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mediated by nicotinamide adenine dinucleotide (NAD+)-sen-
sitive lysine acetylation (LysAc).

Mitochondrial and Metabolic Derangements in HF
Disrupted calcium homeostasis, increased oxidative stress and 
impaired energetics are the hallmarks of the failing heart.6–8 
These abnormalities are closely linked to mitochondrial func-
tion, given the central role of mitochondria in energy supply, 
ROS generation and scavenging, and in calcium handling. An 
increasing number of studies have identified the important 
roles that mitochondrial biogenesis,9,10 oxidative metabolism11 
and antioxidant capacity12 play in the pathogenesis and pro-
gression of HF. Furthermore, mitochondria-triggered cell 
death, especially under calcium overload conditions, is con-
sidered to play a key role in the pathological remodeling of the 
heart.13,14 These observations have advanced our understand-
ing of the role of mitochondria and metabolism in HF, and 
have provided opportunities for novel therapeutic targets, and 
at the same time have raised new questions regarding the dis-
ease mechanisms of HF. 

Substrate Metabolism and Myocardial Energetics
The heart is flexible and omnivorous in using substrates for 
ATP generation.15–17 Catabolism of all substrates in the mito-
chondria, that is, carbohydrates, fatty acids, and ketones, gen-
erates acetyl-coenzyme A (acetyl-CoA), which enters the 

ardiovascular disease has become a leading cause of 
death worldwide.1 As life expectancy improves and 
the mortality associated with acute ischemic events 

decreases, an increasing number of patients with ischemic heart 
disease and/or hypertension will develop heart failure (HF)2,3 
as the heart is remodeled in response to hemodynamic over-
load and neurohormonal stimulation.4 Despite medical advances 
in the past decades, patients with late-stage HF have a 1-year 
survival rate of <50%. Novel concepts and strategies in the 
treatment of HF are urgently needed. There has been a growing 
interest in targeting mitochondrial function and cell metabo-
lism for HF therapy in recent years. It is known that mitochon-
dria play a multifaceted role in regulating cellular function and 
cell fate. Mitochondrial oxidative metabolism provides >95% 
of the energy for the cardiac contraction, while mitochondrial 
respiration is the major source of reactive oxygen species 
(ROS) in the cell. Mitochondria also regulate cellular calcium 
homeostasis and cell death. The delicate balance between 
calcium, ROS and ATP generation has been proposed as a 
critical determinant of cardiac response to stress.5 With the 
surge of interest in the role of mitochondria and metabolism 
in HF, many advances have been made in the past decade. In 
this article, we will review the recent findings in this area that 
have suggested potential therapeutic targets for HF. In par-
ticular, we will focus on the emerging role of mitochondrial 
protein acetylation and its link to the hallmarks of HF, and 
discuss therapeutic strategies involving targeting the pathways 

C

Received July 2, 2015; accepted July 3, 2015; released online August 4, 2015
Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
Mailing address:  Rong Tian, MD, PhD, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109-8057, 

USA.    E-mail: rongtian@u.washington.edu
ISSN-1346-9843    doi: 10.1253/circj.CJ-15-0742
All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp

Mitochondrion as a Target for Heart Failure Therapy
– Role of Protein Lysine Acetylation –

Chi Fung Lee, PhD; Rong Tian, MD, PhD

Heart failure is a leading cause of death worldwide. Despite medical advances, the dismal prognosis of heart failure 
has not been improved. The heart is a high energy-demanding organ. Impairments of cardiac energy metabolism and 
mitochondrial function are intricately linked to cardiac dysfunction. Mitochondrial dysfunction contributes to impaired 
myocardial energetics and increased oxidative stress in heart failure, and the opening of mitochondrial permeability 
transition pore triggers cell death and myocardial remodeling. Therefore, there has been growing interest in targeting 
mitochondria and metabolism for heart failure therapy. Recent developments suggest that mitochondrial protein 
lysine acetylation modulates the sensitivity of the heart to stress and hence the propensity to heart failure. This 
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suggest that intracellular bioavailability of the antioxidant and, 
in particular, its bioavailability in the mitochondrial compart-
ment, can be critical for the efficacy of the treatment. 

