
he mortality rate of patients with heart failure re-
mains high despite recent advances in medical
therapies such as the use of angiotensin-converting

enzyme inhibitors,β-blockers and angiotensin-receptor
blockers.1–3 Furthermore, the number of patients with heart
failure is expected to increase with aging of the population,4
so understanding the fundamental mechanisms responsible
for heart failure is important.

Oxidative stress due to reactive oxygen species (ROS) is
thought to be a factor exacerbating heart failure5–13 because
ROS directly damage the cellular membrane,14,15 myofibril-
lar proteins,16 and subcellular organelles such as mitochon-
dria17 or sarcoplasmic reticulum18 in cardiac myocytes and
thus impair cardiac function. Furthermore, ROS activate
intracellular signaling cascades and consequently induce
apoptosis or hypertrophy in cardiac myocytes.7,19

DNA in the nucleus is one of the major targets of ROS
and oxidative DNA damage has been implicated in the
pathogenesis of cancer, neurodegenerative diseases and in
aging.20–23 Hydroxyl radical or singlet oxygen is responsi-
ble for hydroxylation of the C-8 position of 2’-deoxygua-
nosine to produce 8-hydroxy-2’deoxyguanosine (8-OHdG),
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which is used as a reliable maker of oxidative DNA dam-
age.20–23 In a recent study, 8-OHdG was detected in cardio-
myocytes of patients with severe dilated cardiomyopathy
(DCM),24 so we hypothesized that oxidative DNA damage
would be elevated in patients with heart failure. To test this
hypothesis, we investigated whether the levels of 8-OHdG
were elevated in the serum and myocardium of patients
with DCM. We also investigated whether carvedilol, a
vasodilatingβ-blocker with antioxidant activity, could
reduce the levels.

Methods
Subjects

The patient population studied comprised 56 consecutive
patients not takingβ-blockers (42 men, 14 women; mean
age, 53±12 years) admitted to Okayama (Japan) University
Hospital between 1998 and 2003 (Table1). After admission
to hospital, DCM was diagnosed according to the criteria of
the 1995 World Health Organization/International Society
and Federation of Cardiology Task Force. None of the
patients showed any evidence of coronary artery disease,
valvular heart disease, or pericardial heart disease. We ex-
cluded patients with systemic hypertension, hyperlipidemia
or smoking habit, because those risk factors increase oxida-
tive stress.25

Echocardiographic studies were performed with com-
mercially available Aloka ProSound SSD-5500. A cardiac
catheterization study, including coronary angiography, left
ventriculography and pressure analysis, was performed 
by the percutaneous Seldinger technique in all patients.
Endomyocardial biopsy samples (3 or 4 per patient) were
obtained from the right ventricular side of the septum of all
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patients by the internal jugular approach. Left ventricular
ejection fraction (LVEF) was calculated by the area– length
method and was less than 50% in patients with DCM.

The control subjects were 20 gender- and age-matched
healthy blood donors (14 men, 6 women; mean age, 50±12
years) without any history of cardiac disease. Endomyocar-
dial biopsy samples obtained from 5 patients with primary
arrhythmia (lone atrial fibrillation, n=4; atrial tachycardia,
n=1) and with LVEF >60% were used as control samples
in the immunohistochemical examination. Arrhythmia of
unknown etiology is sometimes related to myocarditis and
early cardiomyopathy, so to obtain a definite diagnosis, we
performed biopsies in patients with arrhythmia. In this
study, we used biopsy samples without histological evi-
dence of myocardial inflammation, hypertrophy or fibrosis
as the control samples. We explained to the arrhythmia
patients that we would perform biopsy for diagnosis and
for this study. We explained the risk of endomyocardial
biopsy to all patients and obtained their consent. There
were no significant complications and no prolonged hos-
pitalizations. The study protocol was approved by the local
medical ethical committee and written informed consent
was given by all subjects before each investigation.

Serum 8-OHdG Levels
Blood was collected from an antecubital vein into a plain

glass tube and allowed to clot for 1h before centrifugation
at 3,000 rpm for 10min. After centrifugation, the samples
were immediately stored at –80°C until analysis. Serum 
8-OHdG levels were measured using a commercially avail-
able enzyme-linked immunosorbent assay kit (Japan Insti-
tute for the Control of Aging, Fukuroi, Japan).

