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A formula for the maximum stable drop size has been derived theoretically, by taking into
consideration the effect of the dispersed-phase viscosity. The derived formula indicates that the
controlling factors of the maximumstable drop size are the WeberNumberand the viscosity
group which is defined as the ratio of the viscous stress to the stress of interfacial tension. The
validity of the formula was confirmed experimentally over a wide range of dispersed-phase viscosity.

Introduction

The agitation of two or more liquid phases in tanks
is a commonoperation in the chemical industry. In

some operations it is often desirable to have realistic
information with regard to the size of drops which are
formed in the agitated tank. The knowledge of the

breakup of a drop in turbulence is essential for deter-
mining the drop sizes; the maximumstable drop size
is especially important for elucidating the mechanism
of a drop breakup and for its theoretical treatment.
Hinze2) suggested that the breakup of a drop occurs

whenthe Weber NumberNWe=peu\d)d/areaches a
critical value (NWe)cvit. Namely, the size of the maxi-
mumstable drop, rfmax, can be determined by solving
the following equation.

P^(dmKX)dm&Ja = (Nw e)CIit(= const.) (1)

This equation is adequate, when the stress due to the
inter facial tension counteracts the deformation of the
drop. On the other hand, viscous stress due to internal
flow will also prevent the deformation of the drop.
Hinze also analyzed the effect of the dispersed-phase

viscosity on (NWe)cxit when the dynamic pressure in a
drop was of the same order of magnitude as the
external stress acting on the drop surface. On the
basis of Hinze's analysis Hughmark3) proposed the
equation for the maximumstable drop size, which
included the viscosity effect.

However, these treatments will be invalid as the
dispersed-phase viscosity increases, because the dy-
namic pressure in a drop becomes smaller than the

external stress and the viscous stress in a drop becomes
Received October 2, 1976. Correspondence concerning this article should

be addressed to S. Saito.

VOL. 10 NO.4 1977

of the same order of magnitude as the external stress.
The present work proposes a moregeneral expression
for Jmax which is applicable in the wide range of the
dispersed-phase viscosity.

1. The MaximumStable Drop Size for Breakup in
Isotropic Turbulence

Assuming that the turbulence is isotropic and that
the drop diameter d is much larger than the Kolmo-
goroff length 57, the mean square velocity difference
u\d) is given by

t?(d) oc (edf/s (2)
Introducing Eq. (2) into Eq. (1), Hinze2) obtained the
following equation.

pce*VJ<j = const. (3)

In these equations e is the energy dissipation rate per
unit mass and for a fully baffled turbine operating at
high Reynolds number it is given as follows:

e oc n\U (4)
Introducing Eq. (4) into Eq. (3) Shinnar6) has derived
the following equation for the maximumstable drop
size, dmax,

dmJL=comt. <j>riL*loy *-* (5)
This equation gives good results only when the drop
diameter d is much larger than the Kolmogoroff
length and the dispersed-phase viscosity ju,d is suf-
ficiently small, i.e., less than of the order of 10cp.

Larger values of pd play an important part in resisting
the deformation of a drop and make Eqs. (3) and (5)
inappropriate2>7). In the present work this effect of the
dispersed-phase viscosity is introduced into the ex-

pression for the maximumstable drop size as follows.
As the stress due to the inter facial tension counteracts
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Fig. 1 Voigt model for the deformation of a drop

the deformation of a drop in an elastic manner, it may
be assumed that the deformation is represented by the
Voigt model, shown in Fig. 1. In this model the
modulus of a spring equals old, and an internal

viscosity in a dashpot equals /ud.
Ifa stress Fis now applied to the model in Fig. 1,
the applied stress F must equal the opposing stress in
the spring (a/d)0 plus the viscous stress /btd(dd/dt);
thatis,

F= (old)d + N(d6ldt) (6)
where d is the spring elongation. In our presentation
0 represents the deformation of the drop and F the
dynamic pressure difference of turbulent motions
which acts on the surface of the drop. Since F is the
quantity which fluctuates with time and depends on
the drop size, it can be written as;

