Biotransformation of Citrus Aromatics Nootkatone and Valencene by Microorganisms

Mai Furusawa,^a Toshihiro Hashimoto,^a Yoshiaki Noma,^b and Yoshinori Asakawa^{*,a}

^a Faculty of Pharmaceutical Sciences, Tokushima Bunri University; and ^b Faculty of Human Life Sciences, Tokushima Bunri University; Yamashiro-cho, Tokushima 770–8514, Japan. Received June 30, 2005; accepted July 30, 2005

Biotransformations of the sesquiterpene ketone nootkatone (1) from the crude drug Alpiniae Fructus and grapefruit oil, and the sesquiterpene hydrocarbon valencene (2) from Valencia orange oil were carried out with microorganisms such as *Aspergillus niger*, *Botryosphaeria dothidea*, and *Fusarium culmorum* to afford structurally interesting metabolites. Their stereostructures were established by a combination of high-resolution NMR spectral and X-ray crystallographic analysis and chemical reaction. Metabolic pathways of compounds 1 and 2 by A. niger are proposed.

Key words nootkatone; valencene; biotransformation; Aspergillus niger; Fusarium culmorum; Botryosphaeria dothidea

We are continuing to study the biotransformation of secondary metabolites such as terpenoids and aromatic compounds from crude drugs and liverworts by microorganisms¹⁻⁷⁾ and mammals^{8,9)} to obtain some functional substances such as pheromones and aromatics. We reported the biotransformation of sesquiterpenoids such as dehydrocostuslactone, costunolide, α -, β -, and γ -cyclocostunolides, α santonin, and atractylon from crude drugs, and an amber constituent, (-)-ambrox by microorganisms such as Aspergillus niger.¹⁰ It has been clarified that a grapefruit essential oil containing nootkatone (1) decreases the somatic fat ratio¹¹⁾ and its demand by cosmetic and fiber manufacturers has increased. Recently, we have found that the commercially available and cheap aromatic valencene (2) from Valencia orange oil is very efficiently converted into the expensive grapefruit aromatic, nootkatone (1) by biotransformations using Chlorella sp.¹²⁾ and Mucor sp.¹³⁾ In continuation of the biotransformation of the chemical constituents isolated from crude drugs into biologically active compounds, the biotransformations of nootkatone (1) and valencene (2) were examined using Aspergillus niger, Fusarium culmorum, and Botryosphaeria dothidea. This paper deals with the structural elucidation of metabolites of 1 and 2 converted by the three fungi.

Biotransformation of Nootkatone (1) by Aspergillus niger A. niger was inoculated and cultivated in a rotary (100 rpm) in Czapek-pepton medium (pH 7.0) at 30 °C for 7 d. (+)-Nootkatone (1) (80 mg/200 ml) was added to the medium and further cultivated for 7 d. The crude metabolites obtained from the culture broth by EtOAc extraction were chromatographed on silica gel (*n*-hexane–EtOAc gradient) to give two metabolites, 12-hydroxy-11,12-dihydronootkatone (3) (10.6%, isolated yield) and C-11 stereomixtures of 11,12-dihydroxy-11,12-dihydronootkatone (nootkatone-11,12-dio) (4, 5) (51.5% isolated yield), respectively.

Compound (3) { $[\alpha]_D + 133.3^\circ$ (CHCl₃)} was obtained as a single isomer at C-11, for which the molecular formula $C_{15}H_{24}O_2$ was established in high-resolution electron-impact mass spectroscopy (HR-EI-MS) ($[M]^+ m/z \ 236.1778$). The FT-IR and UV spectra of **3** indicated the presence of a hydroxyl (3398 cm⁻¹) and a conjugated ketone (1657 cm⁻¹; $\lambda_{max} \ 238 \text{ nm}$) group. The ¹H- (Table 1) and ¹³C-NMR (Table 2) spectra of **3** showed the presence of a tertiary methyl [δ_H

1.09 (3H, s)], two secondary methyl [$\delta_{\rm H}$ 0.93 (3H, d, J= 7.1 Hz), 0.97 (3H, d, J=6.9 Hz)], a primary alcohol [$\delta_{\rm H}$ 3.55 (1H, dd, J=6.3, 10.4 Hz), 3.63 (1H, dd, J=5.8, 10.4 Hz); $\delta_{\rm C}$ 65.9 (t)], and a ketone [$\delta_{\rm C}$ 199.7 (s)]. Compound **3** showed correlations between (i) H-12/C-7, C-11, and C-13; and (ii) H-13/C-7, C-11 and C-12 in the HMBC spectrum. On the basis of the above spectral data and careful analysis of its 2D NMR spectrum, the structure of metabolite **3** was established to be 12-hydroxy-11,12-dihydronootkatone. The relative configuration at C-11 remained to be clarified.

The HR-EI-MS of nootkatone-11,12-diol (a mixture of 4 and 5) showed a peak for $[M^+]$ at m/z 252.1730, indicating the molecular formula of C15H24O3. The FT-IR spectrum of the mixture indicated the presence of a hydroxyl (3358 cm^{-1}) and a conjugated ketone (1652 cm^{-1}) group. The ¹H- and ¹³C-NMR spectra showed that 4 and 5 were a mixture of stereoisomers at C-11, the isolation of which was very difficult by any separation method. The structure of 11,12-diol was confirmed by the formation of a methyl ketone (6) on oxidation with $NaIO_4$. Treatment of the mixture (4, 5) with 1,1'-thiocarbonyldiimidazole gave the thiocarbonates 7 and 8, which were easily separated by HPLC in the ratio of 3:2. Teresa et al.¹⁴) and Haines and Jenkins¹⁵) reported that the configuration at C-11 of 11,12-diol (9) must be "R," because the thiocarbonate (10) used to prepare 9 showed a negative Cotton effect [308 nm ($\Delta \varepsilon$ -0.21)]. However, both thiocarbonates 7 and 8 showed negative Cotton effects [7: 319 nm $(\Delta \varepsilon - 0.33)$; 8: 310 nm $(\Delta \varepsilon - 0.70)$] in CD spectra, and thus the absolute configuration at C-11 of 4 and 5 could not be characterized by their CD spectra. Finally, the absolute structure of 4 was established based on X-ray crystallographic analysis of the thiocarbonate (7) as the S configuration at C-11, as shown in Fig. 1. Thus compounds 4 and 5 were determined to be (11S)- and (11R)-nootkatone-11,12-diol, respectively. 11,12-Epoxide (11) obtained by epoxydation of nootkatone (1) with mCPBA was biotransformed by A. niger for 1 d to 11,12-dihydroxy-11,12-dihydronootkatone (4, 5) in good yield (81.4%). 1-Aminobenzotriazole, an inhibitor of cytochrome P450, inhibited the oxidation process of 1 into compounds 3—5. From the above results, possible metabolic pathways of nootkatone (1) are depicted in Fig. 2.