Immunohistochemistry
Endomyocardial biopsy samples were fixed in 10% for-

malin and embedded in paraffin. Each tissue sample was
serially cut into 5-μm-thick sections and immunoenzymatic
staining was performed using a DAKO LSAB System
(DakoCytomation, Kyoto, Japan) according to the manu-
facturer’s instructions. Briefly, the heart sections embedded
in paraffin were preincubated with 1.5% hydrogen peroxide
and normal bovine serum albumin to block nonspecific re-
actions. Mouse monoclonal anti-8-OHdG antibody (1:100
dilution, NOF Corporation, Tokyo, Japan) was added, and
the sections were incubated at 4°C overnight. As a negative
control study, mouse monoclonal IgG1 antibody (1:50
dilution, DakoCytomation, Kyoto, Japan) was added. The
sections were then incubated with biotinylated anti-mouse
immunogloblin for 20 min and subsequently with horse-
radish peroxidase-labeled streptavidin solution for 20min.
The slides were rinsed in cold tris-buffered saline after
each step of incubation. Peroxidase activity was visualized
with diaminobenzidine tetrahydrochloride solution.

Protocol for Carvedilol Treatment
After cardiac catheterization, treatment with carvedilol

was started at a dosage of 1mg/day in all patients with

Table 1 Clinical Characteristics of 56 Patients With Dilated 
Cardiomyopathy

Age (years) 53±12
Sex (M/F) 42/14
NYHA functional class 2.3±0.7
Cardiothoracic ratio (%) 54±4  
Laboratory data
    WBC (/μL) 6,400±1,600
    Creatinine (mg/dl) 0.84±0.37
    CK (IU/L) 148±209
    BNP (pg/mL) 146±184
Echocardiographic data
    LVDd (mm) 62±7  
    LVDs (mm) 51±8  
    FS (%) 17±6  
Hemodynamic data
    LVEF (%) 38±11
    LVEDP (mmHg) 6±4
    CI (L·min–1·m–2) 2.5±0.6
    PCWP (mmHg) 7±5
Medical treatment (n)
    ACEI 40
    Angiotensin-receptor blocker 12
    Ca-channel blocker 13
    Diuretics 31

Data are mean ± SD.
NYHA, New York Heart Association; WBC, white blood cells; CK, creatine 
kinase; BNP, B-type natriuretic peptide; LVDd, left ventricular end-diastolic 
diameter; LVDs, left ventricular end-systolic diameter; FS, fractional short-
ening; LVEF, left ventricular ejection fraction; LVEDP, left ventricular end-
diastolic pressure; CI, cardiac index; PCWP, pulmonary capillary wedge 
pressure; ACEI, angiotensin converting-enzyme inhibitor.

Fig1. Serum levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) in
patients with dilated cardiomyopathy (DCM). (A) DCM patients had
significantly elevated serum levels of 8-OHdG compared with control
subjects. Data are mean ± SD. (B) Relationship between serum 8-
OHdG level and left ventricular ejection fraction (LVEF).
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DCM. The dosage was gradually increased to a maximum
of 5–30mg/day. In 11 patients from whom we obtained
consent, cardiac catheterization and measurement of serum
8-OHdG levels were performed during carvedilol treatment.
The mean carvedilol treatment period was 12±9 months
and the mean carvedilol dosage was 20±8mg/day.

Statistical Analysis
All data are expressed as mean± SD. Statistical signifi-

cance for comparison between 2 measurements was deter-
mined using Student’s t-test. Correlation coefficients (r)
were calculated by linear regression analysis. Statistical
significance for comparison between before and after treat-
ment with carvedilol was determined using Student’s t-test.
Values of p<0.05 were considered to be significant.

Results
Serum Levels of 8-OHdG in Patients With DCM

DCM patients had significantly elevated serum levels of
8-OHdG compared with control subjects (DCM patients:
5.2±2.9ng/mL vs control subjects: 3.0±1.5ng/mL, p=0.0018)
(Fig1A).

It is reported that oxidative stress is enhanced in healthy
young men compared with age-matched women,26 so we
investigated the difference between the serum levels of 
8-OHdG in male and female patients with DCM and found
no significant difference (men: 6.1±4.3ng/mL vs women:
4.9±2.3ng/mL, p=NS).

The serum 8-OHdG levels in patients with DCM were
not correlated with left ventricular end-diastolic diameter
(LVDd) (r=0.049, p= NS) or LVEF (r=–0.029, p= NS)
(Fig1B). Furthermore, the serum 8-OHdG levels were not

correlated with either parameter in men or women with
DCM (LVDd: men, r=0.015, p=NS; women, r=0.179, p=
NS; LVEF: men, r=–0.007, p=NS; women, r=–0.029, p=
NS).

Myocardial Levels of 8-OHdG in Patients With DCM
Positive 8-OHdG staining was found in the nuclei of car-

diac myocytes of samples from DCM patients but not in
those from control subjects (Fig2).

Effect of Treatment With Carvedilol
Treatment with carvedilol reduced heart rate (p=0.0001),

New York Heart Association class (p=0.0004) and LVDd
(p<0.005), and ameliorated LVEF (p<0.05) (Table 2).
Serum 8-OHdG levels were decreased by 19% during 
treatment (6.3±3.5ng/mL before and 5.1±3.2ng/mL after
carvedilol administration, p<0.05) (Fig3). These findings
indicate that carvedilol reduced the level of oxidative DNA
damage, together with amelioration of heart failure.

