
AN APPLICATION OF STEFAN'S PROBLEM TO THE

FREEZING OF A CYLINDRICAL FOOD-STUFF"

TOMOAKI KOMORI AND EIJI HIRAI

Department of Chemical Engineering,
Kanazawa University, Kanazawa

The analytical solution of the problem involving a change of phase with convection at the
surface is very difficult. Previously, heat conduction problems with a change of phase (called
Neumann's problem) have been solved. The concept may be used to obtain analytical solutions
for a semi-infinite solid and an infinite cylinder in the freezing of foods.

This paper presents an analytical Stefan-type solution for a cylinder with convection at the
surface and experimental results of the temperature distribution, fusion front moving and the time
required to freeze a cylinder in the freezing of cylindrical food stuff.

Introduction

Problems involving a change of phase are of practical
importance in the technical field. Typical applications
of these problems to practical cases include the freez-
ing of foods, ice formation and the solidification of

metals in the casting process. Recently two heat conduc-
tion problems involving a change of phase (called Neu-mann's problem) have been solved to obtain analytical

solutions for a semi-infinite solid and an infinite cylin-
der in the freezing of foods3>4).

Assuming that the temperature in the liquid layer is
kept at the melting temperature all the time, Neu-

mann's problem will be mathematically converted into
the Stefan type. This paper presents an analytical

Stefan-type solution of the temperature distribution and
the position of the fusion front in the freezing of a
cylindrical ice cream.

Statement of the Problem

The schematic model used in this problem to be
analyzed is shown in Fig. 1. In this case, the tem-
perature of the cylinder is at the melting temperature

initially and freezing proceeds toward the center of the
cylinder. Hence two solutions must be sought, that is,

the temperature distribution in the solid phase, which
is a function of both time and radius, and the position
of the solidification front, which changes with time.
Since the temperature in the liquid phase is kept at the

melting temperature all the time, there is no flow of
heat.

To solve this problem, the following assumptions are
made;

1) heat flows only in the direction of the radius ;
2) physical properties are independent of tempe-

rature ;
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3) material is homogeneous ;4) natural convection does not occur in the liquid

portion ;5) freezing takes place at a single, unique tempera-
ture and only at the solid-liquid interface ;

6) dilatation of bulk due to the change of phase is

n eglected.Upon these assumptions, the above solutions are ob-
tained by solving a one-dimensional conduction equa-
tion, with suitable boundary and initial conditions.
Thus, the differential equation of the cylindrical coor-

dinate for the solid phase may be expressed as:

dTdd ~*V3r2 "r"~r' dr)

If the crust thickness increases by dd in time dd, as
shown in Fig. 2, the heat balance at the solidification
front is

K~r=-LP~~at r=R-8 (2)
where L is the latent heat of fusion. The other boun-
dary conditions and initial condition are :

-K^=hT at r=i? (3)
or

T=Tf at r=R-3 (4)
T=Tf at 0=0 (5)

where the temperature T is expressed on the basis of
the temperature of the cold air, namely

T=t~ta Tf=tf~ta (6)

Fig. I Schematic model
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Fig. 2 A model of fusion front

There is no doubt that the crust thickness is zero
at the beginning of freezing.

Analytical Solution

A solution of Eq. (l) that satisfies the boundary

condition Eq. (3) and initial condition Eq. (5) is
-X- = S VmJQ(ram) (7)J- f m=\

where JoOr) is a zero-order Bessel function of the first
kind. To satisfy the boundary condition Eq. (3) am

must be a root of
amJi{Ram) - HJQ(Ram) = 0 (8)

This equation has an infinite number of real positive
roots. Vmis expressed as:

Vm R(H2 +am2)JQ(Ram) W
Conforming the analysis for this problem to Neu-

mann's solution for the semi-infinite solid2), it is suppos-
ed that the general solution is given by:

- £- = A 2 VnJo(ran) + B (10)J- f m=l

where A and B are constants, to satisfy Eqs. (l), (3)
and (4). On the other hand, as has been shown in
previous papers3'0, the crust thickness is supposed to
be given by:

3 = n^~d (ll)
In Eqs. (10) and (ll), there are three unknown

quantity terms A, B and n. A and B are determined
from boundary conditions Eqs. (3) and (4). n is a
numerical constant to be determined from the boundary
condition, Eq. (2) by the trial and error method314).