Biotransformation of Nootkatone (1) by *F. culmorum* **and** *B. dothidea F. culmorum* was inoculated and cultivated

stationary in Czapek-pepton medium (pH 7.0) at 30 °C for 7 d. (+)-Nootkatone (1) was added to the medium and further cultivated for 7 d to afford (11*R*)-11,12-dihydroxy-11,12-dihydronootkatone (5) (47.2%) and 9β -hydroxy-nootkatone (12) (14.9%).

Compound **5** was stereospecifically obtained at C-11 by biotransformation of **1**. The purity of compound **5** was determined to be *ca*. 95% by HPLC analysis of the thiocarbonate (**8**).

Compound 12 { $[\alpha]_D$ +131.3° (CHCl₃)} was obtained as a colorless oil, for which the whose molecular formula $C_{15}H_{22}O_2$ was established using HR-EI-MS ([M]⁺ m/z 234.1612). The FT-IR spectrum of 12 indicated the presence

of a hydroxyl (3359 cm⁻¹) and a conjugated ketone (1652 cm⁻¹) group. The ¹H- (Table 1) and ¹³C-NMR (Table 2) spectra of **12** showed the presence of a secondary alcohol $[\delta_{\rm H} 4.47 \ (1\text{H}, \text{ddd}, J=1.9, 5.2, 12.1 \text{ Hz}); \delta_{\rm C} 69.0 \ (\text{d})]$ and a ketone $[\delta_{\rm C} 199.8 \ (\text{s})]$. The carbon signals at the C-8, C-9, and C-10 positions of **12** appeared at a lower field (+9.2, +36.0, and +1.0 ppm) in comparison with those of nootkatone (**1**), as shown in Table 2. Compound **12** showed correlations between (i) H-9/C-1, C-5, and C-10 in the HMBC spectrum and NOEs between H-9/H-1, H-7, H-8\alpha and H-14 in the NOESY, respectively. Thus the structure of **12** is 9 β -hydroxynootkatone.

The biotransformation of nootkatone (1) was examined using the plant pathogenic fungus *B. dothidea* separated from the fungus which grows on the peach. (+)-Nootkatone (1) was cultivated with *B. dothidea* (peach PP8402) for 14 d to afford 11,12-dihydroxy-11,12-dihydronootkatone (4, 5) (54.2%) and 7α -hydroxynootkatone (13) (20.9%). The ratio of compounds 4 and 5 was determined to be 3:2 by HPLC analysis of their thiocarbonates (7, 8).

Compound 13 {[α]_D +118.8° (CHCl₃)} was obtained as a colorless oil, for which the molecular formula C₁₅H₂₂O₂ was established by HR-EI-MS ([M]⁺ *m/z* 234.1610). The FT-IR and ¹H- and ¹³C-NMR (Table 2) spectra of 13 resembled those of nootkatone except for the presence of a tertiary alcohol [$\delta_{\rm C}$ 74.5 (s)]. The carbon signals at the C-6, C-7, and C-8 positions of 13 appeared at a lower field (+3.3, +34.2, and +4.3 ppm) in comparison with those of nootkatone (1), as shown in Table 2. The relative structure of compound 13 at C-7 was determined by NOEs between (i) H-12/H-8 β ; and (ii) H-13/H-6 β in the NOESY spectrum.

The conversions of nootkatone (1) to 11*S*- and 11*R*nootkatone-11,12-diol (4, 5) by various microorganisms and rabbits are summarized in Table 3. The biotransformations of 1 by *A. niger* and *B. dothidea* resembled that after oral administration of 1 to rabbits¹⁶ since the ratio of major metabolites (4, 5) in rabbits was similar to that in the former two fungi. Recently, we have reported that the biotransformation of hinesol⁵ and α -santonin¹⁰ by *A. niger* is similar to that with their oral administration to mammals. It is noteworthy that the biotransformation of 1 by *F. culmorum* stereospecifically afforded 11*R*-nootkatone-11,12-diol (5).

Biotransformation of Valencene (2) by *A. niger* Valencene (2) from Valencia orange oil was cultivated with *A. niger* for 5 d to afford seven metabolites 3 (1.0%), 4 and 5 (13.5%), 14 (1.1%), 15 (1.5%), 16 (2.0%), and 17 (0.7%), respectively. The ratio of compounds 4 (11*S*) and 5 (11*R*) was determined to be 1:3 by HPLC analysis of their thiocarbonates (7, 8).

Compound 14 {[α]_D -71.1° (CHCl₃)} was obtained as a single isomer at C-11, for which the molecular formula C₁₅H₂₄O₂ was established by HR-EI-MS ([M]⁺ *m/z* 236.1749). The FT-IR and UV spectra of 14 indicated the presence of a hydroxyl (3350 cm⁻¹) and a conjugated diene (λ_{max} 235 nm) group. Its ¹H- (Table 4) and ¹³C-NMR (Table 5) spectra showed the presence of a conjugated diene [δ_{H} 5.60 (m), 5.94 (1H, br d, *J*=9.6 Hz), 5.38 (m); δ_{C} 121.9 (d), 126.0 (d), 128.4 (d), 142.4 (s)] and 11,12-diol [δ_{H} 3.45, 3.60 (each 1H, d, *J*=11.0 Hz); δ_{C} 68.6 (t), 74.6 (s)]. The stereostructure of 14 was determined by the careful analysis of the 2D NMR spectra (HMBC, NOESY) and the above-men-

Table 1. 600 MHz ¹H-NMR Spectral Data of Compounds 1, 3, 5, 12 and 13 in CDCl₃^{a)}

Position	1	3	5	12	13
1	5.77 br s	5.75 br s	5.76 br s	6.25 br s	5.81 br s
3α	2.29 dd	2.29 dd	2.30 dd	2.31 dd	2.32 dd
	(13.7, 17.0)	(14.0, 17.3)	(14.0, 17.3)	(14.0, 16.8)	(14.0, 17.0)
3β	2.23 ddd	2.22 ddd	2.24 ddd	2.25 ddd	2.22 ddd
	(0.8, 4.1, 17.0)	(0.8, 4.4, 17.3)	(0.8, 4.4, 17.3)	(0.8, 4.4, 16.8)	(0.8, 4.4, 17.0)
4	2.20 m	1.99 m	2.02 m	2.06 m	1.33 m
6α	1.98 ddd	1.91 ddd	2.13 ddd	1.97 ddd	1.95 dd
	(3.0, 3.0, 12.9)	(2.7, 2.7, 13.2)	(2.7, 2.7, 12.9)	(2.5, 2.5, 13.2)	(3.0, 14.3)
6β	1.14 dd	0.96 dd	1.06 dd	1.14 dd	1.47 d
	(12.9, 12.9)	(13.2, 13.2)	(12.9, 12.9)	(12.9, 12.9)	(14.3)
7	2.33 m	1.83 m	1.97 m	2.41 m	
8α	1.92 m	1.87 m	1.87 m	2.23 m	1.85 m
8β	1.35 m	1.22 m	1.18 m	1.42 m	1.79 m
9α	2.52 m	2.48 m	2.50 m	4.47 ddd	2.24 m
9β	2.38 m	2.35 m	2.37 m	(1.9, 5.2, 12.1)	2.24 m
12	4.72 br s	3.55 dd	3.46 d	4.76 br s	4.86 br s
		(6.3, 10.4)	(11.0)		
	4.75 br s	3.63 dd	3.62 d	4.78 br s	5.06 br s
		(5.8, 10.4)	(11.0)		
13	1.74 br s	0.93 d	1.09 s	1.75 s	1.81 br s
		(7.1)			
14	0.97 d	0.97 d	0.99 d	0.98 d	0.95 d
	(6.9)	(6.9)	(6.9)	(6.9)	(6.9)
15	1.12 s	1.09 s	1.10 s	1.13 s	1.31 s

a) Chemical shifts from TMS (multiplicity, J in Hz) in CDCl₃.

