used. We placed a
structure onto a regular mesh grid and counted the
number of boxes that contained some part of the
structure, as shown in Figure 2. We changed the mesh
size to progressively smaller sizes and counted the
corresponding number N(d) (number of units of dimen-
sion in Figure 2), the following fractal dimension was
obtained [22].

The fractal dimension (D) for each ROI was calculated,
using

D~2{H

where H was the slope of a least-squares line fitted to the
relationship of log box counting versus log pixel size for

each ROI. The number 2 is the topological dimension of
the grey-level surface.

Binarisation was conducted by using a threshold that
distinguished bone texture from soft tissue and fat. We
changed the threshold from 0 to 50, and analysed the
correlation between fractal dimension and SD for the
fractal dimension. It demonstrated an increased threshold
from 0 to 30. It was highest at a threshold of 30; however, it
decreased over a threshold of 40. Owing to these results,
we applied our analysis at a threshold of 30 for all data.

Figure 3 shows a schematic diagram of the RMS, FMP
and fractal dimension.

Receiver operating characteristic analysis

The ability of a fractal dimension to distinguish
between fracture cases was evaluated by using a receiver
operating characteristic (ROC) curve analysis. Using the
fractal dimension was compared with the performance of
BMD in patients diagnosed with osteoporosis. The ROC
curves were derived by using the LABROC program,

(a) (b)

Figure 2. The image was divided
into units of dimensions (a) d16d1
and (b) d26d2 (mesh type), with only
shaded units counted. The fractal
dimension of the structure regard-
ing the bone trabecular pattern was
measured by the box-counting
method.

Figure 3. Schematic diagram of root mean square (RMS),
first moment power spectrum (FMP) and fractal dimension.
ROI, region of interest.
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which required input in the form of values for actual
negative cases (i.e. cases without a fracture elsewhere in
the spine) and values for actual positive cases (i.e. cases
with a fracture elsewhere in the spine). This program
computed the area under the ROC curve (AUC); the
greater the AUC, the better the performance for the
measurement of the specific task (to distinguish cases
with osteoporosis from cases without osteoporosis).

Results

Figure 4 illustrates the relationship between BMD and
the mean CT number (the distribution of the photon’s
linear–attenuation coefficients in the meter [23]). The range
for CT numbers was 1190.66¡51.6 HU (Hounsfield units)
in the normal group, 1120.3¡26.2 HU in the osteopenia
group and 1086.9¡29.8 HU in the osteoporosis C group.

Figure 5 illustrates the relationship between BMD and
RMS values. The range of the RMS was 32.8¡10.8 in the
normal group, 28.3¡8.4 in the osteopenia group and
23.3¡7.1 in the osteoporosis group.

Figure 6 illustrates the relationship between BMD and
FMP values. The range of the FMP was 0.32¡0.14 in the
normal group, 0.30¡0.06 in the osteopenia group and
0.27¡0.05 in the osteoporosis group.

Figure 7 illustrates the relationship between BMD and
fractal dimension values. The range for the fractal
dimension values was 2.654¡0.017 in the normal group,
2.658¡0.017 in the osteopenia group and 2.662¡0.028 in
the osteoporosis group.

All data indicated a weak positive correlation for the
BMD and mean CT number, and showed no tendency
for the BMD and RMS. However, the data seemed to be
classified significantly into two groups—BMD–FMP and
BMD–RMS.

Higher RMS was accompanied by an increase in the
values regarding the RMS SD. The RMSs were divided
into two groups; one group was for a high RMS and the
other group was for a low RMS value. The cause of
separation was the RMS and its SD (Figure 8).
Discriminant analysis was performed using R v. 2.7
statistical software [24].

The discriminant for the high-RMS group and the low-
RMS group was:

y~0:63x{13:77

The low-RMS group indicated a moderate negative
correlation between the RMS and its SD. However, the
high-RMS group indicated no linear correlation between

Figure 4. Relationship between
bone mineral density (BMD) and
mean CT number. There was a weak
positive correlation for Pearson’s cor-
relation coefficient of R250.30, statis-
tically significant at the p,0.01 level.

Figure 5. Relationship between
bone mineral density (BMD) and root
mean square (RMS) values. There was
no correlation for Pearson’s correla-
tion coefficient of R250.07, statisti-
cally significant at the p,0.01 level.
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Figure 6. Relationship between
bone mineral density (BMD) and
first moment power spectrum
(FMP) value. There was no correla-
tion for Pearson’s correlation coeffi-
cient of R250.01, statistically
significant at the p,0.01 level.