Calcium Homeostasis and Mitochondria-Triggered Cell 
Death
Calcium is a second messenger in the heart: it connects muscle 
contraction/relaxation in the cardiac cycle and mitochondrial 
energy production.47,48 Rhythmic control of intracellular cal-
cium is not only critical for excitation-contraction (E-C) cou-
pling but is also important for matching energy demand with 
metabolic activity on a beat-to-beat basis. It has been shown 
that mitochondria are localized in close proximity to the sar-
coplasmic reticulum (SR), so that during E-C coupling a high 
concentration of calcium is presented to the mitochondria in 
anticipation of increased energy demand.49–51 In HF, defective 
calcium handling due to impaired calcium re-uptake via SR 
calcium ATPase or calcium leak via the ryanodine receptors 
interrupts the rhythmic control of intracellular calcium.6,52 
Activation of Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) in failing hearts also promotes calcium leak and 
causes mitochondrial damage.53–60 In addition, recent data 
suggest that CaMKII regulates mitochondrial calcium level 
and promotes the opening of mitochondrial permeability tran-
sition pore (mPTP).61 Calcium overload is an important trigger 
of mPTP opening and cell death during ischemia/reperfusion 
injury. In HF, mitochondrial dysfunction caused by calcium 
overload would further exacerbate calcium homeostasis as the 
cycling of intracellular calcium through its stores consumes 
ATP, thus creating a vicious cycle connecting calcium, mito-
chondrial bioenergetics and mPTP opening. Mitochondria-
originated cell death has been observed in the development of 
HF;13 its link to mitochondrial bioenergetics is an emerging 
area of research.

Protein LysAc: Emerging Role in Cell Metabolism
LysAc is an evolutionarily conserved protein modification found 
in the whole range of organisms from bacteria to humans, 
which regulates the fundamental functions in cells.62 LysAc is 
found in nuclear histone proteins as well as in non-histone 
proteins from the nucleus, cytosol and mitochondria. LysAc 
in histone proteins plays an important role in regulating gene 
transcription.63 LysAc in non-histone proteins is likely critical 
in the regulation of cell metabolism and signaling. This is based 
on the observation that a large number of proteins involved in 
metabolism have dynamic changes in LysAc, although the 
specific effects of LysAc on their function are still emerg-
ing.64–68 Furthermore, LysAc is dependent on the availability 
of acetyl-CoA,69 which is intimately involved in the interme-
diary metabolism. Thus, LysAc is considered an important 
sensor and regulator of cell metabolism.70

Biochemistry of LysAc and Deacetylation
Protein LysAc occurs when an acetyl group is added to a 
lysine residue by non-enzymatic chemical modification with 
acetyl-CoA, or by enzymatic acetylation with acetyltransfer-
ases (Figure 1). Lysine residues in both histone and non-his-
tone proteins are subject to this type of modification. The 
process is affected by the cellular level of acetyl-CoA and/or 
the activity of acetyltransferases. Detailed information on the 
enzymes and substrates involved in protein LysAc is summa-
rized in Table. 69–83 While the presence of histone acetyltrans-
ferases (HAT) in the nucleus is well established, the mode of 
acetyl group transfer for non-histone proteins is complex. 

tricarboxylic acid (TCA) cycle and produces the reducing equiv-
alents NADH/FADH2. Reducing equivalents are oxidized via 
electron transport chain (ETC) in order to maintain the mito-
chondrial membrane potential (∆Ψ) and ATP synthesis. In the 
failing heart, impaired myocardial energetics is evidenced by 
lower phosphocreatine (PCr), the energy reserve compound, 
in the early stage, and by lower ATP content in the advanced 
stage.18–20 Decreased PCr/ATP ratio is a predictive marker of 
HF mortality.20 Multiple mechanisms have been proposed for 
defective energetics of the failing heart, including impaired 
intracellular energy transfer through the creatine kinase sys-
tem,8,21 defective mitochondrial biogenesis,22 and decreased 
oxidative metabolism,23 in particular, a switch from fatty acid 
oxidation to reliance on glucose metabolism. While normal 
adult hearts primarily consume fatty acids for ATP generation, 
hypertrophic and failing hearts have an increased reliance on 
glucose and a decreased use of fatty acids.24,25 This metabolic 
remodeling involves enhanced glycolysis and uncoupling of 
glucose oxidation from glycolytic flux.26–29 Prior attempts to 
normalize substrate metabolism have targeted both glucose 
and fatty acid metabolism. Promotion of glucose oxidation 
using a variety of strategies, such as by inhibition of carnitine-
palmitoyl transferase,30 the rate-limiting enzyme for fatty acid 
entering the mitochondria; by partial inhibition of fatty acid 
β-oxidation;31 inhibition of pyruvate dehydrogenase kinase,32 
the key inhibitor of glucose oxidation; or overexpression of 
insulin-independent glucose transporter,33 improved cardiac 
function in pathological hypertrophy and HF. In contrast, 
promotion of fatty acid oxidation, which prevents the shift of 
substrate utilization toward glucose, also improves cardiac 
energetics and function in hypertrophy models,11,34,35 while 
decreased fatty acid supply to the failing heart by acipimox is 
detrimental.36 The role of substrate metabolism in HF has been 
discussed in detail in several recent reviews.23,37,38