F= AP(d, i) (7)

In order to solve Eq. (6) exactly, it is necessary to
know AP{d,t) in all details as a function of time. Be-
cause of the irregularity of turbulence this can not be
done; however, AP(d,t) can be described by laws of
probability. Namely, it is possible to give distinct
average values of the magnitude and the period of
AP(d,i). Designating these average values to AP and
T, respectively, they are given for the region of
turbulence with which the present work is concerned
as follows :

2P oc Pcu*(d) oc pc(edr* (8)
T oc d2/3/e1/3 (9)

In the first approximation, the expression "pseudo
turbulence" is used in order to characterize the de-

formation of a drop in turbulence: this refers to hypo-
thetical case of a flow field with a regular pattern that
shows a distinct constant periodicity in time and
space. Accordingly, AP{d,i) is a periodic function

whose magnitude and period are proportional to AP
and T as given by Eqs. (8) and (9). Then, AP(d,t)
will be given as follows:

AP(d,t) = APg((o) (10)
where o)=t/T (1 1)
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In this equation g(co) is a universal periodic function
which depends only on to. The universality of g(w)
results from the consideration that the quantities of
AP and T are main factors which determine the

statistical property of AP(d,t).
Using Eqs. (10) and (ll), Eq. (6) can be transformed

into the following dimensionless form ;
6 + C1Nvi(dO/d(o) = C2NWeg(w) (1 2)

where
Nvi = [Jid^d^la (1 3)

NWe = pci?(d)d/a (14)

and Cx and C2 are constants. Nvi is called the viscosity
group. It is the same notation that Hinze2) used for

the dimensionless group /Ud/VpdGd, because both
groups account for the effect of the viscosity of the

liquid in a drop.
Equation (12) has a solution of the following form.

0=Oo)=o txp (-a)/C1Nvi)+ C2NWeI(cofNVi) (1 5)
where /is a function of w and Nvi and is given by the
following equation.

1 f*

I(o),NVi)=~ ^ Ar expi-to/dNvi) \ g{o))Qx^{a)IC1Nvi)d(o
^l-LVvi J O

(16)

Since the first term on the right-hand side in Eq. (15)
vanishes rapidly with time, it can be ignored in this
case. Consequently, 6 is described as

0= C2NWeI(w, Nvi) (17)
As seen from Eq. (17) 0 reaches a maximumvalue,
#max> when the value of / becomes maximum.At a
maximumpoint the following equation is satisfied.

dI(Q>,Nvt)/da> = 0 (1 8)

and apparently the value of / at the maximumpoint
depends only on Nvi. Hence the maximumdeforma-
tion #maxcan be expressed as

Om**= C>NwJmUNvi) (19)
where /max is an unknownfunction which depends on
Nvi, because the functional form of g(co) cannot be
determined explicitly. However, as Nvi becomes very
small or very large, the limits of/max can be derived by
means of Eq. (12). WhenNvi approaches zero, Eq.
(12) is simplified to

6 = C2NWeg{co) (20)
The maximumvalue of g(w) is regarded as a universal
constant and therefore,

lim#max=const. NWe (21)

By comparing the above equation with Eq. (19), we
obtain

lim /max = const. (22)Nvi-*0

WhenNvi is limited to infinity, we obtain in the same
way as above the following equation.
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lim/max=const. N^1 (23)

For convenience, if a functionf(Nvi) is defined as
/max(tf,,) = const./{ l +f(Nvi)} (24)

Equations (22) and (23) can be rewritten as
\imf(Nvi) = 0 (25)

lim (l +f(Nvi))=comt Nvi (26)

It is, now, assumed that the breakup of a drop
occurs when #maxreaches a certain critical value 0crit.

