Crystal and Molecular Structures of Carbon-Bridged Pyrimidine Cyclonucleosides. Substrate Analogs of Ribonuclease $\mathbf{A}^{1)}$

Yuriko Yamagata,**,a Ken-ichi Tomita, Hiroyuki Usui, Tomoharu Sanob and Tohru Uedab

Faculty of Pharmaceutical Sciences, Osaka University,^a Yamadaoka, Suita, Osaka 565, Japan and Faculty of Pharmaceutical Sciences, Hokkaido University,^b Kita-ku, Sapporo 060, Japan. Received December 16, 1988

The crystal and molecular structures of carbon-bridged 6,5'-cyclo-5'-deoxy-4-thiouridine (6,5'-Cs⁴U), 6,5'-cyclo-5'-deoxy-2',3'-O-isopropylideneuridine (6,5'-CiU) and 6,6'-cyclo-5',6'-dideoxy-allofuranosyluracil (6,6'-CU) have been determined by X-ray diffraction. The molecular conformations of 6,5'-Cs⁴U and 6,5'-CiU are very similar; the conformation about the glycosidic bond is anti (low region), the torsion angle O(4')-C(1')-N(1)-C(2) being -150.0° for 6,5'-Cs⁴U and -145.5° for 6,5'-CiU, and the sugar puckering being both O(4')-exo. On the other hand, 6,6'-CU takes the glycosidic torsion angle of -116.9 (4)° (middle anti region) and the sugar conformation of C(4')-endo. The cyclization causes little alteration in the geometry of the base moiety. 6,5'-Cs⁴U and 6,5'-CiU exhibit the similar base-base interactions between adjacent molecules, although their molecular packings are quite different; the 4-thiouracil or uracil moiety interacts with adjacent base moieties through hydrogen bonding and stacking interactions. In 6,6'-CU, cyclonucleosides were connected by hydrogen bondings between the hydroxyl and sugar ring oxygen atoms and between the hydroxyl groups and the base nitrogen and oxygen atoms. As the 2',3'-cyclic phosphates of these carbon-bridged cyclonucleosides are hydrolyzed by ribonuclease A, it is suggested that the conformers found in these cyclonucleosides are recognized by the enzyme.

Keywords carbon-bridged cyclonucleoside; nucleoside conformation; X-ray analysis; enzyme recognition model

In general, nucleosides take a flexible conformation about the glycosidic and exocyclic bonds and sugar puckering. On the other hand, cyclonucleosides with covalent bonds connecting the base and sugar are conformationally rigid, in particular about the glycosidic bond, and serve as useful model compounds for interpretation of muclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic data on conformationally flexible nucleosides.^{2,3)} From the crystal structure determinations of several β -pyrimidine cyclonucleosides,^{4–8)} interesting information about structural characteristics related to the cyclization sites has been obtained. In the present work, the crystal and molecular structures of carbon-bridged cyclonucleosides cyclized directly or through a carbon atom between the C(6) and C(5') atoms were determined by Xray diffraction analysis. It is known that the 2',3'-cyclic phosphates of these carbon-bridged cyclonucleosides are hydrolyzed by ribonuclease A, although the rates of hydrolysis were slower than those of the natural substrates. uridine 2',3'-cyclic phosphate and 4-thiouridine 2',3'-cyclic phosphate.9) Therefore, these X-ray results might be useful for understanding the recognition and the hydrolysis of pyrimidine nucleoside 2',3'-cyclic phosphates by the enzyme.

Experimental

Three cyclonucleosides were synthesized as described in the previous papers. The crystals were obtained by slow evaporation from aqueous solution for 6,5'-Cs⁴U and 6,5'-CiU and from aqueous methanol solution for 6,6'-CU. Crystal data, experimental conditions and refinement procedures are summarized in Table I. The crystal of 6,5'-CiU was isomorphous to the already solved structure of 6(R),5'-cyclo-5'-deoxy-2',3'-O-isopropylidene-5,6-dihydrouridine $(6,5'-\text{CihU})^2$) with unit-cell dimensions a=11.220 (2), b=6.393 (1), c=18.963 (3) Å and $\beta=107.98$ (1)° and space group C2, and therefore the solution of the structure was obtained by application of the isomorphous method. The structures of 6,5'-Cs⁴U and 6,6'-CU were solved by direct methods using the program MULTAN 78. Described by a full-matrix least-squares procedure with anisotropic temperature factors for non-hydrogen atoms. All the hydrogen atoms in the three cyclonucleosides, except those attached to