Oxidative Stress and Redox Balance
The mitochondrial ETC is the major source of ROS in the cell. 
When the heart is stimulated for higher contractile perfor-
mance, increased respiratory activity in the mitochondria would 
result in greater ROS load. It has been proposed that in failing 
hearts superoxide generated by the electron leakage from the 
ETC to molecular oxygen is not adequately scavenged and 
hence causes damage to biomolecules.7 A normal mitochon-
drion is equipped with robust antioxidant systems such as the 
superoxide dismutase (SOD) and the glutathione detoxifica-
tion system. SOD turns superoxide into hydrogen peroxide 
(H2O2), which is further detoxified by the glutathione system. 
Antioxidant capacity of the glutathione system is maintained 
by NADPH, governed by isocitrate dehydrogenase (IDH2) 
and ∆Ψ-dependent NAD(P) transhydrogenase (NNT).39 IDH2-
deficient mice develop cardiac hypertrophy and contractile 
dysfunction40 and NNT activity is lowered in human failing 
hearts, indicating oxidative damage.41 In addition to the level 
of IDH2 and NNT, decreases in ∆Ψ in mitochondria would 
reduce NNT activity and thus weaken oxidative defense capa-
bility. Other sources of ROS in the mitochondria have also 
been proposed, such as NADPH oxidase 4, although its role 
seems to be location and dose dependent.42,43 The role of mito-
chondrial ROS in the development of HF was recently dem-
onstrated by overexpressing mitochondrial-targeted catalase 
in the heart or treating mice with mitochondrial-targeted anti-
oxidant peptide. These studies showed marked cardioprotec-
tive effects of scavenging mitochondrial ROS in pathological 
hypertrophy and aging.12,44,45 Given that clinical trial results 
for antioxidants are mostly negative,46 these observations 
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deacetylases (Figure 1). There are four classes of deacetylase, 
including histone deacetylases (HDAC; class I, II, IV, NAD+ 
independent) and sirtuin deacetylases (class III, NAD+ depen-
dent).84 Like HAT, HDAC also have non-histone protein tar-
gets.73 The sirtuin family consists of 7 members, of which Sirt1 

Enzyme-independent acetylation by acetyl-CoA in mitochon-
dria has been proposed.69 The acetyltransferase GCN5L1 was 
found to add acetyl groups in mitochondria.71 In cytosol, 
acetyl group transfer can also be facilitated by HAT.72

Removal of the acetyl group from lysine is mediated by 

Figure 1.    Regulation of protein lysine acety-
lation (LysAc) is closely linked to metabo-
lism. LysAc is determined by chemical 
reactions involving deacetylases and acetyl-
transferases. The co-substrates in both reac-
tions, acetyl-CoA and nicotinamide adenine 
dinucleotide (NAD+), are key intermediates 
of many metabolic pathways and are impor-
tant regulators of LysAc. The level of Acetyl-
CoA is regulated by the balance of substrate 
catabolism, anabolism, and tricarboxylic acid 
(TCA) flux. The availability of NAD+ for deacet-
ylation is regulated by NAD+ redox balance, 
governed by activities of the TCA cycle and 
oxidative phosphorylation (OXPHOS).

Table.  Regulators of Protein LysAc and Their Biological Effects

Regulators Biological effects References

Acetylation

    Acetyl-CoA Serves as a substrate for enzymatic catalysis of acetylation or as a direct modifier of lysine. 
Acetyl-CoA is regulated by glucose and fatty acid metabolism, which produce and consume 
acetyl-CoA, respectively.

