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arious vasodilators, including nitric oxide (NO), 
prostacyclin, and endothelium-derived hyperpo-
larizing factor (EDHF), as well as vasoconstric-

tors, are released from the endothelium.1,2 NO plays an 
important role in the regulation of vascular tone, inhibition 
of platelet aggregation, and suppression of vascular smooth 
muscle cell proliferation.3,4 Impaired endothelium-depen-
dent vasodilation has been found in the forearm, coronary, 
and renal vasculature of patients with hypertension,5–11 dys-
lipidemia,12,13 diabetes mellitus,14–16 and coronary artery 
diseases.17–21 Endothelial dysfunction is an early feature of 
both atherosclerosis and vascular diseases in humans.22 
Improvement or augmentation of endothelial function will 
prevent the development of atherosclerosis, resulting in a 
reduction in cardiac events.

There are several possible mechanisms for impaired 
endothelial function in patients with cardiovascular dis-
eases. Decreased NO bioavailability (decreased NO pro-
duction and/or increased NO inactivation) induces endo-
thelial dysfunction. A balance of endothelium-derived 
vasodilators, especially NO, and reactive oxygen species 
(ROS) modulates endothelial function. Therefore, an imbal-
ance of NO and ROS, so-called oxidative stress, is involved 
in endothelial dysfunction through the inactivation of NO.

Oxidative Stress in Cardiovascular Diseases
ROS are produced by various oxidase enzymes, includ-

ing nicotinamide-adenine dinucleotide phosphate (NADPH) 
oxidase, xanthine oxidase, uncoupled endothelial NO syn-
thase (eNOS), cyclooxygenase, glucose oxidase, and lipo-
oxygenase, and mitochondrial electron transport (Figure 1). 
ROS include superoxide anion (O2–), hydrogen peroxide 
(H2O2), hydroxyl radical (OH), hypochlorous acid (HOCl), 
NO, and peroxynitrite (ONOO–). O2–, OH, and NO are 
classified as free radicals that have unpaired electrons and 
potent oxidation ability. H2O2, HOCl, and ONOO– are clas-
sified as non-free radicals that also have oxidation ability. 
The sources of ROS are a variety of cell types, including 
vascular smooth muscle cells (VSMCs), endothelial cells 
and mononuclear cells. The antioxidant enzyme superoxide 
dismutase (SOD) has been identified as 3 enzymatic types: 
Cu/Zn SOD, Mn SOD, and extracellular SOD. SOD rapidly 
dismutates O2– to H2O2, then H2O2 is eliminated by gluta-
thione peroxidase (GPx) and catalase to water.

Several lines of evidence demonstrate that oxidative 
stress plays an important role in the pathogenesis and devel-
opment of cardiovascular diseases, including hypertension, 
dyslipidemia, diabetes mellitus, atherosclerosis, myocar-
dial infraction, angina pectoris, and heart failure.23–26 The 
susceptibility of vascular cells to oxidative stress is a func-
tion of the overall balance between the degree of oxidative 
stress and the antioxidant defense capability. Protective 
antioxidant mechanisms are complex and multifactorial. 
Antioxidant defense systems, such as SOD, GPx and cata-
lase, scavenge ROS in the vasculature, resulting in inhibi-
tion of NO degradation. Although SOD rapidly converts 
O2– to H2O2, H2O2 per se is involved as an intracellular 
second messenger in vascular remodeling, inflammation, 
apoptosis, and growth of VSMCs.27 Oxidative stress induces 
cell proliferation, hypertrophy, apoptosis and inflammation 
through activation of various signaling cascades and redox-
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sensitive transcriptional factors. Excess ROS, especially 
free radicals, oxidize various molecules. Lipid peroxidation 
and protein oxidation induce overexpression of redox 
genes, intracellular calcium overload, and DNA fragmenta-
tion, resulting in damage to VSMCs, endothelial cells or 
myocardial cells. A vicious cycle of oxidative stress and 
oxidative stress-induced atherosclerosis leads to the devel-
opment of atherosclerosis.