TABLE I. Crystal Data, Experimental Conditions and Refinement Details

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
M_r 242.2 266.3 240.2 Cell parameters a (Å) 6.759 (1) 11.388 (1) 7.159 (1) b (Å) 6.759 (1) 11.388 (1) 7.159 (1) b (Å) 38.430 (4) 18.523 (2) 9.342 (2) β (°) 107.11 (1) 112.18 (2) V (Å) 1520.2 (3) 1260.4 (2) 510.6 (1) Space group $P_{3,2}$ 21 C_2 P_{2_1} Z 6 4 2 $F(000)$ 756 560 252 μ (Cu K_x) (mm $^{-1}$) 2.84 0.89 1.04 D_x (Mg m $^{-3}$) 1.588 1.403 1.562 Crystal color Light yellow Colorless Colorless Shape Plate Plate Prism Size (mm) 0.5 × 0.2 × 0.05 0.6 × 0.2 × 0.07 0.35 × 0.3 × 0.25 Diffractometer Rajaku AFC-5 Radiation Graphite-monochromated Cu K_x Scan mode 0.58 0.58 Number of unique reflections		6,5′-Cs ⁴ U	6,5′-CiU	6,6′-CU			
Cell parameters a (Å) 6.759 (1) 11.388 (1) 7.159 (1) b (Å) 6.252 (1) 8.244 (1) c (Å) 38.430 (4) 18.523 (2) 9.342 (2) β (°) 107.11 (1) 112.18 (2) V (Å) 1520.2 (3) 1260.4 (2) 510.6 (1) Space group $P3_221$ $C2$ $P2_1$ Z 6 4 2 $F(000)$ 756 560 252 μ (Cu K_a) (mm $^{-1}$) 2.84 0.89 1.04 D_x (Mg m $^{-3}$) 1.588 1.403 1.562 Crystal color Light yellow Colorless Colorless Shape Plate Plate Prism Size (mm) $0.5 \times 0.2 \times 0.05$ $0.6 \times 0.2 \times 0.07$ $0.35 \times 0.3 \times 0.25$ Diffractometer Radiation Graphite-monochromated Cu K_a Scan mode $\omega - 2\theta$ scan Number of reflections 25 20 20 20 20 range (°) used for measuring lattice parameters Max. $\sin \theta/\lambda$ (Å $^{-1}$) 0.58 0.58 0.58 Number of unique reflections 1039 1119 891 Number of observed reflections 808 997 868 Criterion for observed reflections Atomic scattering factors K_a							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		242.2	266.3	240.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.759 (1)		` '			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				` '			
V (Å) 1520.2 (3) 1260.4 (2) 510.6 (1) Space group $P3_221$ $C2$ $P2_1$ Z 6 4 2 $F(000)$ 756 560 252 μ (Cu K_x) (mm $^{-1}$) 2.84 0.89 1.04 D_x (Mg m $^{-3}$) 1.588 1.403 1.562 Crystal color Light yellow Colorless Colorless Shape Plate Prism Prism Size (mm) 0.5 × 0.2 × 0.05 0.6 × 0.2 × 0.07 0.35 × 0.35 × 0.35 × 0.25 Diffractometer Rigaku AFC-5 Radiation Graphite-monochromated Cu K_x Graphite-monochromated Cu K_x 0.20 <th< td=""><td></td><td>38.430 (4)</td><td>` '</td><td>` '</td></th<>		38.430 (4)	` '	` '			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	` /			` /			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Space group	-		*			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Crystal color Shape Plate Plate Prism $0.5 \times 0.2 \times 0.05 \ 0.6 \times 0.2 \times 0.07 \ 0.35 \times 0.3 \times 0.25$ Diffractometer Radiation Graphite-monochromated $0.5 \times 0.2 \times 0.05 \ 0.6 \times 0.2 \times 0.07 \ 0.35 \times 0.3 \times 0.25$ Diffractometer Radiation Graphite-monochromated $0.5 \times 0.2 \times 0.05 \ 0.6 \times 0.2 \times 0.07 \ 0.35 \times 0.3 \times 0.25$ Diffractometer Radiation $0.5 \times 0.2 \times 0.05 \ 0.6 \times 0.2 \times 0.07 \ 0.35 \times 0.3 \times 0.25$ Diffractometer Radiation $0.5 \times 0.2 \times 0.05 \ 0.5 \times 0.2 \times 0.05 \ 0.00 \times 0.00 \ 0.00 \times 0.00 \times 0.00 \ 0.00 \times 0$							
Shape Plate Plate Prism Size (mm) $0.5 \times 0.2 \times 0.05$ $0.6 \times 0.2 \times 0.07$ $0.35 \times 0.3 \times 0.25$ Diffractometer Rigaku AFC-5 Radiation Graphite-monochromated Cu $K_α$ Scan mode $ω-2θ$ scan Number of reflections 25 20 20 $2θ$ range (°) used for measuring lattice parameters $23° < 2θ < 30°$ $30° < 2θ < 44°$ $30° < 2θ < 41°$ Max. $\sin θ/λ$ (Å ⁻¹) 0.58 0.58 0.58 Number of unique reflections 1039 1119 891 Number of observed reflections 808 997 868 Criterion for observed reflections $F_0 > 2σ(F_0)$ $F_0 > σ(F_0)$ $F_0 > σ(F_0)$ Atomic scattering factors X-Ray Crystallography (1974) $F_0 > σ(F_0)$ $F_0 > σ(F_0)$ R (wR) 0.078 (0.080) 0.065 (0.058) 0.042 (0.054) S 3.88 1.34 1.28 Weighting scheme 1.0 1.0 $[σ^2(F_0) + 0.014F_0]^{-1}$							
Size (mm) $0.5 \times 0.2 \times 0.05$ $0.6 \times 0.2 \times 0.07$ $0.35 \times 0.3 \times 0.25$ Diffractometer Rigaku AFC-5 Radiation Graphite-monochromated Cu $K_α$ Scan mode $ω-2θ$ scan Number of reflections 25 20 20 $2θ$ range (°) 23° < 2θ < 30°	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 /	$0.5 \times 0.2 \times 0.05$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diffractometer	Rigaku AFC-5					
Number of reflections 25 20 20 20 20 2θ range (°) used for measuring lattice parameters Max. $\sin \theta/\lambda$ (Å $^{-1}$) 0.58 0.58 0.58 Number of unique reflections 1039 1119 891 Number of observed reflections 808 997 868 Criterion for observed reflections $F_0 > 2\sigma(F_0)$ $F_0 > \sigma(F_0)$ $F_0 > \sigma(F_0)$ Atomic scattering factors $F_0 > 2\sigma(F_0)$ $F_0 > \sigma(F_0)$ $F_0 > \sigma(F_0$	Radiation						
reflections 25 20 20 20 $20 + 20 + 20 + 20 + 20 + 20 +$			ω –2 θ scar	n			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25	20	20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	used for measuring	$23^{\circ} < 2\theta < 30^{\circ}$	$30^{\circ} < 2\theta < 44^{\circ}$	$30^{\circ} < 2\theta < 41^{\circ}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.58	0.58	0.58			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1119	891			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Number of observed						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		808	997	868			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	served reflections						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atomic scattering	International Tables for					
S 3.88 1.34 1.28 Weighting scheme 1.0 1.0 $[\sigma^2(F_0) + 0.014F_0]^{-1}$	factors	X-Ra	ay Crystallogra				
Weighting scheme 1.0 1.0 $[\sigma^2(F_0) + 0.014F_0]^{-1}$	R(wR)	0.078 (0.080)	0.065 (0.058)	0.042 (0.054)			
	S		1.34				
Max A/σ 0.15 0.25 0.18	Weighting scheme						
171ax. 2/0	Max. Δ/σ	0.15	0.25	0.18			