Fig. 1. ORTEP Drawing of Compound 7

Fig. 2. Possible Metabolic Pathway of (+)-Nootkatone (1) by *Aspergillus niger*

Table 2. 150 MHz $^{13}\text{C-NMR}$ Spectral Data of Compounds 1, 3, 5, 12 and 13 in $\text{CDCl}_3^{a)}$

С	1	3	5	12	13	
1	124.6	124.5	124.5	120.7	124.5	
2	199.6	199.7	199.8	199.8	199.6	
3	42.0	42.1	42.0	41.8	41.8	
4	40.4	40.5	40.6	40.8	41.5	
5	39.3	39.2	39.2	39.7	39.1	
6	43.9	41.3	38.6	43.8	47.2	
7	40.3	34.3	39.2	38.3	74.5	
8	31.6	30.7	27.9	40.8	35.9	
9	33.0	33.1	32.9	69.0	28.9	
10	170.4	171.1	170.8	171.4	171.0	
11	149.0	40.2	74.2	147.8	151.7	
12	109.2	65.9	68.4	109.2	109.8	
13	20.8	13.6	19.9	20.7	19.1	
14	14.9	15.0	15.0	15.1	14.9	
15	16.8	16.9	16.8	17.6	18.7	

a) Chemical shifts from TMS in CDCl₃.

Table 3. Conversion of Nootkatone to 11S and 11R-11,12-Diol by Microorganisms and Rabbit

	Metabolites (ratio ^{a}) of 4 and 5)		
	11S-11,12-diol (4)	11 <i>R</i> -11,12-diol (5)	
Aspergillus niger	3	2	
Fusarium culmorum	1	20	
Botryosphaeria dothidea	3	2	
Rabbit	3	2	

a) Product: Ratio was determined by HPLC of thiocarbonates of 11,12-diol.

Fig. 3. ORTEP Drawing of 18

tioned spectral data, except for the configuration at C-11.

Compound 15 {[α]_D -50.1° (CHCl₃)} was obtained as a single isomer at C-11, for which the molecular formula C₁₅H₂₂O₃ was established using HR-EI-MS ([M]⁺ m/z 250.1562). The FT-IR and UV spectra of 15 indicated the presence of a hydroxyl (3417 cm⁻¹) and $\alpha,\beta,\gamma,\delta$ -unsaturated ketone (1666 cm⁻¹; λ_{max} 289 nm) group which was confirmed by the ¹H- (Table 4) and ¹³C-NMR (Table 5) spectral data, indicating the presence of an $\alpha,\beta,\gamma,\delta$ -unsaturated ketone [$\delta_{\rm H}$ 5.87 (1H, d, J=9.9 Hz), 5.99 (1H, dd, J=1.9, 5.2 Hz), 6.87 (1H, d, J=9.9 Hz); $\delta_{\rm C}$ 125.1 (d), 132.5 (d), 141.3 (s), 145.2 (d), 201.5 (s)] and 11,12-diol [$\delta_{\rm H}$ 3.48, 3.62 (each 1H, d, J=11.0 Hz); $\delta_{\rm C}$ 68.5 (t), 74.6 (s)]. The stereo-chemistry at C-11 of 15 was established to be *R* configuration by the careful analysis of 3,5-dinitrobenzoate (18) prepared from 15, as shown in Fig. 3.

Compound **16** {[α]_D +17.4° (MeOH)} was obtained as a single isomer at C-11, for which the molecular formula C₁₅H₂₄O₃ was established using HR-EI-MS ([M]⁺ *m/z* 252.1708). The FT-IR and UV spectra of **16** indicated the presence of a hydroxyl (3368 cm⁻¹) and a conjugated diene (λ_{max} 237 nm). The ¹H- (Table 4) and ¹³C-NMR (Table 5) spectra of **16** showed the presence of a conjugated diene [δ_{H} 5.50 (1H, dd, *J*=2.7, 5.2 Hz) 5.59 (1H, br d, *J*=9.9 Hz), 6.00 (1H, br d, *J*=9.9 Hz); δ_{C} 124.2 (d), 128.6 (d), 129.4 (d), 141.3 (s)], a secondary alcohol [δ_{H} 3.91 (1H, br d, *J*= 8.8 Hz); δ_{C} 71.6 (d)], and 11,12-diol [δ_{H} 3.42, 3.56 (each 1H, d, *J*=11.0 Hz); δ_{C} 68.6 (t), 74.6 (s)]. The relative structure of compound **16** at C-3 was determined based on NOEs between H-3/H-14 and H-15 in the NOESY spectrum.

Compound 17 {[α]_D +52.0° (CHCl₃)} was obtained as a single isomer at C-11, for which the molecular formula C₁₅H₂₄O₃ was established using HR-EI-MS ([M]⁺ *m/z* 252.1736). The FT-IR and UV spectra of 17 indicated the presence of a hydroxyl (3410 cm⁻¹) and an α,β -unsaturated ketone (1653 cm⁻¹; λ_{max} 242 nm) group. The ¹H- (Table 4) and ¹³C-NMR (Table 5) spectra of 17 showed the presence of an α,β -unsaturated ketone [$\delta_{\rm H}$ 5.90 (1H, br s); $\delta_{\rm C}$ 126.3 (d), 164.9 (s)] and 11,12-diol [$\delta_{\rm H}$ 3.43, 3.55 (each 1H, d, *J*= 11.0 Hz); $\delta_{\rm C}$ 68.1 (t), 74.3 (s)]. The relative structure of 17 was established by HMBC and NOESY spectral analysis, as shown in Fig. 4. Compound 17 may be obtained by the rearrangement of the C-5 methyl group into C-10.