Endothelial Function in  
Cardiovascular Diseases

It had been thought until 1981 that the vascular endothe-

lium functioned as a wall separating the blood vessel and 
the inside cavity. If the endothelium of the whole body 
could be collected, its total weight would be equal to that of 
the liver, and its total area would be equal to that of 6 tennis 
courts. Endothelial cells secrete various vasoactive agents, 
such as the vasodilators NO, prostacyclin and EDHF, and 
the vasoconstrictors endothelin-1, angiotensin II (AngII), 
and thromboxane A2.1–4 Thus, the vascular endothelium 
might be the biggest endocrine organ in the human body. A 
healthy endothelium maintains vascular tone and structure 
by regulating the balance between vasodilation and vaso-
constriction, growth inhibition and growth promotion, anti-
thrombosis and prothrombosis, anti-inflammation and pro-

Figure 1.  Activated NADH/NADPH oxidase-related ROS generation and ROS degradation system in the vasculature. 
NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; SOD, superoxide dismutase; NO, 
nitric oxide; GPx, glutathione peroxidase; eNOS, endothelial NO synthase.
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inflammation, and also antioxidation and pro-oxidation 
(Figure 2).1–4

Endothelial dysfunction is the initial step in the patho-
genesis of atherosclerosis (Figure 3).22 Several investigators 
have shown that impaired endothelium-dependent vasodila-
tion is found in the forearm, coronary, and renal vasculature 
in patients with cardiovascular diseases.5–21 Perticone et al 
evaluated cardiac outcome in patients with untreated essen-
tial hypertension characterized by 3 tertiles of acetylcho-
line-induced vasodilation, and found that patients with the 
lowest tertile of acetylcholine-induced vasodilation had a 
significantly higher event ratio than did the patients with a 
moderate or high tertile.28 In patients with coronary artery 
diseases, severe coronary endothelial dysfunction is associ-
ated with increased cardiovascular events.29 Schachinger et al 

demonstrated a link between coronary endothelial dysfunc-
tion and subsequent cardiovascular events in patients with 
coronary artery diseases.30 Acetylcholine-induced vasodila-
tion and flow-meditated vasodilation are also useful for pre-
dicting cardiovascular events in such patients.23–25 Also in 
patients with peripheral arterial disease, conduit artery endo-
thelial dysfunction assessed by flow-meditated vasodilation 
independently predicts long-term cardiac outcome.26 Those 
clinical studies have shown that endothelial function can be 
an independent predictor of cardiovascular events.30,31

From a clinical perspective, it is important to select an 
appropriate intervention that will be effective in improving 
endothelial function in patients with cardiovascular diseases. 
Indeed, several interventions, including pharmacological 
therapy, administration of antihypertensive agents such as 
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Figure 4.  Mechanisms by which ROS induce endothelial dysfunction. NO, nitric oxide (NO); ROCK, Rho-associated 
kinase; SOD, superoxide dismutase; NADH/NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive 
oxygen species; HSP, heat shock protein; HIF-1, hypoxia-induced factor-1; VEGF, vascular endothelial growth factor; 
eNOS, endothelial NO synthase; PI3K, phosphatidyl-inositol-3-kinase; MAPK, mitogen-activated protein kinase; NF-κB, 
nuclear factor κB; AP-1, plasminogen activator inhibitor-1; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intra-
cellular adhesion molecule-1; VSMC, vascular smooth muscle cell.
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angiotensin-converting enzyme inhibitors and AngII type I 
receptor blockers,32–35 statins,36 and thiazolidinedione deriva-
tives,37 supplementation therapy, such as administration of a 
substrate of NO L-arginine,38 estrogen replacement,39 admin-
istration of a cofactor of NO tetrahydrobiopterine,40 treatment 
with antioxidant vitamins such as vitamin C,41 and lifestyle 
modifications such as aerobic exercise,7,42,43 body weight 
reduction,44 and sodium restriction,45 have been shown to 
improve endothelial function and prevent cardiovascular 
complications. These findings suggest that endothelial  
dysfunction in patients with cardiovascular diseases is 
reversible.