The expression of the maximumstable drop size
iax is, then, obtained by using Eqs. (2), (14), (19)

and (24) as
pce^d^Ja( \ +f(Nvi)) = comt (27)

where

Nvi = /ide^c^!Ja (28)

Whenthe effect of the dispersed-phase viscosity jud
is neglected, i.e., Nvi-^0, Eq. (27) agrees with Eq. (3)
derived by Hinze. On the other hand, when the effect
of /Ltd is sufficiently large, i.e., Nvi->oo, Eq. (27) can be
transformed by using Eqs. (26) and (28) into the form;

^s^aV/^ const. (29)
Substituting Eq. (4) into the above equation, we ob-

tain the following relation between dmaxand the
operation variables for the region of high dispersed-
phase viscosity.

dmJL=const. 0v2rL2///d)- ° -75 (30)
This is the same equation as the one proposed pre-

viously by means of dimension analysis4).
In the medium region, where both the inter facial-

tension force and the viscous stress must be taken into
account, it is necessary for expressing the relation
between dmaxand the operation variables explicitly

that the functional form of f(Nvi) is predetermined
experimentally.

2. Experiment

2. 1 Apparatus

A schematic diagram of the equipment is shown in
Fig. 2. The mixing vessel was a glass cylinder of

12.7 cm i.d. and 12.7 cm height, enclosed by stainless
steel plates. The impeller was a six-blade disk turbine
centered vertically in the vessel. Four equally spaced

baffles, each one-tenth the diameter of the vessel in
width, were installed. The square tank surrounding
the vessel served as a constant-temperature bath. In

addition, it allowed pictures to be taken through the
cylindrical vessel without optical distortion.

2. 2 Procedure
Polystyrene-oxylene solutions ranging in polysty-

rene concentration from 0 to 25wt% were dispersed in
water to which a small amount of polyvinyl alcohol
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Fig. 2 Schematic diagram of the apparatus

Table 1 Properties of continuous and dispersed phase
liquids at 22°C

Continuous phase (water)
Polyvinylalcohol concentration 0.1 g//

Density 1.00 g/cc
Viscosity 0.97 cp

Dispersed phase (Polystyrene-o-xylene solution)
Polystyrene concentration 0 to 25 wt %
Density 0.879 to 0.922 g/cc
Viscosity 0.78 to 1500 cp

Interfacial tension 22 ± 0.4 dyne/cm

Table 2 Experimental conditions

Impeller speed nr 1 50-820 rpm
Reynolds number pcnrL^//uc 1 04-6 x l 04
Dispersed phasevolume fraction <f> less than 0.003
Temperature - 22 zb l °C

had been added in order to prevent adhesion of drops
to the wall of the vessel. The continuous phase was
saturated with 0-xylene prior to each run. All runs
were made in a completely filled vessel in order to
avoid complication which would result from introduc-
tion of a third (gas) phase into the liquid. Dispersed
phase volume fraction <f> was always taken below
0.3%, in order to satisfy sufficiently noncoalescing
conditions85. Properties of the continuous and
dispersed phase liquids and the experimental condi-

tions are summarized in Tables 1 and 2. Inter facial
tensions were determined by the method of pendant
drops and their values 22(^0.4) dyne/cm were in-
dependent of the polystyrene concentration in the
dispersed phase. Viscosities were measured with a
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Fig. 3 Change of the largest drop size during stirring time

Fig. 4 Effect of impeller speed on the maximumdrop size

Fig. 5 Effect of dispersed-phase viscosity on the maximum
drop size

capillary viscometer or a rotating viscometer. Im-

peller speeds were above 150 rpm in order to permit
impeller Reynolds number greater than 104.
Photographs of the dispersion were taken at appro-
priate intervals during each run. The negatives were
projected onto frosted glass screen and then the drop
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size measurements were made by hand from the re-
flections using slide calipers. A minimumcount of
300 drops was necessary to obtain accurate drop size
distribution1}. The largest drop sizes were defined as
drop sizes at which tails of the distributions on large
side converge to zero.

