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Higuchi’s equation that expresses the rate of release of medicaments from ointments
containing drugs in suspension has long been used for its surprisingly simple form and
convenience. If initial drug concentration is close to the solubility of the drug in the
ointment base, however, accuracy of the equation is not always high. In order to improve
the accuracy, explicit solution of Fick’s laws with the appropriate boundary conditions
was attempted.

An equation relating the rate of release of solid drugs suspended in ointment bases into
perfect sinks has been derived by Higuchi.® The final expression (Eq. 1) is surprisingly
simple and convenient:

Q =~ (2Co—Cs)CsDt Eq. 1
where Q=the amount released at time £ per unit area of exposure, C,=the initial concentration
of drug expressed in units/cm?, C,=the solubility of the drug as units/cm?® in the ointment
base, and D=the diffusion constant of the drug molecule in the base.
Eq. 2, on the other hand, has been deduced for the amount of drug released from (one
side of) a layer of ointment in which the drug is uniformly diss9lved initially.®
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where h=the thickness of ointment layer, Q, C,, D, ¢ are the same as in Eq. 1 above. For
most practical application, Higuchi® has pointed out that a simplified equation (Eq. 3) may

be used.
0 =204/ 2% | Eq. 3
- ,

Eq. 8 is derived, as the limit when A/ approaches infinity, fi*om Eq. 4 which is an alternate
expression of Eq. 2. S

' Dt = . nh '
=20V 2] 142 —Dyierfe () | : Eq. 4
Q=2C z[1+ «/n‘nZ:l( ) ierfc T q
where erfc represents an integral of error function.

ierfc (x) = 71_— exp (—#%) — x erfc (%) and
T

erfc (x) = 72-?—LeXP (—yHdy

Consequently, Eq. 8 is an explicit equation for solution type ointments with infinitely large
thickness.
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In the extreme when C, approaches C, (from higher level), all the solid drugs dissolve
into the base and the ointment is just converted from suspension type to solution type. There-
fore (s in Eq. 1 and Eq. 3 should coincide, if C,=C,. Eq. 1, however, is simplified only
to Eq. 5.

Dt

Q = 260 Eq 5

Differences (between Eq. 3 and Eq. 5) in D and Q are 27.39, and 12.89%,, respectively, because
4/n=1.273.. and 2/s/7=1.128.. An assumption adopted on the derivation of Eq. 1 that
the concentration gradient is constant in the region where solid drug no more exists might
be the cause for the difference.

The purpose of this note is to obtain the explicit equation for the amount of drug released
into perfect sinks from ointment base containing drugs in suspension.

Theoretical

Explicit Equation

On the problem just mentioned above, we have a system described as follows: a) the
suspended drug is a fine state such that the particles are much smaller in diameter than the
thickness of the applied layer; b) the surface to which the drug ointment is applied is immis-
cible with the ointment and constitutes a perfect sink for the released drug.

For such a system we can draw a concentration profile which may exist after the lapse
of finite time after application of the ointment (Fig. 1), and we have the equations

ac daxc

LY _p X - Eq. 6

d¢ dx? 0<xr<X) ' 1
c=c (X<7) h Eq. 7
(Co Cs)“*‘—‘ D (dC) >0 Eq. 8

dx/z-x
C=c, (x=X) Eq. 9
C=0 (x=0) - Eq. 10
X=0 ‘ t=0 Eq. 11
b dC : '

= D(——) dt Eq. 12

Q v[o dx =0 q

These equations are solved accordlng to the method of Crank® as follows: the solution
of Eq. 6 satisfying Eq. 10 is

C=4 erf( ~/.#) | Eq. 13
were A is a constant. Then Eq. 9 requires
C;—Aerf(~/ t) Eq. 14
Since Eq. 14 has to be satisfied for all values of #, X must be proportional to 4/7.
= 2p~'Dt Eq. 15

where $ is a constant to be determined. Substltutlng Eq. 13, Eq. 14 and Eq. 15 into Eq. 8
we obtain

1 G

~/ = (Co — = pexp (®* ert (p) o . _, ” Eq. 16

6) J. Crank, “The Mathematics of Diffusion,” Oxford University Press, London, 1957, pp. 99—120.
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Fig. 1. Theoretical Concentration Profile
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Consequently,
A = /T (Co—Cs)p exp (p?) = Cslert (p) Eq. 17
Using Eq. 13, Eq. 14, Eq. 17 in Eq. 12 we obtain
Q = 2(Co—Cq)p exp (p2)a/ Dt Eq. 18
or
2Cs /Dt

where p must satisfy Eq. 16.