Several investigators have reported possible mechanisms 
of the impairment of endothelial function in cardiovascular 
diseases, including abnormalities of shear stress, increased 
amounts of the endogenous eNOS inhibitor asymmetrical 
dimethylarginine, increased amounts of vasoconstrictors 
such as AngII, endothelin-1 and norepinephrine, and inacti-
vation of NO by ROS.46,47 Growing evidence reveals an 
interaction between oxidative stress and endothelial func-
tion (Figure 4). Enhanced production of ROS and an atten-
uated antioxidant system would contribute to endothelial 
dysfunction in cardiovascular diseases.

Decrease in NO Bioavailability
Endothelial dysfunction has been shown to be associated 

with an increase in ROS in atherosclerotic animal models 

and human subjects with atherosclerosis.46 The concentra-
tion s of antioxidant scavengers, such as SOD, GPx catalase, 
and vitamins C and E, are decreased in patients with athero-
sclerosis.48 NADH/NADPH oxidase, which is a major source 
of production of ROS in vessel walls, is activated in experi-
mental models of atherosclerosis.49,50 It has also been shown 
that ascorbic acid (vitamin C) restores impaired endothe-
lium-dependent vasodilation in patients with essential hyper-
tension, dyslipidemia, and coronary artery diseases.13,17,51 
Enhanced NO inactivation caused by excess ROS produc-
tion, rather than decreased NO production, may play an 
important role in the impairment of endothelium-dependent 
vasodilation. These findings suggest that a decrease in NO 
inactivation induces an improvement in the endothelial dys-
function in patients with cardiovascular diseases.

eNOS
The serine/threonine kinase Akt protooncogene is 1 of 

the major regulators of various cellular processes and medi-
ates the activation of eNOS, resulting in increased NO pro-
duction from endothelial cells.52 Fulton et al53 showed that 
Akt activates eNOS enzyme activity by phosphorylation of 
eNOS, independently of an increase in intracellular free 
calcium concentration, leading to an increase in NO pro-
duction from endothelial cells. The phosphatidyl-inositol-
3-kinase (PI3K)/Akt pathway, which causes intracellular 
calcium-independent eNOS phosphorylation and activation, 
is involved in eNOS activation, in addition to a calcium-
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dependent mechanism.
Under pathologic conditions, the PI3K/Akt pathway is 

diminished, resulting in decreased levels of eNOS gene 
expression and enzymatic activity. Andreozzi et al demon-
strated that AngII enhanced Ser312 and Ser616 phosphory-
lation of insulin receptor substrate-1 through stimulation of 
c-Jun N-terminal kinase and extracellular signal-regulated 
kinase 1/2 activity in human umbilical vein endothelial 
cells, and that it impaired insulin-mediated vasodilation 
through inactivation of the insulin receptor substrate-1/
PI3K/Akt/eNOS pathway.54 Indeed, chronic inhibition of 
the renin-angiotensin system (RAS) improves endothelial 
function by either increasing NO production or by activat-
ing eNOS-related NO production.55 In addition, chronic 
inhibition of the RAS has been shown to lead to functional 
and histological alterations of the vascular endothelium, 
resulting in enhanced vascular structure and function.55

eNOS per se produces ROS rather than NO under the 
condition of eNOS uncoupling through a deficiency of tet-
rahydrobiopterin (BH4), an essential cofactor for eNOS, or 
oxidation of BH4. Degradation of BH4 by ROS, including 
ONOO–, O2– and H2O2, is associated with downregulation 
of eNOS.56 In addition, it has been demonstrated that sup-
plementation of BH4 improves endothelial function in vivo 
and in vitro, and in smokers and patients with hypertension, 
hypercholesterolemia or chronic heart failure.57–60 Recently, 
we also showed that the grade of oxidative stress correlates 
with a deficiency of BH4, and that supplementation with 
BH4 augmented endothelium-dependent vasodilation in the 
brachial arteries of elderly subjects.61 These findings suggest 
that BH4 deficiency and decreased eNOS activity cause 
endothelial dysfunction in atherosclerotic patients through 
an increase in oxidative stress.