3. Experimental Results and Discussion
A plot of the diameter of the largest drop against
stirring time is shown in Fig. 3. It is apparent from
Fig. 3 that the size of the largest drop obtained under
each experimental condition reaches a constant value
whenthe system is agitated for more than 40 minutes.
Therefore, in this work we adopted the largest drop
size obtained after more than 40 minutes in stirring
time as the maximumstable drop size dm^, because
dispersed phase volume fraction <f> at each run is small
enough to neglect the effect of coalescence8}.
3. 1 Effect of impeller speed
Figure 4 shows logarithmic-scale plots of Jmax vs.
nr. The solid curves are drawn through the data for
the same dispersed-phase viscosity. The upper broken
line shows the slope of -0.75 predicted from Eq. (30)
and the lower broken line the slope of -1.2 predicted
from Eq. (5). At impeller speeds above 300 rpm, the
data for jud larger than 520 cp are well correlated with
lines of theoretical slope -0.75 and those smaller than
34 cp with lines of theoretical slope -1.2. However,
the data show a curvature tending toward higher
slopes independently of jud as the impeller speed is
decreased below 300 rpm. It should be noted that this
tendency appears not only in the small jud region as
observed by some investigators5-9 10) but also in the

large jud region. Therefore, this is caused by a factor
which is independent of the change of the dispersed-
phase viscosity. On the other hand, it is found that the
breakup of drops with sizes near to dmSiXdoes not
occur in every place of an agitated tank but only in
the limited place where the local energy dissipation rate
is the largest. The distribution of £ in a tank may be
affected by changing the impeller speed in the vicinity
at the Reynolds number of about 104. Therefore, the
discrepancy between theoretical and experimental
4ax in the region of low impeller speed depends on a
certain change of the distribution of e9 that is, the
approximation of e by Eq. (4).
3. 2 Effect of dispersed-phase viscosity
The values of Jmaxat each impeller speed are read
out from the solid curves in Fig. 4 and then plotted
against jud in logarithmic coordinates in Fig. 5. The
slopes of all curves drawn through each set of plots are
near to zero in the region of jud below 10cp and in-

creases with the increase from 10 to 200 cp in /ud. In
the region of ptd above 200 cp the slopes are in good
agreement with the theoretical slope of 0.75 which is
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Fig. 6 Correlation of the data by means of
the model

predicted from Eq. (29) or from Eq. (30). But when jud
approaches about 1500 cp, the slopes of all the curves
become smaller than the value of 0.75. Although this
disagreement between experiments and the model can-
not be interpreted quantitatively, it may be caused by
the following fact. When /id is relatively small, a de-
formed drop will be quicklyrestored to a spherical shape
in real turbulence for each interval between turbulent
fluctuations; that is, a drop will oscillate about spheri-
cal equilibrium shape. In this case, the deformation of
a drop will be successfully represented by the present
model. In contrast to this, when /id becomes very

larger, it will become difficult for a deformed drop to
be restored to a spherical shape for the above-men-

tioned interval. In this case, even a drop which has a
smaller size than that predicted from Eq. (30) will
breakup because the drop deformation is enhanced by
the subsequent turbulent fluctuations. Therefore, this
appears to be a major cause for the disagreement
shown in Fig. 5.
3. 3 Correlation of */max by means of the present model
If Eq. (27) is divided by Eq. (3) under the condition
that pce2/s/(j is constant, the following equation is
obtained.

[dm^]NJ[dm^]Nvi-,o=^ +f(Nvi))°-6 (3 1)

where [dm^]Nvi represents the maximumdrop size at
Nvi and [dm&x]Nvi^0 that at Nvi->0.
Equation (31) makes clear the effect of the dispersed-
phase viscosity because the ratio of the maximumdrop
sizes depends only on Nvi.
In the present experiments, pc and a are constant and
pce2/3/a is also constant at a constant impeller speed.