O(2') and O(3') of 6,5'-Cs⁴U, were located from difference Fourier maps. The final positional and thermal parameters for all atoms of the three cyclonucleosides are listed in Tables II to IV. All numerical calculations

Table II. Atomic Coordinates and Isotropic Thermal Parameters (\mathring{A}^2) for $6.5'\text{-Cs}^4U$

Table IV. Atomic Coordinates and Isotropic Thermal Parameters (\mathring{A}^2) for 6.6'-CU

0,5 05 0					101 0,0 00		
Atom	х	у	z	$B_{ m eq}/B_{ m iso}$	Atom	X	
S(4)	0.5868 (5)	0.3682 (5)	0.2089 (1)	3.5 (1)	N(1)	0.7796 (4)	0.78
O(2)	0.9025 (15)	0.9777 (12)	0.1215(1)	3.8 (3)	C(2)	0.8701 (6)	0.73
O(4')	0.5480 (17)	0.5698 (18)	0.0432(2)	4.9 (4)	N(3)	0.7451 (5)	0.74
O(2')	1.0403 (17)	0.8593 (18)	0.0217 (2)	5.2 (4)	C(4)	0.5459 (6)	0.78
O(3')	0.8645 (24)	0.4319 (23)	-0.0005(2)	7.8 (6)	C(5)	0.4651 (6)	0.82
N(1)	0.6904 (15)	0.6168 (15)	0.1000(2)	2.5 (3)	C(6)	0.5785 (5)	0.82
N(3)	0.7399 (15)	0.6791 (15)	0.1597 (2)	2.5 (3)	O(2)	1.0416 (4)	0.68
C(2)	0.7881 (18)	0.7717 (19)	0.1271 (2)	2.6 (4)	O(4)	0.4525 (4)	0.77
C(4)	0.6215 (18)	0.4475 (16)	0.1674(2)	2.3 (4)	C(1')	0.9087 (5)	0.7ϵ
C(5)	0.5337 (19)	0.2990 (20)	0.1386 (2)	3.1 (4)	C(2')	0.9378 (5)	0.92
C(6)	0.5687 (20)	0.3806 (19)	0.1061(2)	3.2 (4)	C(3')	0.8281 (6)	0.89
C(1')	0.7407 (24)	0.7153 (25)	0.0645 (2)	3.6 (5)	C(4')	0.7099 (6)	0.74
C(2')	0.9329 (27)	0.6951 (30)	0.0488 (3)	4.8 (7)	C(5')	0.4989 (6)	0.77
C(3')	0.8114 (37)	0.4412 (35)	0.0351 (3)	6.4 (9)	C(6')	0.4890 (5)	0.88
C(4')	0.5588 (32)	0.3581 (28)	0.0402(3)	5.5 (7)	O(4')	0.8282 (4)	0.65
C(5')	0.4711 (27)	0.2319 (25)	0.0745 (3)	5.1 (5)	O(2')	1.1446 (4)	0.9ϵ
H(3)	0.800 (24)	0.781 (23)	0.178 (3)	3.5	O(3')	0.9699 (4)	0.8ϵ
H(5)	0.458 (23)	0.121 (24)	0.143 (3)	3.5	H(3)	0.809(7)	0.70
H(1')	0.761 (24)	0.882 (23)	0.065(3)	3.5	H(5)	0.317 (7)	0.85
H(2')	1.047 (25)	0.705 (26)	0.065(3)	3.5	H(1')	1.039 (7)	0.72
H(3')	0.886 (26)	0.373 (26)	0.048 (3)	3.5	H(2')	0.892 (8)	1.04
H(4')	0.457 (22)	0.274 (23)	0.012(3)	3.5	H(3')	0.731 (7)	0.98
H(5'a)	0.302 (24)	0.161 (25)	0.075 (3)	3.5	H(4')	0.700(7)	0.69
H(5′b)	0.472 (23)	0.078 (24)	0.080(3)	3.5	H(5'a)	0.414 (7)	0.82
			· · ·		H(5'b)	0.435 (7)	0.66
					H(6'a)	0.567(7)	0.99

Table III. Atomic Coordinates and Isotropic Thermal Parameters (\mathring{A}^2) for 6.5'-CiU