NADH/NADPH Oxidase
NADH/NADPH oxidase is the most important source of 

ROS in the vasculature.62 NADH/NADPH oxidase is a 
multi-subunit complex composed of cytosolic components, 
such as p47phox, p67phox and Rac 1, and membrane-spanning 
components, such as p22phox and gp91phox or another NOx 
homolog. The production of ROS by activated NADH/
NADPH oxidase is mediated by several pathways.63 AngII-
induced NADH/NADPH oxidase activation is 1 of the 
major sources of ROS in atherosclerosis.62–65 The activated 
NADH/NADPH oxidase-related ROS generation and ROS 
degradation pathway is shown in Figure 1. In the aorta of 
spontaneously hypertensive rats, endothelial dysfunction is 
caused by an excess of ROS rather than a decrease in NO 
production and is associated with both upregulation of 
p22phox mRNA expression and increased activity of NADH/
NADPH oxidase.63 Upregulation of p22phox mRNA expres-
sion is a key component of AngII-induced NADH/NADPH 
oxidase activation, and increased expression levels of other 
components also play an important role in this oxidase 
under pathological conditions.64,65 Increased mRNA expres-
sion levels of p47phox, p67phox, p22phox and NOx2 have been 
found in the internal mammary arteries of patients with 
coronary artery diseases and in those with diabetes mellitus. 
RAS inhibitors prevent the increase in the mRNA expres-
sion levels of p22phox and NOx2 in AngII-induced hyper-
tensive rats and reduce ROS generation, and the AT2 recep-
tor blockade accentuated the changes in p22phox and NOx2 
and increased p67phox. RAS inhibition improves endothelial 
function in various animal models through decreased 
NADH/NADPH oxidase activity.63 It is thought that inacti-

vation of NADH/NADPH oxidase may contribute to the 
improvement in endothelial dysfunction in patients with 
atherosclerosis. Recently, we also found that inactivation of 
the RAS, particularly AngII, by successful renal angio-
plasty may decrease oxidative stress, resulting in improved 
endothelium-dependent vasodilation in patients with reno-
vascular hypertension, who are ideal subjects for determin-
ing how endothelial function is affected by excess AngII 
and AngII-related increase in oxidative stress (Figure 5).66 
These findings suggest that the role of the RAS in the patho-
genesis of atherosclerosis may be related, at least in part, to 
AngII-induced production of ROS in vascular cells.

Antioxidant System
Protective antioxidant mechanisms are complex and mul-

tifactorial. The antioxidant defense system, such as SOD, 
GPx and catalase, scavenges ROS in the vasculature, result-
ing in inhibition of NO degradation (Figure 1). The suscep-
tibility of vascular cells to oxidative stress is a function of the 
overall balance between the degree of oxidative stress and 
the antioxidant defense capability. The antioxidant enzyme 
SOD rapidly dismutates O2– to H2O2. SOD has been iden-
tified as 3 enzymatic types: Cu/Zn SOD, Mn SOD, and 
extracellular SOD. Destruction of the antioxidant system, 
including decreased antioxidant enzyme activity and ROS 
scavenging ability, may contribute to oxidative stress in 
patients with atherosclerosis. Various interventions, such as 
administration of antioxidant vitamins and antihypertensive 
agents and exercise training, have been shown to enhance 
the protein levels and enzymatic activities of SOD, such as 
Cu/Zn SOD and Mn SOD, in the vascular endothelium and 
smooth muscle cells of the aorta in experimental animal 
models.67,68 It has been reported that approximately 50% of 
the total SOD in the human vasculature is extracellular.69 
Fukai et al demonstrated that exercise increased eNOS and 
extracellular SOD protein levels in wild-type mice, but had 
no effect on extracellular SOD protein levels in eNOS-
knockout mice and that the effect of endothelium-derived 
NO on extracellular SOD protein level is mediated by the 
cGMP/protein kinase G-dependent pathway.70 Hornig et al 
have shown that extracellular SOD contributes to the 
improvement in endothelial function by treatment with a 
RAS inhibitor in patients with coronary artery diseases.71 
Interestingly, extracellular SOD activity determined after 
its release from the endothelium by a heparin bolus injec-
tion was increased after treatment with losartan and was 
associated with an increase in flow-mediated vasodilation. 
These findings suggest that activation of extracellular SOD 
improves endothelial function, probably by increased NO 
bioavailability, in patients with coronary artery diseases.