Compounds 14—17 could be biosynthesized by elimination of a hydroxyl group of 2-hydroxyvalencene (19, 20). The reduction of nootkatone (1) with NaBH₄ and CeCl₃ gave 2α -hydroxyvalencene (19) in 87% yield, and the Mitsunobu reaction of 19 with *p*-nitrobenzoic acid, triphenylphosphine, and diethyl azodicarboxylate gave nootkatol (2β -hydroxyva-

Table 4. 600 MHz ¹H-NMR Spectral Data of Compounds 14–17 in $CDCl_3^{a)}$

Н	14	15	16	17
1	5.94 br d	6.87 d	6.00 br d	2.10 d
	(9.6)	(9.9)	(9.9)	(16.2)
				2.26 d
				(16.2)
2	5.60 m	5.87 d	5.59 br d	
		(9.9)	(9.9)	
3α	1.95 m		3.91 br d	5.90 br s
			(8.8)	
3β	2.06 m			
4	1.53 m	2.42 q	1.32 dq	
		(6.9)	(8.8, 6.9)	
5				2.35 m
6α	1.86 br d	1.99 m	1.92 m	1.21 m
_	(12.4)			
6β	1.05 dd	1.33 dd	1.05 dd	1.23 m
	(12.4, 12.4)	(12.1, 12.1)	(12.4, 12.4)	
7	2.03 m	1.99 m	1.96 m	1.68 m
8α	2.14 m	2.32 m	2.15 m	1.57 m
8β	1.83 m	1.99 m	1.81 m	1.33 m
9α	5.38 m	5.99 dd	5.50 dd	1.42 m
		(1.9, 5.2)	(2.7, 5.2)	
9β				1.59 m
12	3.45 d	3.48 d	3.42 d	3.43 d
	(11.0)	(11.0)	(11.0)	(11.0)
	3.60 d	3.62 d	3.56 d	3.55 d
10	(11.0)	(11.0)	(11.0)	(11.0)
13	1.12 s	1.14 s	1.09 s	1.11 s
14	0.90 d	1.11 d	1.07 d	1.95 br s
1.5	(7.4)	(6.9)	(6.9)	0.07
15	0.89 s	1.01 s	0.92 s	0.8/s

a) Chemical shifts from TMS (multiplicity, J in Hz) in CDCl₃.

Table 5. 150 MHz 13 C-NMR Spectral Data of Compounds 14—17 in CDCl₃^{a)}

-					
С	14	15	16	17	
1	128.4	145.2	129.4	54.0	
2	126.0	125.1	128.6	200.3	
3	32.2	201.5	71.6	126.3	
4	39.0	52.6	48.0	164.9	
5	36.0	39.4	37.0	47.7	
6	34.9	35.1	34.9	22.8	
7	36.5	35.6	35.1	44.7	
8	27.2	27.7	27.0	21.9	
9	121.9	132.5	124.2	39.7	
10	142.4	141.3	141.3	37.5	
11	74.6	74.1	74.3	74.3	
12	68.6	68.5	68.3	68.1	
13	19.4	19.6	19.1	19.2	
14	14.8	7.2	10.6	21.8	
15	17.1	19.2	17.9	16.5	

a) Chemical shifts from TMS (multiplicity, J in Hz) in CDCl₃.

Fig. 4. Important HMBC and NOESY Spectra of Compound 17

Fig. 5. Possible Metabolic Pathway of (+)-Valencene (2) into 14—16 by *Aspergillus niger*

lencene) (20) obtained in 42% yield. Nootkatol with calcium antagonistic activity was isolated from *Alpinia oxyphylla* MIQ.¹⁷⁾ Compound 19 was biotransformed for 5 d by *A. niger* to give three metabolites, 4 and 5 (6.4%), 14 (34.6%), and 15 (5.5%), respectively. Compound 20 was biotransformed for 5 d by *A. niger* to give three metabolites, 4 and 5 (21.8%), 15 (5.5%), and 16 (10.4%), respectively. Both ratios of 4 (11*S*) and 5 (11*R*) obtained from 19 and 20 were 1:3. From the above results, plausible metabolic pathways of valencene (2) and 2-hydroxyvalencene (19, 20) by *A. niger* are shown in Fig. 5.

In summary, the grapefruit fragrance, nootkatone (1) used in the modern cosmetic and fiber business was biotransformed by *A. niger* and *B. dothidea* to give 11*S*- and 11*R*nootkatone-11,12-diol (4, 5) in the ratio of 3:2. The biotransformation of 1 by *F. culmorum* stereospecifically afforded 11*R*-nootkatone-11,12-diol (5). Biotransformation of (+)-valencene (2), which can be cheaply obtained from Valencia oranges, afforded the structurally interesting metabolites 14—17 together with 3—5. Because biotransformation of 2-hydroxyvalencene (19, 20) by *A. niger* gave metabolites 14—16, the biosynthetic pathway (Fig. 5) was confirmed. The metabolites 3—5, 12, and 13 of (+)-nootktone (1) and 3—5 and 14—17 of (+)-valencene (2) did not show an effective odor.

Experimental

General Experimental Procedures Gas chromatography (GC) was carried out using a Agilent 6890 GC system-5973 Network instrument equipped with a flame ionization detector on a capillary column ($30 \text{ m} \times 250 \mu \text{m} \times 0.3 \mu \text{m}$). The column temperature was programmed from 70 °C to 230 °C. IR spectra were measured on a JASCO FT-IR 500 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on a Varian unity 600 (¹H; 600 MHz, ¹³C; 150 MHz) spectrometer. The solvent used for NMR spectra

was CDCl₃. MS spectra were measured on a JEOL JMS HX-100 or a JEOL AX-500 spectrometer. The specific rotation was recorded on a JASCO DIP-140 polarimeter. X-Ray crystallographic analysis was carried out using a Mac Science MXC18 diffractiotometer. Slica gel 60 for column chromatography was purchased from Merck. TLC was carried out on silica gel 60 F₂₅₄, precoated (layer thickness 0.25 mm, Merck) with *n*-hexane–EtOAc (1:1). High-performance liquid chromatography (HPLC) was carried out on a Shimadzu LC-6A Liquid Chromatograph.

Materials (+)-Valencene ($[\alpha]_D + 84.6^\circ, c=1.0$) (2) and (+)-nootkatone ($[\alpha]_D + 193.5^\circ, c=1.0$) (1) which were isolated from the essential oil of Valencia orange and grapefruit, respectively, were provided from Takasago International Co., Ltd. (Japan). Purity was checked based on the 600 MHz ¹H-NMR spectrum, GC-MS, and optical rotation. The absolute configurations of (+)-nootkatone (1) and (+)-valencene (2) were already determined to be 1 and 2, respectively.^{17,18}

Microorganisms and Media *A. niger* was isolated from soil in Osaka prefecture and was identified based on its physiologic and morphologic features. A Czapek-pepton medium [1.5% sucrose, 1.5% glucose, 0.5% polypepton, 0.1% K₂HPO₄, 0.05% KCl and 0.001%FeSO₄·7H₂O in distilled water (pH 7.0)] was used for the biotransformation of nootkatone by *A. niger*, *B. dothidea* and *B. theobromae*.