Atom	X	y	z	$B_{\rm eq}/B_{\rm iso}$
				= eq/ = iso
O(2)	0.9365 (3)	0.2474 (0)	-0.0967(2)	4.4 (1)
O(4)	0.7195 (4)	0.2530 (11)	0.0729(2)	4.2 (1)
O(4')	0.6424 (4)	0.3894 (10)	-0.2640(3)	5.2 (2)
O(2')	0.7575 (4)	0.0036 (13)	-0.3120(2)	6.8 (2)
O(3')	0.5542 (5)	0.0398 (15)	-0.3692(3)	7.8 (2)
N(1)	0.7300 (4)	0.2638 (11)	-0.1410(2)	3.1 (1)
N(3)	0.8261 (4)	0.2557 (12)	-0.0132(2)	3.3 (1)
C(2)	0.8374 (5)	0.2510 (14)	-0.0844(3)	3.4 (2)
C(4)	0.7172 (5)	0.2532 (14)	0.0064(3)	3.2(1)
C(5)	0.6094 (5)	0.2572 (15)	-0.0571(3)	3.7 (2)
C(6)	0.6174 (5)	0.2637 (14)	-0.1277(3)	3.4 (2)
C(1')	0.7366 (5)	0.2536 (17)	-0.2188(3)	4.1 (2)
C(2')	0.7057 (5)	0.0348 (15)	-0.2515(3)	4.5 (2)
C(3')	0.5638 (6)	0.0441 (17)	-0.2909(4)	5.2 (2)
C(4')	0.5318 (5)	0.2687 (19)	-0.2707(3)	5.2 (2)
C(7')	0.6637 (7)	-0.0319(17)	-0.3814(3)	5.7 (3)
C(5')	0.5050 (6)	0.2861 (18)	-0.1956(3)	5.3 (2)
C(8')	0.6912 (9)	0.1015 (18)	-0.4423(5)	7.7 (4)
C(9')	0.6585 (9)	-0.2663(24)	-0.4007(5)	8.4 (4)
H(3)	0.909 (6)	0.258 (2)	0.032 (4)	4.3
H(5)	0.525 (6)	0.253 (2)	-0.049(4)	4.3
H(1')	0.828 (6)	0.304(1)	-0.216(4)	4.3
H(2')	0.745 (6)	-0.093(1)	-0.206(4)	4.3
H(3')	0.502 (6)	-0.076(1)	-0.276(4)	4.3
H(4')	0.450 (6)	0.326(1)	-0.313(4)	4.3
H(5'a)	0.440 (6)	0.167(1)	-0.193(4)	4.3
H(5'b)	0.461 (6)	0.436(1)	-0.193(4)	4.3
H(8'a)	0.788 (6)	0.063(1)	-0.444(4)	4.3
H(8'b)	0.700(6)	0.253 (2)	-0.424(4)	4.3
H(8'c)	0.629 (6)	0.091(1)	-0.495(4)	4.3
H(9'a)	0.588 (6)	-0.297(1)	-0.457(4)	4.3
H(9'b)	0.648 (6)	-0.355(1)	-0.360(4)	4.3
H(9'c)	0.753 (6)	-0.316(1)	-0.409(4)	4.3

were carried out on a ACOS 850 computer at the Crystallographic Research Center, Institute for Protein Research, Osaka University, using the programs of the Universal Crystallographic Computing System-Osaka (1979)¹¹⁾ and ORFLS.¹²⁾

Fig. 1. Molecular Conformations of Carbon-Bridged Pyrimidine Cyclonucleosides: (a) 6,5'-Cs⁴U, (b) 6,5'-CiU and (c) 6,6'-CU

Results and Discussion

Molecular Conformation and Dimensions ORTEP¹³) drawings showing the overall molecular conformations of 6,5'-Cs⁴U, 6,5'-CiU and 6,6'-CU are given in Fig. 1. The relevant torsion angles are listed in Table V.

TABLE V. Selected Torsion Angles (°)

	6,5′-Cs ⁴ U	6,5′-CiU	6,6′-CU
γ C(2)-N(1)-C(1')-O(4')	-150.0 (10)	-145.5 (6)	-116.9 (4)
C(6)-N(1)-C(1')-O(4')	35.4 (15)	41.1 (8)	59.1 (5)
$\tau_0 = C(4') - O(4') - C(1') - C(2')$	46.9 (14)	44.8 (7)	29.9 (4)
τ_1 O(4')-C(1')-C(2')-C(3')	-32.9(15)	-24.7(7)	-9.8(4)
τ_2 C(1')-C(2')-C(3')-C(4')	7.6 (17)	-3.2(7)	-12.3(4)
τ_3 C(2')-C(3')-C(4')-O(4')	19.5 (17)	29.7 (7)	29.9 (4)
$\tau_4 = C(3') - C(4') - O(4') - C(1')$	-41.4(15)	-46.7(7)	-38.4(4)

Fig. 2. Glycosidic Torsion Angles (°) for Pyrimidine Cyclonucleosides⁴⁻⁸⁾

Values were calculated using crystallographic data obtained from the Cambridge Crystallographic Database.

The molecular conformations of 6,5'-Cs⁴U and 6,5'-CiU are very similar, irrespective of whether the ribofuranose group is cyclized at the O(2') and O(3') atoms or not. On the other hand, 6,6'-CU takes a somewhat different conformation from them, because of the difference of the sugarbase cyclization system. The glycosidic torsion angle [χ : O(4')-C(1')-N(1)-C(2)] is -150.0° for $6.5'-Cs^4U$ and -145.5° for 6,5'-CiU, and both are in the somewhat low anti region, while 6,6'-CU is in the typical middle anti conformation with the torsion angle of -116.9° . The X-ray data on pyrimidine cyclonucleosides revealed the relation of the glycosidic torsion angle with the cyclization site between base and sugar, as shown in Fig. 2. It seems that the range of the glycosidic torsion angles in 2,2'-cyclonucleosides with the same cyclization site is about 30° and is unexpectedly wide.