Although SOD rapidly converts O2– to H2O2, H2O2 per 
se is involved as an intracellular second messenger in vas-
cular remodeling, inflammation, apoptosis, and growth of 
VSMCs. Hydrogen peroxide is eliminated by GPx and cata-
lase to H2O. It has been shown that a physiological level of 
shear stress upregulates GPx mRNA levels and GPx enzy-
matic activity in cultured bovine aortic endothelial cells.72 
The upregulation of Cu/Zn SOD, Mn SOD, GPx and cata-
lase, apart from extracellular SOD induced by appropriate 
interventions, may improve endothelial function through 
the inhibition of NO degradation with a decrease in ROS.

Rho-Associated Kinases (ROCKs)
The family of ROCKs, which are small GTPase Rho 

effectors, mediate various cellular physiologic functions 
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such as cell proliferation, migration, adhesion, apoptosis 
and contraction, all of which may be involved in the patho-
genesis of atherosclerosis.73–75 ROCKs consist of 2 iso-
forms, ROCK1 and ROCK2, and have been found to be the 
immediate downstream targets of RhoA.76,77 The RhoA/
ROCK pathway has been shown to be involved in the for-
mation of atherosclerotic lesions, vasoconstriction and myo-
cardial hypertrophy, and to be activated in patients with 
hypertension and in those with coronary artery disease.78–83 
Sauzeau et al have shown that NO also inhibits RhoA trans-
location from the cytosol to the membrane in VSMCs.84 In 
addition, previous studies using ROCK inhibitors, such as 
fasudil or Y-27632, have suggested that ROCKs may play 
an important role in the pathogenesis of cardiovascular 
disease.74,78,80 These experimental and clinical studies have 
shown that ROCKs are an important therapeutic target for 
cardiovascular diseases.85,86 Previous studies have shown 
that activation of the RhoA/ROCK pathway impairs NO 
bioavailability through inhibition of eNOS mRNA stability 
and eNOS protein phosphorylation at Ser1177 via the 
PI3K/Akt pathway.78,87 We previously reported that intra-
arterial infusion of the ROCK inhibitor fasudil improved 
endothelial function in smokers.88 Several investigators have 
shown an interaction between the RhoA/ROCK pathway 
and ROS.89,90 Indeed, ROS induced by hyperglycemia 
enhance ROCK activity, leading to atherothrombogenesis 
through increased expression of plasminogen activator 
inhibitor-1 in vascular endothelial cells.91 It is well known 
that cigarette smoking decreases NO bioavailability through 
the production of ROS. Several investigators, including us, 
have demonstrated that there is a possible association of 
ROCK activity with oxidative stress and that smoking 
enhances the activation of ROCKs in VSMCs in vivo and in 
vitro.89,92 Taken together, the findings indicate an interaction 
between ROCK activity, endogenous NO, and oxidative 
stress.

Conclusions
Increased production of ROS impairs endothelial func-

tion in humans. One mechanism by which endothelial func-
tion is impaired is increased oxidative stress, which inacti-
vates NO. An imbalance of reduced production of NO and 
increased production of ROS may be involved in impaired 
endothelium-dependent vasodilation in patients with cardio-
vascular diseases. It is thought that a vicious cycle of endo-
thelial dysfunction and oxidative stress leads to development 
of atherosclerosis. In the clinical setting, it is important to 
select appropriate interventions for both endothelial func-
tion and oxidative stress, and it is expected such interven-
tions will greatly improve clinical outcomes. Future study in 
a large clinical trial or cohort study is needed to determine 
the roles of endothelial function and oxidative stress in car-
diovascular outcomes.
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