The maximumdrop sizes at pd of 0.78cp for each
impeller speed can be used as fr/max]#«<->(). The ratios of
the maximumdrop sizes, that is, the values of the
left-hand side in Eq. (31), are obtained from Fig. 4 and
they are plotted against the viscosity group Nvi on
logarithmic coordinates in Fig. 6. The broken line
* In their experiments, the dispersed phase volumefraction isrelatively large, i.e., 0=0.1 but a protecting agent is added

to the continuous phase. In this case, coalescence of drops
will be prevented remarkably.
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represents the following relation which is derived from
Eqs. (26) and (31).

lim ^max]i^ =const. N^6 (32)
In this figure the present data fall on a single curve as
predicted from Eq. (31). It should be noted that the
data contain those at nr of 200 rpm, where the larger
effect ofnr on Jmax is observed, as shown in Fig. 4, and
that this effect of nr is removed by taking the ratio of
the maximumdrop sizes. The slope of the curve in the
range of Nvi near 10 becomessmaller than the value of
0.6 and this, of course, corresponds to the decrease of
the slopes in the range of jud near 1500cp, in Fig. 5.
The data, except for the high dispersed-phase viscosity
range, are well correlated by Eq. (31) in whichf(Nvi)
is approximated as follows :

f(Nvi) = 9Nvi (33)
The data* of Mizoguchi et al.5) were also plotted in
Fig. 6 by using the volume-average drop diameter dv
instead of dmax. It is shown that these data are well
correlated by the present model.
C onclusions
This paper presents a moregeneral expression for
Jmax applicable over a wide range of the dispersed-
phase viscosity. Namely, the deformation of a drop in
turbulence was represented by the Voigt model, and
the equation of the deformation was solved by using
the approximation that the dynamic pressure difference
acts on a drop periodically; from this solution a
formula for dmaxwas derived by assuming that the

breakup of a drop occurs when the magnitude of the
deformation reaches a certain critical value. The

formula shows that the maximumstable drop size is
controlled by two dimensionless groups, NWeand Nvi.
This theoretical result was confirmed experimentally.
Nomenclature

D = tank diameter
d = drop diameter
F = external stress
L = impeller diameter
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viscosity group, jude1/3d1/s/o
Weber number, pcu\d)dla

impeller speed

dynamic pressure difference
average magnitude of AP(d,t)
mean period of AP(d,t)

time
mean square of the difference of the

velocities at distance d
£

V

e

p

V

CO

9

a
4>

energy dissipation rate per unit mass
Kolmogoroff length, (vc3/s)1/4
spring elongation or magnitude of the
deformati on

viscosity
kinematic viscosity

dimensionless time, tjT
density
interfacial tension

dispersed phase volume fraction
<Subscripts>
c = continuous phase

Short Communications

d = dispersed phase
crit = critical
max = maximum
v = volume-average
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PREDICTION OF SEMIFLUIDIZATION VELOCITY AND PACKED
BED FORMATION FOR HETEROGENEOUS MIXTURES
IN LIQUID-SOLID SYSTEMS

G. K. ROY and K. C. BISWAL

Department of Chemical Engineering, Regional Engineering College, Rourkela-769008 (Orissa), India

Introduction

Semifluidization is a new type of solid-fluid con-

tacting technique, which has been reported in the last
decade only. It is claimed to be a compromise be-
tween the packed and the fluidized bed operations and
can be achieved in a conventional fluidizer by incor-
porating certain modifications to the column construc-
tion. The special features of such a bed have been
reported in literature1\

A glance into semi-fluidization literature reveals
that various aspects of liquid-solid semi-fluidization
viz. the prediction of minimumand maximumsemi-
fluidization velocities4"7), packed bed formation2'3 8),
and pressure drop9) have been exhaustively investi-

Received January 24, 1977. Correspondence concerning this article should
be addressed to G. K. Roy.
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gated for closed-cut particles. But information as
regards the semi-fluidization behaviour of mixed

particles system is very limited10}. Of late, two cor-
relations have been suggested by one of the authors

(Roy) for the prediction of minimumand maximum
semi-fluidization velocities11>12) for heterogeneous
mixtures in liquid-solid systems. In this communi-

cation a correlation has been proposed for the predic-
tion of semi-fluidization velocity in terms of a few
dimensionless groups which influence the system.
This will be of practical applicability in determining
the relative distribution of particles in the fixed and
fluidized sections of a semi-fluidized bed.

Experimental Procedure
The experimental set-up used and the procedure

followed in the present study has been described in
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