The six-membered fused ring formed by the cyclization in 6,5'-Cs⁴U or 6,5'-CiU assumes a half-chair conformation with the O(4') atom being displaced by 0.63 (2) Å for 6,5'-Cs⁴U or 0.634 (9) Å for 6,5'-CiU from the plane through the remaining five atoms. The newly formed seven-membered ring of 6,6'-CU is a chair form. Model building studies suggested that cyclonucleosides of the type C(5')-X-C(base) (X=C, O or S), such as 6,6'-CU, may adopt either of two conformations: the boat form with atom X positioned above sugar O(4'), or the chair form with atom X over the center of the sugar ring. As the boat form would lead to stereochemically unfavorable short contacts between atoms O(4') and X, only the chair form is observed in the five cyclonucleosides reported.

The sugar ring takes an unusual O(4')-exo $(6.5'\text{-Cs}^4\text{U})$ and 6.5'-CiU) or C(4')-endo (6.6'-CU) conformation. The pseudorotational parameters are $P=279^\circ$ and $\tau_{\rm m}=46^\circ$ for $6.5'\text{-Cs}^4\text{U}$, $P=266^\circ$ and $\tau_{\rm m}=48^\circ$ for 6.5'-CiU and $P=251^\circ$ and $\tau_{\rm m}=37^\circ$ for 6.6'-CU. The higher $\tau_{\rm m}$ values of $6.5'\text{-Cs}^4\text{U}$

TABLE VI. Bond Distances (Å) for Non-hydrogen Atoms

	6,5′-Cs ⁴ U	6,5′-CiU	6,6′-CU
N(1)-C(2)	1.388 (14)	1.358 (8)	1.386 (8)
C(2)-N(3)	1.366 (14)	1.363 (9)	1.384 (6)
N(3)-C(4)	1.388 (14)	1.392 (9)	1.369 (6)
C(4)-C)5)	1.413 (15)	1.429 (10)	1.412 (6)
C(5)-C(6)	1.336 (16)	1.339 (10)	1.358 (6)
C(6)-N(1)	1.402 (15)	1.375 (8)	1.388 (5)
C(2)-O(2)	1.228 (13)	1.215 (7)	1.205 (6)
C(4)-S(4)[O(4)]	1.660 (11)	1.223 (8)	1.235 (6)
N(1)-C(1')	1.482 (16)	1.468 (9)	1.481 (5)
C(1')-C(2')	1.499 (21)	1.495 (10)	1.545 (6)
C(2')-C(3')	1.577 (26)	1.566 (11)	1.558 (6)
C(3')-C(4')	1.520 (26)	1.525 (11)	1.515 (6)
C(4')-O(4')	1.473 (20)	1.442 (10)	1.444 (4)
O(4')-C(1')	1.432 (17)	1.430 (9)	1.403 (4)
C(2')=O(2')	1.426 (20)	1.426 (9)	1.414 (5)
C(3')-O(3')	1.424 (23)	1.423 (10)	1.430 (5)
C(4')-C(5')	1.518 (23)	1.513 (11)	1.519 (6)
C(5')[C(6')]-C(6)	1.504 (19)	1.514 (10)	1.498 (6)
C(5')-C(6')	A		1.527 (6)
O(2')-C(7')		1.426 (10)	
O(3')-C(7')		1.405 (11)	
C(7')-C(8')		1.508 (13)	
C(7')-C(9')	_	1.506 (14)	

TABLE VII. Bond Angles (°) for Non-hydrogen Atoms

	6,5′-Cs ⁴ U	6,5′-CiU	6,6′-CU
C(6)-N(1)-C(2)	121.3 (9)	122.6 (5)	121.6 (3)
N(1)-C(2)-N(3)	115.4 (9)	115.2 (6)	114.7 (4)
C(2)-N(3)-C(4)	125.7 (9)	126.7 (6)	127.6 (4)
N(3)-C(4)-C(5)	115.7 (9)	113.6 (6)	113.8 (4)
C(4)-C(5)-C(6)	121.0 (10)	121.1 (6)	122.4 (4)
C(5)-C(6)-N(1)	120.5 (10)	120.6 (6)	119.9 (4)
N(1)-C(2)-O(2)	121.0 (10)	122.1 (6)	124.3 (4)
N(3)-C(2)-O(2)	123.6 (10)	122.6 (6)	120.9 (5)
N(3)-C(4)-S(4)[O(4)]	118.5 (8)	120.4 (6)	120.1 (4)
C(5)-C(4)-S(4)[O(4)]	125.7 (8)	125.9 (6)	126.1 (4)
C(5)-C(6)-C(5')[C(6')]	123.4 (11)	122.0 (6)	120.0 (3)
N(1)-C(6)-C(5')[C(6')]	115.9 (10)	117.2 (6)	120.1 (4)
C(6)-N(1)-C(1')	122.5 (10)	119.7 (5)	123.2 (3)
C(2)-N(1)-C(1')	115.9 (9)	117.4 (5)	115.1 (3)
N(1)-C(1')-O(1')	106.9 (10)	107.6 (5)	110.9 (3)
O(4')-C(1')-C(2')	103.9 (11)	105.1 (6)	106.5 (3)
N(1)-C(1')-C(2')	110.2 (11)	111.3 (6)	114.6 (3)
C(1')-C(2')-C(3')	103.3 (13)	104.0 (6)	104.1 (3)
C(1')-C(2')-O(2')	110.5 (13)	109.9 (6)	111.3 (3)
C(3')-C(2')-O(2')	112.9 (14)	104.3 (6)	113.7 (3)
C(2')-C(3')-C(4')	103.7 (15)	102.1 (6)	103.3 (3)
C(2')-C(3')-O(3')	111.3 (15)	103.5 (6)	111.0 (3)
C(4')-C(3')-O(3')	111.7 (15)	108.4 (6)	108.0 (3)
C(3')-C(4')-O(4')	104.1 (14)	103.7 (6)	104.7 (3)
C(5')-C(4')-O(4')	106.4 (13)	106.9 (6)	110.2 (3)
C(3')-C(4')-C(5')	116.8 (14)	114.8 (7)	113.4 (3)
C(1')-O(4')-C(4')	104.0 (11)	103.0 (5)	108.1 (3)
C(4')-C(5')-C(6)[C(6')]	114.1 (13)	114.0 (6)	114.9 (3)
C(5')-C(6')-C(6)			117.7 (3)
C(2')-O(2')-C(7')	emple-re	110.9 (6)	_
C(3')-O(3')-C(7')		111.3 (6)	
O(2')-C(7')-O(3')		105.7 (6)	
O(2')-C(7')-C(8')		108.8 (7)	
O(2')-C(7')-C(9')		109.4 (7)	4.00mm
O(3')-C(7')-C(8')		109.5 (7)	
O(3')-C(7')-C(9')		111.9 (8)	-
C(8')-C(7')-C(9')		111.3 (8)	