Substituting Eq. (10) in boundary conditions, Eqs.

(3) and (4), the values of A and B are given by:

S VM(R - d)am} (12)
m-l

B=0

Substituting Eqs. (10) and (ll) into Eq. (2) gives
KTf X VmamM(R - d)am} T n

E VmJQ{(R - d)am}
m=l=W (13)

To decide a numerical constant n from Eq. (13), the
graphical method is used in this analysis by plotting

each value of the left and right hand side term in Eq.
4;0

(13) against n or d on the rectangular coordinate.

Thus, three unknownquantity terms maybe determined
from Eqs. (12) and (13). But, tosatisfyEq. (l), the
value of these terms must be constant for all values
of time. In this case these terms are the function of

time, therefore Eq! (10), which is assumed "to be the
general solution, does not strictly satisfy the differential

equation, Eq. (l).

Accordingly, if these terms are approximately constant
with respect to time, the analytical solution of the
temperature for the solid phase can be written down

from Eqs. (10), (ll) and (12) as
oo

S VmJo(ram) (14)
T m=i

Tf S VmJo{(.R~d)aj
m=l

Rate of crust formation in the vicinity of the center.
With the proceeding of the solidification front toward

the center of the cylinder, Eq. (13) becomes gradually

unsuitable to decide a numerical^constant n or the^rust_
thickness because the rate of heat flow per unit area
will be different from':a heat balance given by Eq. (2)
due to increasing curvature at the solid-liquid interface.
In other words, the boundary condition, Eq. (2), will
be not satisfied any longer in the^center portion of the
cylinder.

For a Stefan's or Neumann's^problem of the cylin-
drical coordinate, a convenient approach to the solution

for the time required to freeze the center of the cylin-
der has been presented in the';previous work4) ; viz.,

an approximate mathematical means utilizing the average
volume rate of crust formation.
To obtain the average volume rate of crust formation,
the following assumptions are made :

1) physical properties are independent of time ;
2) quasi-steady state is assumed ;
3) heat transferred to the air is entirely used

to remove the latent heat of liquid.
The rate of heat flow per unit area through the

resistances due to the crust and the air film is equal to
the latent heat of fusion necessary for freezing at the
interface r=rd (=R-d), that is,

q_ Tf(15)

S I/A + (R/K)\n(R/r>)
and

i = Lpmi'Jw = Lpu* (16)
1dV ,- , ^ . -? ,

where ~^~ j» and uv are the^volumeIrate oi crust
formation per unit area at the moving solidification
front in m3/hr*m2.
Combining Eqs. (15) and (16) gives

(17)

_Tf 1
Uv ~ Lp ' 1/h + (R/K)]n(R/r8)

But since the volume rate of crust formation uv is
equal to zero at T8=0, it takes an infinite time to
freeze the cylinder, so the time required to freeze the
center, as well as the position of the solid-liquid inter-
face in the center portion cannot be obtained from Eq.
(17) directly. Therefore, an approximate calculation
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method will be applied to the center portion of the
cylinder inside the critical position of the solid-liquid
interface, rcs, where Eq. (2) is not satisfied. The ave-
rage volume rate of crust formation in this portion is
calculated as

uv= /rc8Uvdr8 (18)
fedJo

Denoting the time corresponding to the critical posi-
tion of interface rcs with 6C, the crust thickness for a
time 6>dc is calculated by the following equation!

d = UvOq + ny/dT (19)
where d=dc+dq, and the time required to freeze the
center portion is

6qp = 4^ + do (20)
Uv

where the critical position of|interface rC8 at the time

dc is decided graphically by plotting dd/dd in Eq. (13)
and uv in Eq. (17) against r§/R on the rectangular
coordinate.

Description of Equipment and Experiment

Fig. 3 shows details of a cylindrical container used
in this work. The containers are made of a vinyl
chloride plate of 0.5mm in thickness. One container,
12.8cm in diam.% and 10cm long,!has a capacity of

1287cm3 and the other, 15.0cm in diam. (10cm long),
has a capacity of 1766cm3.

The food used is a soft ice cream projected out of
an ice-cream freezer at the melting temperature. In
the containers, Cu-Co thermocouples are inserted in
space along the r-direction only. The temperature
distribution of the crust of the ice cream was measured
by mV-meter. In this case, since thickness of crust
cannot be found directly from the surface of the cylin-

der, it was succesively found by measuring individually
every half hour the position of the solidification front of
several similar containers frozen simultaneously under
the same conditions by means of insertion of a fine
vinyl chloride stick into the container. To find thick-

ness of crust by this method, the temperature of crust
in the respective containers must be a similar profile
for all times*.