Biotransformation of Nootkatone (1) by *A. niger* An Erlenmeyer flask (500 ml) containing 200 ml of Czapek-pepton medium was inoculated with a suspension of *A. niger* and incubated at 30 °C for 2 d in a rotary shaker operating at 100 rpm. After full growth of the microorganisms, a solution of (+)-nootkatone (1) (80 mg×5; 400 mg) was added to the culture medium of *A. niger*. The incubation was then continued for a further 7 d at 30 °C. After the completion of the incubation time, the culture was filtered *in vacuo* and the broth was extracted twice with EtOAc (each 200 ml) under stirring. The EtOAc layers were dried over MgSO₄ and the solvent was evaporated *in vacuo* to give the crude extract (494 mg) which was chromatographed on silica gel (50 g) with a gradient solvent system of *n*-hexane–EtOAc (1 : 1) C-11 mixtures of 11,12-dihydroxy-11,12-dihydronootkatone (4, 5) (238.2 mg; 51.5%) from *n*-hexane–EtOAc (1 : 4) fraction.

12-Hydroxy-11,12-dihydronootkatone (**3**): Colorless oil, $[α]_D^{22} + 133.3^{\circ}$ (*c*=0.75, CHCl₃); EI-MS: *m/z* 236 (M⁺), 218, 203, 175, (100), 161, 147, 121; HR-EI-MS: *m/z* 236.1778 (M⁺), C₁₅H₂₄O₂ requires 236.1777; FT-IR (KBr) cm⁻¹: 3399 (OH), 2926, 1657 (C=O), 1298, 1040; UV (MeOH) λ_{max} nm (log ε): 238 (4.19); ¹H- and ¹³C-NMR (600, 125 MHz) spectral data are shown in Tables 1 and 2, respectively.

11*S*- and 11*R*-nootkatone-11,12-diol (**4**, **5**) colorless oil, $[\alpha]_D^{22} + 130.5^{\circ}$ (*c*=0.81, CHCl₃); EI-MS: *m/z* 252 (M⁺), 234, 221 (100%), 206, 178, 161, 121; HR-EI-MS: *m/z* 252.1730 (M⁺), C₁₅H₂₄O₃ requires 252.1725; FT-IR (KBr) cm⁻¹: 3358 (OH), 2938, 2866, 1652 (C=O), 1063; UV (MeOH) λ_{max} nm (log ε): 238.5 (4.16); ¹H-NMR (CDCl₃): compound **4** (11*S*); δ 0.97 (3H, d, *J*=6.9 Hz, H-14), 1.11 (3H, s, H-13 and H-15), 3.46 (1H, d, *J*=11.0 Hz), 5.76 (1H, *J*=0.8 Hz, H-1); ¹³C-NMR (CDCl₃): δ 14.9 (q, C-14), 16.9 (q, C-15), 20.3 (q, C-13), 26.8 (t, C-8), 33.0 (t, C-9), 39.2 (t, C-6), 39.6 (s, C-5), 39.7 (d, C-7), 40.5 (d, C-4), δ 42.0 (t, C-3), 68.2 (t, C-12), 74.3 (s, C-11), 124.4 (d, C-1), 171.0 (s, C-10), 199.9 (s, C-2). Compound **5** (11*R*) NMR data: see Tables 1 and 2.

Reaction of Compounds 4 and 5 with NaIO₄ To a solution of compounds 4 and 5 (10.0 mg) in ethanol (5 ml) was added NaIO₄ (40 mg) with stirring at room temperature. After stirring for 1 h, the mixture was extracted twice with Et_2O (50 ml). The organic phase was washed with brine, dried (MgSO₄), and evaporated to give a residue (13.4 mg). The residue was purified by a silica gel column chromatography with an *n*-hexane–AcOEt gradient to afford diketone (6) (7.9 mg, 78.8%).

Compound **6**: Colorless oil, $[\alpha]_D^{22} + 163.5^{\circ}$ (c=1.74, CHCl₃); EI-MS: m/z 220 (M⁺; 100%), 205, 177, 150, 135; HR-EI-MS: m/z 220.1458 (M⁺), C₁₄H₂₀O₂ requires 220.1463; FT-IR (KBr) cm⁻¹: 2942, 1709 (C=O), 1667 (C=O), 1298, 1200; UV (MeOH) λ_{max} nm (log ε): 236.5 (4.17); ¹H-NMR (CDCl₃): δ 0.99 (3H, d, J=6.9 Hz, H-14), 1.12 (3H, s, H-15), 2.20 (3H, s, H-12), 5.79 (1H, s, H-1); ¹³C-NMR (CDCl₃): δ 14.9 (q, C-14), 16.7 (q, C-15), 28.2 (q, C-12), 28.5 (t, C-8), 32.1 (t, C-9), 38.9 (s, C-5), 40.0 (t, C-6), 40.2 (d, C-4), 42.1 (t, C-3), 46.8 (d, C-7), 125.3 (d, C-1), 168.5 (s, C-10), 199.2 (s, C-2), 210.4 (s, C-11).

Reaction of Compounds 4 and 5 with 1,1'-Thiocarbonyldiimidazole To a solution of compounds **4** and **5** (30.0 mg) in toluene (7 ml) was added 1,1'-thiocarbonyldiimidazole (45 mg) with stirring at room temperature. After stirring for 7 h, the mixture was purified by silica gel column chromatography with an *n*-hexane–AcOEt gradient to afford thiocarbonates (7, **8**) (29.8 mg). The mixture of thiocarbonates was separated by HPLC on silica gel with *n*-hexane–EtOAc (1:1) to afford 11*S*-thiocarbonate (7) (13.1 mg, 37.4%) at Rt=67 min and 11*R*-thiocarbonate (**8**) (8.8 mg, 25.1%) at Rt=70 min.

Compound 7: Colorless prisms; mp 182—183 °C; $[\alpha]_D^{22} + 167.0^{\circ}$ (*c*=0.83, CHCl₃); EI-MS: *m/z* 294 (M⁺), 278, 217 (100%), 216, 201, 174, 161, 135, 91; HR-EI-MS: *m/z* 294.1269 (M⁺), C₁₆H₂₂O₃S requires 294.1290; FT-IR (KBr) cm⁻¹: 2969, 1662 (C=O), 1305 (C=S), 1197; UV (MeOH) λ_{max} nm (log ε): 237 (4.50); CD (MeOH) λ_{max} nm ($\Delta\varepsilon$): 319 nm (-0.33); ¹H-NMR (CDCl₃): δ 0.97 (3H, d, J=6.9 Hz, H-14), 1.11 (3H, s, H-15), 1.55 (3H, s, H-13), 4.28 (1H, d, J=8.8 Hz, H-12), 4.46 (1H, d, J=8.8 Hz, H-12), 5.79 (1H, d, J=1.4 Hz, H-1); ¹³C-NMR (CDCl₃): δ 15.0 (q, C-14), 16.9 (q, C-15), 21.7 (q, C-13), 26.7 (t, C-8), 31.8 (t, C-9), 38.6 (t, C-6), 40.4 (d, C-4), 41.0 (d, C-7), 41.9 (t, C-3), 76.6 (t, C-12), 91.8 (s, C-11), 125.3 (d, C-1), 167.6 (s, C-10), 191.1 (s, C=S), 198.9 (s, C-2).