Figure 7. Relationship between
bone mineral density (BMD) and
fractal dimension value. There was
no correlation for Pearson’s correla-
tion coefficient of R250.05, statisti-
cally significant at the p,0.01 level.

Figure 8. Relationship between the
root mean square (RMS) and its
standard deviation. The low-RMS
group had a moderate negative
correlation, with Pearson’s correla-
tion coefficient of R250.54. The
high-RMS group did not linearly
correlate with Pearson’s correlation
coefficient of R250.19, statistically
significant at the p,0.01 level.
Circle, low-RMS group; star, high-
RMS group.
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the RMS and its SD. Data from Figures 4–7 were
recategorised by using two RMS groups separated in
Figure 8.

The low-RMS group indicated a weak positive
correlation with Pearson’s correlation coefficient of
R250.40. The high-RMS group also indicated a weak
positive correlation with Pearson’s correlation coefficient
of R250.27, statistically significant at the p,0.01 level
(Figure 9). Although there was not a strong positive
correlation on either the low-RMS group or the high-
RMS group, osteoporosis seemed to be generally
associated with decreased mean CT number.

The low-RMS group and the high-RMS group indi-
cated no linear correlation between BMD and RMS, with
Pearson’s correlation coefficients of R250.21 and
R250.08, respectively, statistically significant at the
p,0.01 level. Both the low-RMS group and the high-
RMS group demonstrated no correlation between BMD
and RMS (Figure 10).

The low-RMS group and the high-RMS group showed
no linear correlation between BMD and FMP, with
Pearson’s correlation coefficients of R250.01 and

R250.02, respectively, statistically significant at the
p,0.01 level (Figure 11).

Both the low-RMS group and the high-RMS group
were not influenced by the BMD and fractal dimension
(Figure 12). The range of fractal dimension in the low-
RMS group was 2.661¡0.016 in the normal group,
2.664¡0.018 in the osteopenia group and 2.665¡0.031
at the osteoporosis group. The range of fractal dimension
in the high-RMS group was 2.654¡0.004 in the normal
group, 2.654¡0.014 in the osteopenia group and
2.655¡0.010 in the osteoporosis group.

Figure 13 illustrated the relationship between RMS
and FMP. The results of the high-RMS group and the
low-RMS group were clearly separated by each group in
this figure. The low-RMS group indicated weak negative
correlation between RMS and FMP, with Pearson’s
correlation coefficient of R250.26. The high-RMS group
indicated no correlation between RMS and FMP, with
Pearson’s correlation coefficient of R250.03, statistically
significant at the p,0.01 level.

Figure 14 illustrates the relationship between RMS and
fractal dimension. The separation for the high-RMS group

Figure 9. Second analysis for the
relationship between the bone
mineral density (BMD) and mean
CT number. The low-root mean
square (RMS) group indicated weak
positive correlation, with Pearson’s
correlation coefficient of R250.40.
The high-RMS group indicated weak
positive correlation, with Pearson’s
correlation coefficient of R250.27,
statistically significant at the p,0.01
level. Circle, low-RMS group; star,
high-RMS group; triangle, fracture.

Figure 10. Second analysis for the
relationship between bone mineral
density (BMD) and root mean square
(RMS). The low-RMS group and the
high-RMS group showed no linear
correlation with respect to RMS and
BMD, with Pearson’s correlation
coefficients R250.21 and R250.08,
respectively, statistically significant
at the p,0.01 level. Circle, low-RMS
group; star, high-RMS group; trian-
gle, fracture.
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Figure 11. Second analysis regard-
ing the relationship between the
bone mineral density (BMD) and
first moment power spectrum
(FMP). The low-root mean square
(RMS) group and the high-RMS
group showed no linear correlation
between BMD and FMP, with
Pearson’s correlation coefficients of
R250.01 and R250.02, respectively,
statistically significant at the p,0.01
level. Circle, low-RMS group; star,
high-RMS group; triangle, fracture.

Figure 12. Second analysis regard-
ing the relationship between bone
mineral density (BMD) and the frac-
tal dimension. The low-root mean
square (RMS) group and the high-
RMS group were not clearly distin-
guished in this figure. The second
analysis did not show any linear
correlation between BMD and the
fractal dimension, with Pearson’s
correlation coefficient of R250.02
in the low-RMS group and R250.03
in the high-RMS group, statistically
significant at the p,0.01 level.
Circle, low-RMS group; star, high-
RMS group; triangle, fracture.