and 6,5'-CiU than the mean value (38.7°)¹⁴⁾ indicate that the sugar ring puckers more steeply. This remarkable sugar conformation is also found in the crystal structures of 6,5'-

CihU ($P = 267^{\circ}$, $\tau_{\rm m} = 47^{\circ}$)²⁾ and 8,5'-cycloadenosine (8,5'-CA; $P = 289^{\circ}$, $\tau_{\rm m} = 48^{\circ}$).¹⁵⁾

The bond distances and angles are presented in Tables VI and VII, respectively. Corresponding bond distances and angles in the base moieties of the cyclonucleosides generally agree within 3σ . The cyclization between C(6) and C(5') causes little alteration in the bond distances or angles of the 4-thiouracil or uracil moiety. The X-ray structures of other 6-cyclonucleosides with C(6) in the base connecting to the sugar moiety also indicate that little influence of cyclization at the C(6) position on the bond distances and angles is observed in the pyrimidine base moiety.6-8) In the sugar moiety, the bond angles between the three cyclonucleosides are significantly different. For example, C(3')-C(2')-O(2') and C(2')–C(3')–O(3') are smaller for 6.5'-CiU than 6.5'-Cs⁴U and 6,6'-CU, because of an extra ring cyclization at O(2') and O(3') in 6,5'-CiU. The C(1')-O(4')-C(4') bond angles of 104.0° for 6,5'-Cs⁴U and 103.0° for 6,5'-CiU are smaller than those of 6,6'-CU (108.2°) and normal nucleosides (109.6°), 16) and this is probably due to the O(4')exo conformation with high values of $\tau_{\rm m}$, as pointed out by Westhof and Sundaralingam. 14)

Fig. 3. Stereoscopic Drawing of the Crystal Structure for 6,5'-Cs⁴U Dashed lines indicate the hydrogen bonds.

Fig. 4. Stereoscopic Drawing of the Crystal Structure for 6.5'-CiU along the b Axis

Dashed lines indicate the hydrogen bonds.

Fig. 5. Stereoscopic Drawing of the Crystal Structure for 6,6'-CU along the *b* Axis

Dashed lines indicate the hydrogen bonds.

Hydrogen Bonding and Molecular Packing The molecular packings in the crystals of the three nucleosides are shown in Figs. 3 to 5.

Although the crystals of 6,5'-Cs⁴U and 6,5'-CiU are different in the crystal system and space group, the intermolecular base-base interactions are very similar to each other. The 4-thiouracil and uracil moieties in 6,5'-Cs4U and 6,5'-CiU commonly form dimers with two hydrogen bonds between adjacent molecules related by 2-fold rotational symmetry $[N(3)-H\cdots O(2); 2.838 (12) \text{ Å for } 6,5'$ Cs⁴U and 2.867 (6) Å for 6,5'-CiU]. Furthermore, stacking interactions occur between the bases related by the 2-fold screw axis. In both cases, the major overlappings are found between the polar substituents [C(4)-S(4)] and C(4)-O(4)groups for 6,5'-Cs⁴U and 6,5'-CiU, respectively] and pyrimidine rings, as shown in Figs. 3 and 4. Such overlappings are also frequently observed between pyrimidine bases.¹⁷⁾ In 6,5'-Cs⁴U, two kinds of hydrogen bonds between the hydroxyl groups of sugar moieties are also found; one between the O(2') hydroxyl groups and the other between O(2') and O(3') hydroxyl groups. These hydrogen bonds form a two-dimensional network extending over the planes parallel to the ab plane as shown in Fig. 6. In this case, flipflop type hydrogen bonds could be formed and so the two hydrogen atoms attached to $O(2^{\prime})$ and $O(3^{\prime})$ are disordered. On the other hand, in the crystal of 6,6'-CU, neither base pairing nor stacking is observed. The molecules are connected by three kinds of hydrogen bonds employing all three hydrogen atoms bonded to oxygens and nitrogen $[O(2')-H\cdots O(4); 2.785 (5) \text{ Å}, O(3')-H\cdots O(4'); 2.880$ (3) Å and N(3)– $H \cdot \cdot \cdot O(2')$; 2.968 (5) Å].