The crystal data for 7 are as follows: Monoclinic, space group $P2_1$, a= 8.710 (0) Å, b=8.448 (0) Å, c=10.988 (0) Å, $\beta=$ 102.428, V=789.599976 (0) Å³, Z=2, $D_x=$ 1.530 Mg m⁻³, $D_m=$ 1.500 Mg m⁻³, μ (MoK α)=2.09 mm⁻¹, Eta; +1.9. Final *R* and *Rw* were 0.044 and 0.074 for 1186 reflections. The supplementary materials have been deposited at the Cambridge Crystallographic Data Center.

Compound **8**: Colorless needles; mp 164—165 °C; $[\alpha]_D^{22} + 167.0^\circ$ (*c*= 0.83, CHCl₃); EI-MS: *m/z* 294 (M⁺), 278, 217 (100%), 216, 201, 174, 161, 135, 91; HR-EI-MS: *m/z* 294.1272 (M⁺), C₁₆H₂₂O₃S requires 294.1290; FT-IR (KBr) cm⁻¹: 2941, 1662 (C=O), 1307 (C=S), 1200; UV (MeOH) λ_{max} nm (log ε): 237 (4.34); CD (MeOH) λ_{max} nm ($\Delta \varepsilon$): 310 nm (-0.70); ¹H-NMR (CDCl₃): δ 1.00 (3H, d, *J*=6.9 Hz, H-14), 1.12 (3H, s, H-15), 1.52 (3H, s, H-13), 4.39 (1H, d, *J*=8.8 Hz, H-12), 4.46 (1H, d, *J*=8.8 Hz, H-12), 5.78 (1H, d, *J*=1.4 Hz, H-1); ¹³C-NMR (CDCl₃): δ 15.0 (q, C-14), 16.9 (q, C-15), 21.0 (q, C-13), 27.0 (t, C-8), 31.9 (t, C-9), 38.9 (t, C-6), 40.5 (d, C-4), 41.0 (d, C-7), 42.0 (t, C-3), 76.9 (t, C-12), 91.8 (s, C-11), 125.4 (d, C-1), 167.6 (s, C-10), 191.1 (s, C=S), 199.0 (s, C-2).

Epoxidation of Nootkatone (1) To a solution of nootkatone (1) (300.1 mg) in $CHCl_3$ (40 ml) was added *m*CPBA (687 mg) with stirring at 0 °C. After stirring for 3 h , water was added and the mixture was extracted with $CHCl_3$. The organic phase was washed with 5% NaHCO₃ and brine, dried (MgSO₄), and evaporated to give a residue (314.9 mg). The residue was purified by silica gel column chromatography with an *n*-hexane–AcOEt gradient to afford 11,12-epoxynootkatone (11) (116.1 mg, 82.7%).

Compound 11: Colorless oil, $[\alpha]_D^{21} + 173.9^{\circ}$ (c=1.01, CHCl₃); EI-MS: m/z 234 (M⁺), 216, 206, 176 (100%), 161, 134, 119, 105, 91; HR-EI-MS: m/z 234.1613 (M⁺), C₁₃H₂₂O₂ requires 234.1620; FT-IR (KBr) cm⁻¹: 2934, 1667 (C=O), 1287, 1200; UV (MeOH) λ_{max} nm (log ε): 236.5 (4.13); ¹H-NMR (CDCl₃): δ 1.06 (3H, s, H-15), 1.08 (3H, d, J=7.1 Hz, H-14), 1.24, 1.26 (3H, S, H-13), 2.62 (2H, m, H-12), 6.08 (1H, d, J=1.4 Hz, H-1).

Biotransformation of 11,12-Epoxynootkatone (11) by *A. niger* A solution of 11,12-epoxynootkatone (11) (20 mg) was added to the culture medium of *A. niger*. The incubation was then continued for 1 d at 30 °C. The culture was filtered *in vacuo* and the broth was extracted twice with EtOAc (each 200 ml) with stirring. The EtOAc layers were dried over MgSO₄ and the solvent was evaporated *in vacuo* to give the crude extract (30.5 mg) as an oil, which was chromatographed on silica gel with a gradient solvent system of *n*-hexane–EtOAc to afford 11*S*- and 11*R*-nootkatone-11,12-diol (4 and 5; ratio 1 : 1) (17.5 mg, 81.4%).

Biotransformation of Nootkatone (1) by *F. culmorum* An Erlenmeyer flask (500 ml) containing 200 ml of Czapek-pepton medium was inoculated with a suspension of *F. culmorum* and incubated at 30 °C for 5 d in a rotary shaker operating at 100 rpm. After full growth of the microorganisms, a solution of (+)-nootkatone (1) (20 mg) was added to the culture medium of *F. culmorum*. The incubation was then continued for a further 20 d at 30 °C. The culture was filtered *in vacuo* and the broth was extracted twice with EtOAc (each 100 ml) with stirring. The EtOAc layers were dried over MgSO₄ and the solvent was evaporated *in vacuo* to give the crude extract (494 mg) which was treated in the same manner as described above to give 9 β -hydroxynootkatone (12) (3.2 mg; 14.9%) and (11R)-nootkatone-11,12-diol (5) (10.9 mg; 47.2%). The purity of compound 5 was determined to be *ca.* 95% by HPLC analysis of the thiocarbonate (8).

(11*R*)-Nootkatone-11,12-diol (**5**): Colorless oil, $[\alpha]_D^{24} + 132.0^{\circ}$ (*c*=0.82, CHCl₃); CI-MS: *m/z* 253 (M⁺+H; 100), 235, 221, 177; HR-CI-MS: *m/z* 253.1800 (M⁺+H), C₁₅H₂₅O₃ requires 253.1803; FT-IR (KBr) cm⁻¹: 3359 (OH), 2970, 1652 (C=O), 1615 (C=C), 1301, 1046; UV (MeOH) λ_{max} nm (log ε): 239 (4.13); NMR data: see Tables 1 and 2.

 $^{9}\beta$ -Hydroxynootkatone (**12**): Colorless oil, $[\alpha]_{\rm D}^{24}$ +131.3° (*c*=1.65, CHCl₃); EI-MS: *m/z* 234 (M⁺), 216, 191, 166, 137 (100%), 109; HR-EI-MS:

m/z 234.1612 (M⁺), C₁₅H₂₂O₂ requires 234.1620; FT-IR (KBr) cm⁻¹: 3359 (OH), 2970, 1652 (C=O), 1615 (C=C), 1301, 1046; UV (MeOH) λ_{max} nm (log ε): 238 (4.06); NMR data: see Tables 1 and 2.