Figure 13. Relationship between
root mean square (RMS) and first
moment power spectrum (FMP). The
low-RMS group showed weak nega-
tive correlation, with Pearson’s cor-
relation coefficient of R250.26. The
high-RMS group showed no correla-
tion, with Pearson’s correlation
coefficient of R250.03, statistically
significant at the p,0.01 level.
Circle, low-RMS group; star, high-
RMS group; triangle, fracture.
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and the low-RMS group can be easily distinguished in this
figure. The low-RMS group demonstrated moderate
negative correlation with Pearson’s correlation coefficient
of R250.53. The high-RMS group showed weak negative
correlation with Pearson’s correlation coefficient of
R250.35, statistically significant at the p,0.01 level.

Figure 15 illustrates the relationship between FMP and
fractal dimension. The low-RMS group showed a
moderate positive correlation with Pearson’s correlation
coefficient of R250.66. The high-RMS group showed a
weak positive correlation with Pearson’s correlation
coefficient of R250.23, statistically significant at the
p,0.01 level.

Discussion

CT data analysis resulted in several key points.
Analysed data from Figures 4 and 5 showed that BMD
had a weak positive correlation with mean CT number
and RMS. However, BMD had no correlation with FMP
and fractal dimension (Figures 6 and 7).

In BMD–RMS, the data had a tendency to be classified
into two groups: the higher group and the lower group,
based on RMS. A similar tendency was also shown by
BMD–FMP. By additional analysis, it was indicated that
all RMS data were classified into two groups: a high-
RMS group and a low-RMS group by the RMS and its SD
(Figure 8).

It was not an effective method for evaluating BMD by
using mean CT number only (Figure 9). Both the low-
RMS group and the high-RMS group had weak correla-
tion between mean CT number and BMD. Osteoporosis
seemed to be generally associated with decreased mean
CT number.

The BMD–RMS, BMD–FMP, and BMD–fractal dimen-
sion did not show the same tendency (Figures 5, 6 and
12). However, in all these cases, data were separated into
a high-RMS group and a low-RMS group clearly.

Osteoporosis was indicated as the increase of both
fractal dimension and its SD (Figures 7 and 12). A strong
correlation was found in RMS–FMP and RMS–fractal
dimension (Figures 13 and 14). In this case, a larger SD
indicated that osteoporosis was in progress. When

Figure 14. Relationship between
root mean square (RMS) and fractal
dimension. The low-RMS group
demonstrated a moderate negative
correlation, with Pearson’s correla-
tion coefficient of R250.53. The
high-RMS group showed a weak
negative correlation, with Pearson’s
correlation coefficient of R250.35,
statistically significant at the p,0.01
level. Circle, low-RMS group; star,
high-RMS group; triangle, fracture.

Figure 15. Relationship between
first moment power spectrum
(FMP) and fractal dimension. The
low-root mean square (RMS) group
showed a moderate positive correla-
tion, with Pearson’s correlation
coefficient of R250.66. The high-
RMS group showed weak positive
correlation, with Pearson’s correla-
tion coefficient of R250.23, statisti-
cally significant at the p,0.01 level.
Circle, low-RMS group; star, high-
RMS group; triangle, fracture.

H Jeong, J Kim, T Ishida et al

8 of 10 Br J Radiol, 86, 20101115



osteoporosis was in progress, the total amount of
microtrabecular pattern was decreased. In the case of
CT, a scan series included many slice images; therefore,
each slice image included a different amount of micro-
trabecular pattern. It meant that there was large variation
among the images in CT.

These differences among the slices caused the overall
differences in fractal dimension (Figure 12). In low-RMS
group, RMS had a moderate negative correlation with
fractal dimension, whereas RMS had only a weak
negative correlation in the high-RMS group.

The results in this study were different from those in
the previous study by Caligiuri et al [10], who used a
simple lateral spine image. The simple lateral spine
image is the X-ray projection images in one direction.

However, CT images showed different bone architecture
in each slice. Therefore, the results of this study showed
a different tendency from the previous study.

FMP had a strong correlation with fractal dimension.
As FMP increased, the fractal dimension also increased
(Figure 15). In the low-RMS group FMP had a moderate
correlation with fractal dimension, and in the high-RMS
group FMP had a weak correlation. This result indicated
the strong possibility of osteoporosis.