Enzyme-Bound Conformations of Nucleotide Substrates It is well known that the catalytic reaction of ribonuclease (RNase) A involves a two-step mechanism: (1) reversible transphosphorylation to form an intermediate oligonucleotide ending in a pyrimidine 2',3'-cyclic nucleotide, (2) hydrolysis of the intermediate cyclic nucleotide to produce oligonucleotide having a 3'-terminal pyrimidine nucleotide. 18) The crystal structures of RNase A, RNase S (a related enzyme) and their complexes with several nucleotides have been reported by several workers. 19-21) Of these, the crystalline complexes between RNase A and 2'-cytidylic acid²⁰⁾ and between RNase S and uridylyl-3',5'-methyleneadenosine (UpcA), cytidylyl-2',5'-adenosine, 3'-cytidylic acid and 3'-uridylic acid²¹⁾ provide information on the binding mode of phosphate to the enzyme and the recognition of the pyrimidine base by the enzyme in the inhibitorenzyme interaction. However, because enzyme-substrate analog complexes suitable as models of the hydrolysis of

Fig. 6. Flip-Flop Hydrogen Bonds of 6.5'-Cs⁴U along the c Axis Filled circles indicate the O(2') and Q(3') atoms.

August 1989 1975

Table VIII. Conformational Parameters for Pyrimidine 2',3'-Cyclic Nucleotides and Related Nucleosides

Compound	χ (°)	P (°)	τ _m (°)	2',3'- Cyclic ring	Class
$i-Br^5U^{a)}$	-164.9) low	$211\binom{4}{3}T$	21	exo	1
$i-U^{b)}$	-170.0 }	$216 \binom{4}{3}T$	24	exo	
$2',3'-cUMP(S)^{c}$	-176.1) and	$261 (_{0}E)$	23	exo	2
$i-C1U^{d}$	-123.5 middle	$38 {(}^{3}_{4}T)$	29	exo	3
2',3'-cCMP ^{e)}	-118.4 anti	$173~(^{2}E)$	29	exo	4
$mmU^{f)}$	-120.5) ann	$163~(^{2}E)$	23	exo	
$2',3'$ -cCMP·Na(B) $^{g)}$	65.8	Planar	2	endo	5
$i,Ac-U^{h}$	73.6	$-19(_{2}E)$	17	exo	6
i,tosyl-U ⁱ⁾	67.9	$17 (^3E)$	21	exo	7
$i-CN^6U^{j)}$	70.0 $3yn$	$51 (_{4}E)$	30	exo	8
$2',3'$ -cCMP·Na(B) $^{g)}$	61.1	$81 (^{0}E)$	35	endo	9
$h-U^{k)}$	60.5	$107 \binom{0}{1}T$	27	exo	10

a) 2',3'-O-Isopropylidene-5-bromouridine, $^{22)}$ b) 2',3'-O-isopropylideneuridine, $^{23)}$ c) triethylammonium salt of uridine 2',3'-cyclic thiophosphonate, $^{24)}$ d) 5'-acetyl-7,7-dichloro-2',3'-isopropylidene-3-methylcyclothymidine, $^{25)}$ e) cytidine 2',3'-cyclic phosphate, 26 f) 2',3'-O-methoxymethyleneuridine, $^{27)}$ g) sodium salt of cytidine 2',3'-cyclic phosphate, 26 h) 5'-O-acetyl-2',3'-O-isopropylideneuridine, $^{29)}$ f) 5'-O-tosyl-2',3'-O-isopropylideneuridine, $^{30)}$ f) 2',3'-O-isopropylidene-6-cyanouridine, $^{31)}$ k) 2',3'-O-cyclohexylidene-4'-C-(2-methyl-2-propenyl)uridine. $^{32)}$

pyrimidine 2',3'-cyclic nucleotide have not been reported, the conformation of the pyrimidine nucleoside 2',3'-cyclic phosphate in the hydrolysis state is not yet known. In this study, we examined the stereochemistry of the substrate with the aim of understanding the hydrolysis of pyrimidine 2',3'-cyclic phosphate by RNase A.

The conformations about the glycosidic bond and the sugar and 2',3'-cyclic rings for natural 2',3'-cyclic nucleotides and related nucleosides having an additional fivemembered ring cis to the C(2')–C(3') of ribose are summarized in Table VIII. This table indicates conformational flexibilities. In particular, the preference of syn conformation about the glycosidic bond is remarkably higher than that in unmodified pyrimidine nucleosides and nucleotides, and the puckering of the sugar ring is also variable, in contrast to the normal sugar puckering of C(2')-endo type or C(3')-endo type. The overall molecular conformations can be classified into ten types as noted in Table VIII. Among them, only four kinds of conformational types have been observed in the pyrimidine 2',3'-cyclic nucleotides. However, 2',3'-cyclic nucleotides probably could also take the other six types, because of the presence of the similar ring system with the bridging of the vicinal cis oriented O(2') and O(3') hydroxyls. Therefore, we constructed ten molecular models of 2',3'-cyclic nucleotides with P-O bond length of 1.61 Å and C(2')-O(2')-P angle of 113° (obtained from the nucleoside 2',3'-cyclic monophosphates).²⁶⁾