Exact physical properties for ice cream have nqt been
reported, so data obtained empirically or employed in a

confectionery were used. They are tabulated in Table
1. Further, the heat transfer coefficient at the surface
of the cylinder was found in a similar manner to that
described in the previous papers3>4).

Discussion and Experimental Results

Unknownquantity terms I/A and n. It isjfound
that, as far as the values of these terms are independent
of time, the analytical solution satisfies completely the
fundamental differential equation.

* Temperature difference at discretionary points in the crust
of every container was not over a range of 0.3 to 2.1

°C, so temperature profiles of crust in the respective con-
tainers were assumed to be similar.
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Fig. 3 Details of a container

Fig. 4 An example of numerical plot to decide
the crust thickness

Table I Physical properties of ice cream

Cp [kcal/kg' °G] 0.40
K [kal/m-hr-°C] 0.24
9 [kg/m3]] 767

L ikcal/kg] .5.1 (R=0.064m)
3.0 (R=0.075m)

However, the values of these ternis could not be
exactly constant with respect to time except in special

:ases. Hence the relationship between thesesvalues and
:ime must be confirmed in this analysis. Fig. 4 shows
m example of crust thickness determined in the way
lescribed above. In Fig. 5, the values of n obtained
rj this manner are plotted against time and Fig. 5

>howssimultaneously the relationship between time and
several values of n of the semi-infinite solid3} and an
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infinite cylinder45 obtained in previous works.
As shown in Fig. 5, the value of n increases consi-
derably at the beginning and becomesconstant as time
proceeds. Moreover, the absolute values of n depend
on physical properties, particularly the latent heat of

fusion of materials.
The values of l/A obtained by Eq. (12) are plotted

Fig. 5 Relationship between variable constant n and time

Fig. 6 Relationship between variable constant \/A and time

against time in Fig. 6. A variable constant, l/A varies
rapidly with time at the beginning, but finally it is

consistent with what is indicated in Fig. 5. Accord-

ingly, as these variable constants l/A and n are approxi-
mately independent of time except at the beginning
of the freezing process, it is considered that the ana-
lytical solution, Eq. (14), would be applicable to this

pro blem.
Crust thickness. The critical position of interface

rC8 is determined in Fig. 7 where the values of dd/dd
in Eq. (13) and uv in Eq. (17) are plotted against r§/R.
In Fig. 8, the values of crust thickness calculated from

Eqs. (ll) and (19) using the value of rC8 obtained in
Fig. 7 are plotted against time. Previously, several in-
vestigators1'5'6'^ have reported analytical or numerical
solutions for problems involving the solidification or

melting of materials.
But few solutions presented by them have been con-

Fig. 7 Relationship between the rate of crust
formation and the position of the solid-liquid
interface.

Fig. 8 Increment of solidified thickness
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Fig. 9 Temperature distribution in solidified crust

firmed empirically. Hence, the time required to freeze
the center was calculated from several of them by
using the data of physical properties for ice cream.

These results were plotted in Fig. 8 together with the
experimental results. The authors' predictions are in
the best agreement with the experimental results.
Temperature distribution. The temperature distribu-
tion** in the solid phase at various times is shown in
Figs. 9 and 10. The solid lines in these figures are
analytical lines obtained from Eq. (14). It can be
observed that the experimental results of temperature

in the solid phase are fairly consistent with the analyti-
cal solution. However, the experimental data are going

to deviate from the analytical line due to deficient
insulation of the container as time proceeds.

Conclusion

An analytical solution of the heat transfer problem
involving a change of phase for the cylindrical system
has been presented and applied to the freezing of ice
cream. For a Stefan's problem of the cylindrical co-

ordinate, if the variable constants A and n are approxi-
mately independent of time, the crust thickness is given

by Eq. (ll) and the temperature distribution in the

crust is given by Eq. (14).
But since the rate of heat flow in the vicinity of

the center cannot satisfy the boundary condition, Eq.
(2), on account of increasing curvature at the fusion
front, the solution of the crust thickness, Eq. (ll),
must be restricted to the transient state in which the

** Temperature difference at two points separated by 4.8
cm in axial direction was not over 2.5°C.

VOL.3 NO.l 1970

Fig. IO Temperature distribution in solidified crust

heat balance satisfies the boundary condition, Eq. (2),
at the solid-liquid interface.