69–71

    Acetyl-transferases HAT: nuclear localized enzymes that are linked to transcriptional activation. Non-histone targets 
in cytosol are reported.

63,72

Mitochondrial protein acetyl-transferase: GCN5L1 was suggested to be responsible for enzymatic 
addition of the acetyl group to lysine in mitochondria.

71

Deacetylation

    Deacetylases HDAC: class I, II, IV deacetylases, which are NAD+ independent. Inhibition of HDAC protects the 
heart from ischemic and hypertrophic stresses. 
Sirtuins are class III NAD+-dependent deacetylases.

73–75

    NAD+ precursors NMN, NA, and NR: increase cellular NAD+, activate sirtuin and reduce protein acetylation in 
mouse models. Supplementation of NAD+ precursors has been shown to be beneficial in combat-
ing inflammation, hypoxia injury, oxidative stress and cancer.

76–79

    NAMPT activator P7C3: elevates NAD+ to protect mice from brain injury. 80–82

    Resveratrol Activates Sirt1 and promotes PGC1α deacetylation and mitochondrial biogenesis. 83

CoA, coenzyme A; GCN5L1, general control of amino acid synthesis 5-like 1; HAT, histone acetyltransferase; HDAC, histone deacetylase; 
LysAc, lysine acetylation; NA, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAMPT, nicotinamide phosphoribosyltransferase; NMN, 
nicotinamide mononucleotide; NR, nicotinamide riboside; P7C3, 3,6-Dibromo-α-[(phenylamino)methyl]-9H-carbazole-9-ethanol; PGC1α, 
peroxisome proliferator-activated receptor γ coactivator 1-α.
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and oxidative phosphorylation, which consumes, NADH. The 
ratio changes drastically during acute mitochondrial stress 
such as hypoxia or uncoupling.100–102 Recent studies have 
shown that NAD+/NADH ratio decreases due to the chronic 
stress of overnutrition, such as in obesity and diabetes, or due 
to impaired oxidative phosphorylation caused by mutations of 
mitochondrial protein(s).79,92,103,104 Under these conditions, 
decreases in NAD+/NADH ratio are coupled with increases in 
mitochondrial LysAc. Both can be normalized by increasing 
NAD+ via supplementing its precursor.78,79 Although mitochon-
drial dysfunction has been implicated in HF, whether changes 
in NAD+-sensitive LysAc occur in the failing heart has not 
been reported. 

Emerging Links Between LysAc and HF
Sensitivity to Cardiac Stresses
The Sirt3-deficiency mouse is a widely used model of increased 
mitochondrial LysAc. The heart of Sirt3-null mice is normal 
under unstressed condition but has higher sensitivity to acute 
and chronic stresses.98,105,106 Similarly, increased sensitivity to 
stress is observed in several mouse models of decreased NAD+/
NADH and increased mitochondrial LysAc.14,92,104,107 Increased 
LysAc in the heart of cyclophilin D (CypD)-null mice is asso-
ciated with propensity to HF during pressure overload, meta-
bolic inflexibility and mitochondrial swelling.14,107 In a genetic 
model of mitochondrial complex I deficiency due to cardiac 
specific deletion of Ndufs4, decreased complex I function results 
in lower NAD+/NADH ratio, increased mitochondrial LysAc, 
and higher sensitivity of mPTP opening.92 These mice also 
developed accelerated HF when subjected to chronic stresses. 
Although the specific contribution of each LysAc site to the 
observed phenotype are largely unknown in these models, the 
observations collectively indicate that mitochondrial LysAc 
modulates the stress response. These studies also call for 
attention to the importance of NAD+ redox imbalance and 
sirtuin-regulated LysAc in the development and progression 
of HF.

and 2 are responsible for protein deacetylation in the nucleus 
and cytosol,85,86 while Sirt3 is mainly localized to the mito-
chondria.87 Other sirtuins, although similar in structure, have 
very low deacetylase activity.88 The deacetylation function by 
sirtuins requires NAD+ as a co-substrate,89 and it has been 
shown that NAD+/NADH ratio affects sirtuin activity in vivo 
and in vitro.90–92 Because of its dependence on acetyl-CoA and 
NAD+/NADH ratio, LysAc is closely coupled to cellular 
metabolism and redox state (Figure 1). Consistent with this, 
proteomic studies have shown dynamic changes in cellular 
LysAc landscape in response to metabolic intervention.93–95 
Furthermore, LysAc of a significant number of mitochondrial 
proteins have been shown, many of which are implicated in 
the regulation of energy metabolism, oxidative stress and cal-
cium homeostasis.65,96–98