Biotransformation of (+)-Nootkatone (2) by *B. dothidea* An Erlenmeyer flask (500 ml) containing 200 ml of Czapek-pepton medium was inoculated with a suspension of *B. dothidea* (peach PP 8402) and incubated at 30 °C for 7 d in a rotary shaker operating at 100 rpm. (+)-Nootkatone (2) (20 mg×5; 100 mg) was added to the culture medium of *B. dothidea*. The inocubation was then continued for a further 14 d. The culture broth was treated in the same manner as described above give the crude extract (424 mg) which was chromatographed on silica gel with an *n*-hexane–ether gradient to afford 7 α -hydroxynootkatone (13) (22.4 mg, 20.9%) and 11*S*and 11*R*-nootkatone-11,12-diol (4, 5) (62.7 mg, 54.2%). The ratio of compounds 4 and 5 was determined to be 3 : 2 by HPLC analysis of their thiocarbonates (7, 8).

7α-Hydroxynootkatone (13): Colorless oil, $[α]_D$ +118.8° (CHCl₃, c= 1.0); EI-MS: m/z 234 (M⁺, 100), 219, 191, 161, 150, 136, 79, 69; HR-EI-MS; [M⁺] 234.1610, C₁₅H₂₂O₂ requires 234.1619; IR (KBr) cm⁻¹: 3445 (OH): 3089, 2941, 1665 (α,β-unsaturated ketone), 1616, 1217; UV (MeOH) λ_{max} nm (log ε): 239.2 nm (4.17); NMR data: see Tables 1 and 2.

Biotransformation of (+)-Valencene (1) by *A. niger A. niger* was rotatory cultivated (100 rpm) in Czapek-pepton medium at 30 °C for 3 d. (+)-Valencene (1) (100 mg \times 15=1.5 g) was added to the medium and further cultivated for 5 d. The culture was worked up in a same manner as above. The EtOAc extract was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to give seven metabolites: **3** (14.9 mg; 1.0%), **4** and **5** (202 mg; 13.5%), **14** (16.8 mg; 1.1%), **15** (22.6 mg; 1.5%), **16** (30.2 mg; 2.0%), and **17** (10.7 mg; 0.7%). The ratio of compounds **4** (11*S*) and **5** (11*R*) was determined to be 1:3 by HPLC analysis of their thiocarbonates (**7**, **8**).

Compound **14**: Colorless oil, $[\alpha]_D - 71.1^\circ$ (CHCl₃, c=1.0); EI-MS: m/z236 (M⁺), 218, 187 (100), 159 145, 105, 95; HR-EI-MS: [M⁺] 236.1749, C₁₅H₂₄O₂ requires 236.1777; IR (KBr) cm⁻¹: 3350 (OH), 3019, 2968, 1460, 1380; UV (MeOH) λ_{max} nm (log ε): 235.0 (4.31), 228.0 0(4.29); NMR data: see Tables 4 and 5.

Compound **15**: Colorless oil, $[\alpha]_D - 50.1^{\circ}$ (CHCl₃, c=1.0); EI-MS: m/z 250 (M⁺), 232, 201, 175 (100), 173, 105, 91, HR-EI-MS: [M⁺] 250.1562, C₁₅H₂₂O₃ requires 250.1569; IR (KBr) cm⁻¹: 3417 (OH), 2940, 1666 (C=O), 1632, 1046; UV (MeOH) λ_{max} nm (log ε): 289.2 (4.31): NMR data: see Tables 4 and 5.

Compound **16**: Colorless oil, $[\alpha]_D + 17.4^\circ$ (MeOH, c=1.0); EI-MS: m/z 252 (M⁺), 234, 203, 185, 159, 143, 105, 91 (100); HR-EI-MS: [M⁺] 252.1708, C₁₅H₂₄O₃ requires 252.1726; IR (KBr) cm⁻¹: 3368 (OH), 2969, 2899, 1030, 755; UV (MeOH) λ_{max} nm (log ε): 237.0 (4.11); NMR data: see Tables 4 and 5.

Compound **17**: Colorless oil, $[\alpha]_D + 52.0^\circ$ (CHCl₃, c=1.0); EI-MS; m/z252 (M⁺), 221 (100), 203, 163, 161, 123, 121, 75; HR-EI-MS; [M⁺] 252.1736, C₁₅H₂₄O₃ requires 252.1726; IR (KBr) cm⁻¹: 3410 (OH), 2941, 1653 (C=O), 1045; UV (MeOH) λ_{max} nm (log ε): 241.6 (3.94); NMR data: see Tables 4 and 5.

3,5-Dinitrobenzoylation of Compound 15 To a solution of 15 (10.5 mg) in pyridine (3 ml) was added 3,5-dinitrobenzoyl chloride (38.4 mg) and dimethylaminopyridine (10 mg). The mixture was stirred at room temperature overnight. Water was added and the mixture was extracted with CHCl₃. The organic phase was washed with 1 N HCl, 5% NaHCO₃, and brine, and dried (MgSO₄) and the solvent was evaporated to give a residue (15.0 mg) that was purified by a silica gel column chromatography with a *n*hexane-AcOEt gradient to afford 18 (3.9 mg) as colorless prisms; mp 181-183 °C, $[\alpha]_{\rm D}$ +34.6° (CHCl₃, c=1.0); CI-MS: m/z 445 (M+H⁺, 55%), 233 (16%); HR-CI-MS; $[M+H]^+$ found 445.1607, $C_{22}H_{25}O_8N_2$ 445.1611; IR (KBr) cm^{-1} : 3451 (OH), 2973, 1733 (C=O), 1668 (C=O), 1632 (C=C), 1280; UV (MeOH) λ_{max} nm (log ε): 286.4 (4.10), 230.0 (4.45), 208.0 (4.55); CD (MeOH) λ_{max} nm ($\Delta \varepsilon$): 335.8 (+4.45), 288.7 (-7.21), 228.7 (-0.38), 211.7 (+2.36); ¹H-NMR (CDCl₃): δ 1.03 (3H, s, H-15), 1.12 (3H, d, *J*=6.9 Hz, H-14), 1.35 (3H, s, H-13), 4.43 (1H, d, J=11.5 Hz, H-12), 4.51 (1H, d, J=11.5 Hz, H-12), 5.89 (1H, d, J=9.9 Hz, H-2), 6.01 (1H, m, H-9), 6.89 (1H, d, J=9.9 Hz, H-1), 9.17 (2H, d, 2.2 Hz, aromatic protons), 9.26 (1H, t, 2.2 Hz, aromatic proton).

The crystal data for **18** (Table 3) are as follows: Triclinic, space group P_1 , a=6.2170 (3) Å, b=9.0460 (5) Å, c=10.5030 (8) Å, V=525.56 (6) Å², $\alpha=$ 68.852 (3) Å, $\beta=87.842$ (3) Å, $\gamma=73.086$ (3) Å, Z=1, $D_x=1.360$ Mg m⁻³, μ (MoK α)=0.105 mm⁻¹, $\lambda=0.71073$, final *R* was 0.0457 for 1883 reflections. The supplementary materials have been deposited at the Cambridge Crystallographic Data Center.