Then, after the critical time, assuming that a freezing
process is a quasi-steady state, the crust thickness for

a time is obtained from Eq. (19) and the time required
to freeze the center may be calculated from Eq. (20)
with the average volume rate of crust formation ex-

pressed in Eq. (18).

Nomenclature

Cp = Specific heat [kcal/kgà" °C]
H =h/K [1/m]

K = thermal conductivity [kcal/m-hr- °C]
h = heat transfer coefficient [kcal/m2-hr- °C]
k = thermal diffusivity [m2/hrl
L = latent heat, of fusion [kcal/kg]
q = rate of heat flow [kcal/hr]
r, R = radius [m]
S = solid-liquid inter facial area [m2j
t, T = temperature [°C]
uv = volume rate of crust formation [m3/hr-m2]
V = bulk of solidified crust [m3]
ocm = m-th positive root given by Eq. (8)
d = crust thickness [m]0 =time [hr]

p = density [kg/m3]
Subscr ipt
a = air

c ==critical

8 = position of interface
f = melting temperature
q = quasi-steady
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HEAT TRANSFER BETWEEN FLUIDIZED BEDS
AND HEATED SURFACES"

EFFECT OF PARTICLE SIZE
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Heat transfer coefficients between fluidized beds and heating surfaces were experimentally de-
termined by unsteady state method. An equation of the heat transfer coefficient was proposed
by considering a simple model. For high velocity of solid particles, experimental results, especially
the effect of particle size, were found to be easily explained by the equation.

Introduction

Heat transfer between fluidized beds and heating
surfaces has been the subject of many experimental
and theoretical studies.

Wicke and Fetting8) have proposed a model, assuming
that the heating surface is covered with a gas film and
a region in which solid particles circulate. They also
back-calculated thickness from their experimental results.
Ziegler et al.9) have proposed a mechanism of unstea-

dy state heat transfer for a single particle, assuming

that the surface is covered with a relatively thick gas
film, and that the temperature of the heating surface
is equal to that of gas in the films. And they have

obtained the information from their experimental results
that the heat transfer coefficient depends upon the solid
heat capacity and is independent of the solid thermal
conductivity. From theoretical equation, they have
also predicted that the effect of solid heat capacity is very
small when the residence time of particle is short, and
that the maximumNusselt number is about 7.2.
Mickley and Fairbanks7} have treated these phenomena,

considering the mechanismof unsteady state heat trans-
fer for semi-infinite solids. They considered that the
medium contributing to heat transfer is not a single

particle of the first row on the heating surface but a
small group or assembly of particles. However, their
model may imply that as residence time approaches
zero, the heat transfer coefficient becomes infinite.

This is contrary to experimental results. Besides, they
have not clearly described the effect of particle size on
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the heat transfer coefficient.

Botterill et al.3>4>5) have also considered unsteady state
heat transfer for a single particle which contacts with
a heating surface, and computed temperature distribu-
tion within a particle by the relaxation method. They
obtained the heat transfer coefficient as a function of
residence time on the heating surface. However, they
obtained; experimental values smaller than calculated
values. They considered that this'inconsistency is due
to the gas gap between a heated surface and solid
particles and predicted that the gap is about one tenth
of the particle size.

Baskakov2) has adopted a quasi-steady state heat

transfer model betweena heating surface and a particle,
assuming that the heat conduction is controlled only by
the thermal resistance between the heating surface and
a particle of the first row. From these assumptions,
heat transfer coefficients are proportional to effective
thermal conductivity between a surface and a particle
and inversely proportional to particle size. Since the
effective thermal conductivity depends on the thermal

conductivity of the solid particle, the use of a particle
with considerably different thermal conductivity is ex-
pected to have an effect. However, this assumption is
contrary to the experimental results of Ziegler9), arid
of Botterill3'4'5).

This report also deals with unsteady state heat
transfer for a single particle with relatively short resi-
dence time on a heating surface and with rather a highx
velocity. In case of short residence time, a particle of

the first row is,not too muchheated up, so that heat
conduction from the fheating surface to a particle is

controlled only by the thermarresistance.between them.
On the contrary, the particle of the first row is heated
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