It is possible, in principle, to eliminate p from Eq. 16 and Eq. 18. In the present instance,
because the situation is algebraically complicated, a single explicit equation for Q is difficult
to obtain. However, such a p value that satisfies Eq. 16 is calculated numerically by Newton’s
method,” which permits evaluation of () at any time ¢ by Eq. 18. IfC O:Cs', Eq.19and Eq. 1
coincide, since p becomes infinity.

Fig. 2 is a graphical presentation of Eq. 16 and Eq. 18. Eq. 3 was used for the values
corresponding to C,/C; less than unity.

Approximate Equations
Expansion of Eq. 16 and Eq. 18 by p gives Eq. 20 and Eq. 21.

Q 2 2 4 6 4 8
{7D_t—2(m} =p? 4 2p* + 2p —I-E;b + Eq. 20
__(COC o=t 754 1 pﬁ + ﬁps o Eq. 21

Eliminating $, term by term, we obtain

2. 1 C& 2 C&
= DtCs{ZCo———C _1_ ¢ ____.._._...}
Q \/ 3745 CoCs 1189 (Co—Cu)?

- Eq. 22 shows that Eq. 23 is better approximation than Eq. 1.

Eq. 22

7) P. Henrici, “Elements of Numerical Analysis,” John Wiley and Sons, New York, 1964, pp. 77—78.
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0= \/ (2co—%cs)csm Eq. 23

Much better approximation is obtained as follows: assuming that the series of terms below
the third term is represented by a single term, we obtain

2 BCs
= A/ DtC (2c _Zc c) Eq.
Q \/ s o 3 S+‘Co——aCs s q 24

where « and § are constants to be evaluated. By Eq. 8, Eq. 25 and Eq. 26 hold, if C,=C..

% - «72? Eq. 25
dcéo( CS«Q/D?) = «/2'77'(’(:}:) Eq. 26

Substituting Eq. 24 into Eq. 25 and Eq. 26, we obtain
o = —0.8900342 .-- and = —0.006608263 ..
Rounding these values up to —0.89 and —2/300, respectively, we have final equation

2 Co—0.88Cs
— A/ Dtc {20 _2c (—“- )} .
9 \/ 13\ . —0.89¢C, Eq. 27
Discussion

If C,=C,, Eq. 27 gives
Dt

Q0 =2C, \/_*—« , Eq. 28
7

7
22/7 is an approximation of = known since the age of Archimedes.®
22/7m = 1.0004 -+ and /227 = 1.0002 ---

Therefore differences are less than 0.05%. Q/C./Dt values calculated by approximate equa-
tions and by the explicit equation are shown in Table I. It is clear that the approximation
by Eq. 27 is excellent. At various values of C,/C,, differences between Eq. 18 and Eq. 27 are
less than 0.59,.

TasLe I. Comparison of Q/Csa/Df Values

Explicit Approximate
Co/Cs P (Eq, 18)

4 (Eq. 27) (Eq. 23) (Eq. 1)

1.000 oo 1.1284 1.1282 1.1547 1.0000

1.100 1.2570 1.2205 1.2254 1.2383 1.0954

1.500 0.8006 1.5198 1.5239 1.5275 1.4142

2.000 0.6201 1.8216 1.8241 1.8257 1.7321

2.500 0.5257 2.0789 2.0807 2.0817 2.0000

3.000 0.4648 2.3074 2.3087 2.3094 2.2361

3.500 0.4212 2.5151 2.5161 2.5166 2.4495

4.000 0.3881 2.7068 2.7076 2.7080 2.6458

6.000 0.3064 3.3659 3.3663 3.3665 3.3166

8.000 0.2612 3.9154 3.9157 3.9158 3.8730

10.000 0.2315 4,3967 4.3969 4.3970 4.3589
20.000 0.1608 6.2715 6.2716 6.2716 6.2450

8) P. Beckmann, “A History of m,” The Golem Press, Boulder, Colorado, 1971, pp. 59—69.
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In some of the recent controlled release devices using synthetic membrane, like silicone
rubber, the release rate is determined, in general, by the solution to Fick’s laws, with the
appropriate boundary conditions.” Simple relations such as those derived here could be of
help for a prediction of the release rate.

9) R.W. Baker and H.K. Lonsdale, “Controlled Release of Biologically Actlve Avents,” ed. by A.C.
Tanquary and R.E. Lacey, Plenum Press, New York, 1974, p. 17. .
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