Reduction of Nootkatone (1) with NaBH₄-CeCl₃ CeCl₃ · 7H₂O

(9.24 g) was added to a solution of nootkatone (1) (5.52 g) in EtOH (120 ml) and stirred at room temperature. NaBH₄ (1.45 g) was slowly added over 20 min. The mixture was stirred for 1 h and extracted with Et₂O (500 ml) and 1 N HCl (500 ml). The organic phase was washed with brine, dried (MgSO₄), and evaporated to give a residue (6.187 g). The residue was purified by a silica gel column chromatography with an *n*-hexane–AcOEt gradient to afford 2 α -hydroxyvalencene (19) (4.846 g, 82.7%) as a colorless oil.

2α-Hydroxyvalencene (**19**): Colorless oil, $[α]_D^{24}$ +94.2° (*c*=0.92, CHCl₃); EI-MS: *m/z* 220 (M⁺), 202, 187, 161, 145, 119 (100%), 105; HR-EI-MS: *m/z* 220.1818 (M⁺), C₁₅H₂₄O requires 220.1827; FT-IR (KBr) cm⁻¹: 3320 (OH), 2928, 1644 (C=C), 1024.

Preparation of Nootkatol (20) by Mitsunobu Reaction of 2α-Hydroxyvalencene (19) To a solution of *p*-nitrobenzoic acid (485 mg) and triphenylphosphine (767 mg) in dry toluene (60 ml) at -30 °C was added 2αhydroxyvalencene (19) (500 mg). Diethyl azodicarboxylate-toluene 40% solution (1.14 ml) was added dropwise for 15 min to the mixture. After stirring for 1 h at -30 °C, the mixture was extracted with Et₂O (300 ml) and a saturated NaHCO₃ solution (100 ml). The organic phase was washed with brine, dried (MgSO₄), and evaporated to give a residue (1.295 g). A solution of the residue in MeOH (30 ml) and H₂O (3 ml) was treated with KOH (1.50 g) and stirred for 12 h at room temperature. The mixture was extracted with Et₂O (200 ml) and brine (100 ml), dried (MgSO₄), and evaporated to give a residue (0.985 g) which was purified by a silica gel column chromatography with an *n*-hexane–AcOEt gradient to afford nootkatol (20)¹⁹ (208 mg, 41.6%) as a colorless oil.

Nootkatol (**20**): $[\alpha]_D^{25}$ +213.3° (*c*=0.98, CHCl₃); EI-MS: *m/z* 220 (M⁺), 202, 187, 161, 145, 119 (100%), 105, 91; HR-EI-MS: *m/z* 220.1857 (M⁺), C₁₅H₂₄O requires 220.1887; FT-IR (KBr) cm⁻¹: 3251 (OH), 2929, 1645 (C=C), 1011.

Biotransformation of 2α -Hydroxyvalencene (19) by *A. niger A. niger* was rotary cultivated (100 rpm) in Czapek-pepton medium at 30 °C for 3 d. 2α -Hydroxyvalencene (19) (100 mg) was added to the medium and further cultivated for 5 d. The culture was worked up in the same manner as above. The EtOAc extract was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to give three metabolites: 4 and 5 (7.3 mg; 6.4%), 14 (37.1 mg; 34.6%), and 15 (6.3 mg; 5.5%).

Biotransformation of Nootkatol (20) by *A. niger A. niger* was rotary cultivated (100 rpm) in Czapek-pepton medium at 30 °C for 3 d. Nootkatol (20) (100 mg) was added to the medium and further cultivated for 5 d. The culture was worked up in the same manner as above. The EtOAc extract was chromatographed on silica gel (*n*-hexane–EtOAc gradient) to give three metabolites: 4 and 5 (25.0 mg; 21.8%), 15 (6.3 mg; 5.5%) and 16 (11.9 mg; 10.4%).

Acknowledgments We thank Dr. M. Tanaka, Mr. S. Takaoka, and Miss Y. Okamoto (TBU) for providing 600-MHz NMR, X-ray crystallographic analysis, and mass spectra, respectively. We also thank Takasago International Co., Ltd., Japan, for providing valencene and nootkatone.

References

- Kieslich K., Annual Reports on Fermentation Processes, 1, 267–297 (1977).
- Noma Y., Asakawa Y., "Biotechnology in Agriculture and Forestry," Vol. 28, ed. by Bajaj Y. P. S., Springer, Berlin, 1994, p. 185.
- Noma Y., Asakawa Y., "Biotechnology in Agriculture and Forestry," Vol. 33, ed. by Bajaj Y. P. S., Springer, Berlin, 1995, p. 62.
- Noma Y., Asakawa Y., "Biotechnology in Agriculture and Forestry," Vol. 41, ed. By Bajaj Y. P. S., Springer, Berlin, 1998, p. 194.
- Hashimoto T., Noma Y., Kato S., Tanaka M., Takaoka S., Asakawa Y., Chem. Pharm. Bull., 47, 716–717 (1999).
- Lahlou E. H., Noma Y., Hashimoto T., Asakawa Y., *Phytochemistry*, 54, 455–460 (2000).
- Hashimoto T., Noma Y., Gotoh Y., Tanaka M., Takaoka S., Asakawa Y., *Heterocycles*, 62, 655–666 (2004).
- Matsumoto T., Hayashi N., Ishida T., Asakawa Y., J. Pharm. Sci., 79, 540–547 (1990).
- Matsumoto T., Hayashi N., Ishida T., Asakawa Y., Chem. Pharm. Bull., 40, 1721–1726 (1992).
- 10) Hashimoto T., Noma Y., Asakawa Y., *Heterocycles*, **54**, 529–559 (2001).
- 11) Haze S., Sakai K., Gozu Y., Jpn. J. Pharmacol., 90, 247-253 (2002).
- Hashimoto T., Asakawa Y., Noma Y., Murakami C., Tanaka M., Kanisawa T., Emura M., Jpn. Kokai Tokkyo Koho, 2003-70492A (2003).
- Hashimoto T., Asakawa Y., Noma Y., Murakami C., Furusawa M., Kanisawa T., Emura M., Mitsuhashi K., Jpn. Kokai Tokkyo Koho, 2003-250591A (2003).
- 14) Teresa J. de P., Barrero A. F., San Feliciano A., Grande M., Medarde M., *Tetrahedron Lett.*, 43, 4145–4148 (1978).
- 15) Haines A. H., Jenkins C. S. P., J. Chem. Soc. (C), 1971, 1438–1442 (1971).
- 16) Ishida T., Ph. D thesis, Tokushima Bunri University (1987).
- 17) Krepinsky J., Motl O., Dolejs L., Novotny L., Herout V., Bates R. B., *Tetrahedron Lett.*, **29**, 3315–3318 (1968).
- 18) MacLeod W. D., Tetrahedron Lett., 52, 4779-4783 (1965).
- 19) Shoji N., Umeyama A., Asakawa Y., Takemoto T., Nomoto K., Ohizumi Y., J. Pharm. Sci., 73, 843—844 (1984).