RMS meant the magnitude of texture pattern. The
decrease of RMS resulted in a washed-out image caused
by the decrease of bone architecture in osteoporotic bone.
According to Caligiuri et al [10], low RMS indicated a
fracture or other disease in the spine. FMP, the power
spectrum of RMS, included the measurement of the
spatial frequency regarding the bone architecture pat-
tern. It meant that high FMP indicated the thinner bone
due to fracture or osteoporosis. Large variation in fractal
dimension, RMS and FMP meant an acceptable correla-
tion.

According to Katsuragawa et al [19], Caligiuri et al [21]
and this study, the collapse of the microtrabecular
pattern caused the increase in RMS. As a result, RMS,
FMP and fractal dimension were shown as high values
(Figures 12–15). High RMS values indicate that these will
be more likely to develop into a fracture in future.

In Figure 16, the ROC curve shows the performance of
BMD, FMP, RMS and fractal dimension in osteoporosis
diagnosis. ROC curves were analysed using LABROC
[25–27]. In the case of using only BMD, the AUC was
0.78. When RMS, FMP and fractal dimension were used,
the AUC was 0.72. The AUC was 0.85 using all of the
factors—BMD, RMS, FMP and fractal dimension. The
difference between the cases using three parameters
(RMS, FMP and fractal dimension) and those using all
parameters (RMS, FMP, fractal dimension and BMD)
was significant at the p50.05 level, as determined with a
two-tailed test of significance.

Table 1 indicates the diagnostic performance of BMD,
FMP, FMS and fractal dimension in osteoporosis.

Of all methods, the WHO has defined BMD as the gold
standard. For diagnosis of osteoporosis with BMD, the
sensitivity was 44.2% (23/52) with a specificity of 95.2%
(40/42; Table 1). Deformation due to osteoporosis in the
spine or an increased BMD value due to compression
fractures can result in some incorrect diagnoses (7/92).
When using RMS, FMP and fractal dimension to
diagnose osteoporosis, the sensitivity was 91.4% (5/58)

Figure 16. Receiver operating characteristic (ROC) curves
indicate the performance of bone mineral density (BMD)
measurements, first moment power spectrum (FMP), root
mean square (RMS) and fractal dimension to determine the
presence or absence of osteoporosis in the spine. The area
under the curve (AUC) of BMD was 0.72. The AUC of RMS,
FMP and fractal dimension was 0.78. The AUC of BMD, RMS,
FMP and fractal dimension was 0.85. FPF, false positive
fracture; TPF, true positive fracture.

Table 1. Performance of BMD measurements, FMP, RMS and fractal dimension values to determine the presence or absence of
osteoporosis and compression fracture in the spine

Parameter BMD RMS, FMP and fractal dimension BMD, RMS, FMP and fractal dimension

Osteoporosis
True-positive 23 17 22
True-negative 2 5 3
False-positive 29 16 12
False-negative 40 53 58

Compression fracture
True-positive None 6 6
True-negative 7 1 1
False-positive None None None
False-negative 85 85 85

BMD, bone mineral density; FMP, first moment power spectrum; RMS, root mean square.
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with a specificity of 50.0% (17/34). When using BMD, the
sensitivity was higher than using other factors, while the
specificity was lower. This resulted from the database
from which compression fracture cases were excluded.

All 92 cases were supposed to exclude the case of
compression fracture, but, when using RMS, FMP and
fractal dimension together, 6 cases of compression
fracture were detected additionally. Compression frac-
tures could not be detected with BMD only, while it
could be diagnosed by using RMS, FMP and fractal
dimension together.

However, in the case of osteoporosis, the detection
ratio was far better using BMD. When using RMS, FMP,
fractal dimension and BMD together the result was
improved, showing a sensitivity of 64.7% and a
specificity of 95.1%. In this case, the ROC curve was
also improved (AUC50.82) compared with the data
analysed using only BMD (AUC50.78) or using RMS,
FMP and the fractal dimension (AUC50.72).

Conclusion

In the case of osteoporosis or osteopenia, using BMD
was found to be an effective method for detection;
however, in the case of compression fracture in the
vertebra, using BMD was found to be less effective
because increased BMD can result in an incorrect
diagnosis. Applying three parameters (RMS, FMP and
fractal dimension) was shown to be a useful method to
diagnose compression fracture, while using BMD only
was less useful for diagnosis in compression fracture.
Therefore, it can be more useful to apply two methods
together—both using BMD only and using three para-
meters (RMS, FMP and fractal dimension)—to diagnose
osteoporosis and compression fracture.

For more effective application, additional study of
more cases and data will be required.
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