NAD+/NADH Ratio as a Link Between Mitochondrial  
Function and LysAc
As mentioned in the previous section, sirtuins are NAD+-
sensitive deacetylases; their activity is linked to NAD+-cou-
pled metabolism. NAD+ is best known as an electron carrier, 
which receives an electron to become NADH and is readily 
recycled after the transfer of the electron to other factors. Thus 
the cellular level of NAD+ is determined by the total pool size 
of NAD++NADH, as well as the redox state, which determines 
NAD+/NADH (Figure 2). Enzymatic removal of the acetyl 
group by sirtuins utilizes NAD+ and generates nicotinamide 
(NAM) and O-acetyl ADP-ribose. NAD+ is regenerated via 
the salvage pathway in 2 steps (Figure 2). Nicotinamide phos-
phoribosyltransferase (NAMPT), the rate-limiting enzyme of 
the pathway, catalyzes the conversion of NAM into nicotin-
amide mononucleotide (NMN). The NMN is converted to 
NAD+ by nicotinamide mononucleotide adenylyltransferase. 
Another source of NMN is from nicotinamide riboside (NR) 
via reaction with nicotinamide riboside kinase.79 NR is a vita-
min B3,99 and is found in milk.79 NR supplementation has 
been found to elevate cellular NAD+.79

In the mitochondria, NAD+/NADH ratio is determined by 
the balance between substrate metabolism, which generates, 

Figure 2.    The level of nicotinamide adenine 
dinucleotide (NAD+) is regulated by the activity 
of sirtuin deacetylases, NAD+ salvage pathway 
and NAD+-coupled metabolism. Sirtuins cata-
lyze deacetylation at the expense of NAD+ 
which is replenished in the NAD+ salvage path-
way. Nicotinamide (NAM), generated in the 
deacetylation reaction by sirtuin, is converted to 
nicotinamide mononucleotide (NMN) by nicotin-
amide phosphoribosyltransferase (NAMPT), the 
rate-determining step (RDS) of the pathway. 
Alternatively, NMN is synthesized from nicotin-
amide riboside (NR) and ATP by nicotinamide 
riboside kinase (NRK). NMN and ATP are con-
verted to NAD+ by nicotinamide mononucleotide 
adenylyltransferase (NMNAT), which has 3 iso-
forms localized at different subcellular com-
partments. The NAD+ redox balance in the 
mitochondria is regulated by the tricarboxylic 
acid (TCA) cycle and oxidative phosphorylation 
(OXPHOS).
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date, overexpression of NAMPT, the rate-limiting enzyme in 
the NAD+ salvage pathway, attenuates ischemia/reperfusion 
injury.117 Additionally, activation of Sirt1-PGC1α signaling by 
resveratrol promotes mitochondrial biogenesis and protects 
against cardiac dysfunction in hypertensive and pressure over-
loaded animal models.83,118,119 These data collectively demon-
strate the benefits of increasing NAD+ level and sirtuin activity, 
and suggest that NAD+/NADH-sensitive LysAc is a potential 
target for HF therapy. 

Future Directions
The literature to date supports the benefit of elevation of 
NAD+ and activation of sirtuins for protection against disease 
susceptibility and progression associated with mitochondrial 
dysfunction. The efficacy of NAD+ precursors in the treatment 
of HF certainly warrants further investigation. Although prom-
ising experimentally, tremendous work is required to develop 
the treatment regimen for human patients as well as to deter-
mine its efficacy in reversing cardiac remodeling and dysfunc-
tion in established HF. With regard to insights into the underlying 
mechanisms, proteomics data have identified a large number 
of proteins with LysAc.70 Defining their roles in the regulation 
of cardiac sensitivity to stress is an important and yet challeng-
ing task. As quantitative measurements of the stoichiometry 
of LysAc become available,120 future studies will be able to 
focus on characterizing LysAc sites that undergo dynamic 
changes under relevant (patho)physiological conditions. Deter-
mination of the biochemical function of LysAc sites will be 
important for understanding the mechanisms of mitochondrial 
dysfunction and identifying specific targets for therapeutics. 
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