Discussion
Three major new findings were obtained in the present

study. First, the level of a marker of oxidative DNA dam-

Fig 2. Immunohistochemical examination of 8-hydroxy-2-deoxyguanosine (8-OHdG) in representative myocardial
biopsy samples. Patient with dilated cardiomyopathy (DCM): (A) Low-power field: positive staining (brown) for 8-OHdG
is distinct in the nuclei of cardiac myocytes. (B) High-power field. (C) Control subject. Bar=50μm.

Table 2 Amerioration of Cardiac Function by Carvedilol

Before After p value

Systolic BP (mmHg) 127±20  127±17  NS
Diastolic BP (mmHg) 78±11 73±9  NS
Heart rate (beats/min) 83±13 68±11 p=0.0001
NYHA 2.3±0.7 1.7±0.6 p=0.0004
LVDd (mm) 64±9  60±9  p<0.005
LVDs (mm) 53±10 48±11 p<0.005
LVEF (%) 34±14 40±12 p<0.05  
PCWP (mmHg) 7±4 7±4 NS

Data are mean ± SD.
BP, blood pressure. Other abbreviations see in Table 1.

Fig 3. Decrease in serum 8-hydroxy-2-deoxyguanosine (8-OHdG)
levels after treatment with carvedilol (6.3±3.5 ng/mL before and
5.1±3.2ng/mL after carvedilol administration (19%), p<0.05).
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age was elevated in both the serum and myocardium of
patients with DCM. Second, carvedilol reduced those
levels and ameliorated the heart failure. Our hypothesis that
oxidative DNA damage is elevated in patients with heart
failure is supported by these findings.

DNA damage is increased in human hearts under various
conditions, such as myocardial ischemia and myocar-
ditis.24,27 In the present study, we found increased oxidative
DNA damage in the serum and myocardium of patients
with DCM, so oxidative stress is also a condition under
which DNA damage occurs. Progression of heart failure
because of oxidative stress has been implicated in damage
to the cellular membrane,14,15 myofibrillar proteins,16 mito-
chondria17 and sarcoplasmic reticulum18 in cardiac myo-
cytes. We found that oxidative DNA damage in the nucleus
is also elevated in heart failure, so repair of DNA damage
may be an efficient medical treatment for progression of
heart failure caused by oxidative stress.

Oxidative DNA damage has been implicated in the
pathogenesis of cancer, neurodegenerative diseases and in
aging.20–23 Oxidative DNA damage has mutagenic effects.
In particular, 8-OHdG has biological significance, includ-
ing G:C to T:A transversions at DNA replication.23,28,29

DNA mutations in the nucleus result in neuronal death and
carcinogenesis, so oxidative DNA damage in cardiac myo-
cytes may also have mutagenic effects and result in myo-
cardial dysfunction or death. Furthermore, oxidative DNA
damage triggers p53 autoproteolytic activity, leading to the
generation of p50 fragments lacking either the carboxyl
(p50 (∆C)) or amino terminal (p50 (∆N)).30 p50 (∆C) pro-
motes DNA repair, whereas p50 (∆N) leads to apoptosis.31

Therefore, oxidative DNA damage may cause apoptotic
cell death in the failing myocardium. In fact, increased
oxidative DNA damage has been shown at 2–4 weeks after
myocardial infarction, together with apoptotic cardiomyo-
cytes in the peri-infarct areas.32

The serum 8-OHdG levels were elevated in patients with
DCM, but did not correlate with LVDd or LVEF in this
study. The serum 8-OHdG levels are affected by oxidative
stress not only in heart but systemically. Elevation of circu-
lating 8-OHdG levels may reflect other organ damage, such
as endothelial dysfunction.33 Further studies are needed.

Carvedilol reduced the oxidative DNA damage in pa-
tients with DCM by several possible mechanisms. Theβ-
blocking effects of carvedilol may be important, because
catecholamines such as isoproterenol or norepinephrine
induce oxidative stress in the myocardium.8,34,35 Other
effects, such as anti-ischemic effects, including negative
chronotropic effects viaβ-receptors, and the direct antioxi-
dative effect of carvedilol, may contribute to the reduction
of oxidative stress.8 Carvedilol reduced oxidative DNA
damage with amelioration of heart failure, but only de-
creased the oxidative stress level by 19%. More potent and
effective antioxidants might be needed to greatly reduce
oxidative DNA damage.

Study Limitation
The present study was limited by the absence of a place-

bo group. Therefore, it is not clear that the changes of the
8-OHdG were solely attributable to carvedilol.

In conclusion, the levels of oxidative DNA damage were
elevated in the serum and myocardium of patients with
DCM. Carvedilol reduced the levels of oxidative DNA
damage, together with amelioration of heart failure.
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