Which of them is the preferred conformation for recognition or hydrolysis by RNase A? Since the 2',3'-cyclic monophosphates of 6-alkyluridine which prefer the *syn* conformation rather than the *anti* one are very poor substrates,⁹⁾ six models with the *syn* conformation must be excluded. The 2',3'-cyclic monophosphates of 6,5'-Cs⁴U, 6,5'-cyclo-5'-deoxyuridine (6,5'-CU) and 6,6'-CU are hydrolyzed by RNase A to give the respective 3'-phosphates, although the rates of hydrolysis are slower than those of the natural substrates.⁹⁾ Among them, 6,5'-cyclonucleoside 2',3'-cyclic monophosphates are better substrates than 6,6'-

Fig. 7. Four Stereo Overlays of 6,5'-(Open Lines) or/and 6,6'-Cyclic Nucleotide (Solid Lines) and Models with Typical Conformations for Pyrimidine 2',3'-Cyclic Nucleotides

Models (thin lines): (a) $\chi = -165^{\circ}$, C(4')-endo, C(3')-exo conformation, (b) $\chi = -176^{\circ}$, O(1')-exo conformation, (c) $\chi = -123^{\circ}$, C(3')-endo, C(4')-exo conformation, (d) $\chi = -118^{\circ}$, C(2')-endo conformation.

cyclonucleoside 2',3'-cyclic monophosphate. Futhermore, all their hydrolyzed products, 6,5'- and 6,6'-cyclonucleoside 3'-monophosphates, are strong inhibitors of RNase A in the hydrolysis of natural substrates.⁹⁾ These results indicate that 6,5'- and 6,6'-cyclonucleotides are both recognized by the enzyme. In the case of 6.5'- or 6.6'- cyclonucleoside 2',3'-cyclic monophosphate, very little conformational change is possible during the enzyme reaction, and its conformation could be constructed using the molecular dimensions of 6,5'- or 6,6'-cyclonucleoside. In Fig. 7, 6,5'- or/and 6,6'-cyclonucleotide models are superimposed on four models with anti conformations. When the bases are brought into coincidence, the phosphate groups are very close to each other in the cases of 6,5'-cyclonucleotide and the middle anti-C(3')-endo model [Fig. 7(c)] and of 6,6'cyclonucleotide and the middle anti-C(2')-endo model [Fig. 7(d)]. These considerations suggest that 2',3'-cyclic pyrimidine nucleotides with the middle anti conformation are recognized by the RNases A and the middle anti, C(3')endo model is more favorable in the enzyme reaction that the middle anti, C(2')-endo model. However, 6,5'- or 6,6'cyclonucleoside 2',3'-cyclic phosphate was cleaved slowly compared to the normal substrates. As previously pointed out,9) the reason may be that the hydrolyzates bind as strongly as the substrates to the enzyme after the cleavage, since very little conformational change is possible between the substrates and hydrolyzates, due to the rigid cyclic structure. The remaining low anti models with O(4')exo and C(4')-endo have significantly different positions of the phosphate group from those of 6,5'-cyclonucleotides and thus they may be poorly recognized by the enzyme.

References and Notes

- This work is Part XI of "Structural Studies of Pyrimidine Cyclonucleoside Derivatives." Part X: Y. Yamagata, N. Okabe, K. Tomita, S. Shuto and T. Ueda, Acta Cryst., C41, 1656 (1985).
- Y. Yamagata, S. Fujii, T. Fujiwara, K. Tomita and T. Ueda, Biochim. Biophys. Acta, 654, 242 (1981).
- a) G. T. Rogers and T. L. V. Ulbricht, Biochem. Biophys. Res. Commun., 39, 414 (1970); b) M. Ikehara, M. Kaneko, Y. Nakahara, S. Yamada and S. Uesugi, Chem. Pharm. Bull., 19, 1381 (1971); c) T. Ueda and S. Shibuya, ibid., 22, 930 (1974); d) P. C. Manor, W. Saenger, D. B. Davies, K. Jankowski and A. Rabczenko, Biochim. Biophys. Acta, 340, 472 (1974); e) Y. Yoshimura, A. Matsuda and T. Ueda, Chem. Pharm. Bull., 37, 660 (1989).
- a) T. Brennan and M. Sundaralingam, Biochem. Biophys. Res. Commun., 52, 1348 (1973); b) L. T. J. Delbaere and M. N. G. James, Acta Cryst., B29, 2905 (1973); c) D. Suck and W. Saenger, ibid., B29, 1323 (1973); d) Y. Yamagata, Y. Suzuki, S. Fujii, T. Fujiwara and K. Tomita, ibid., B35, 1136 (1979); e) Y. Yamagata, J. Yoshimura, S. Fujii, T. Fujiwara, K. Tomita and T. Ueda, ibid., B36, 343 (1980); f) M. L. Glowka, I. Iwanicka, G. Gilli and V. Bertolasi, ibid., C42, 1526 (1986)
- a) L. T. J. Delbaere and M. N. G. James, *Acta Cryst.*, B29, 2905 (1973);
 b) Y. Yamagata, S. Fujii, T. Fujiwara, K. Tomita and T. Ueda, *ibid.*, B36, 339 (1980).
- a) Y. Yamagata, S. Fujii, T. Kanai, K. Ogawa and K. Tomita, *Acta Cryst.*, B35, 378 (1979);
 b) J. L. Smith, A. Chwang and M. Sundaralingam, *ibid.*, B36, 833 (1980).
- Y. Yamagata, N. Okabe, K. Tomita, S. Shuto and T. Ueda, *Acta Cryst.*, C41, 1656 (1985).
- 8) a) Y. Yamagata, S. Fukumoto, S. Fujii, K. Tomita, T. Maruyama and M. Honjo, *Acta Cryst.*, C39, 407 (1983); b) S. S. Mande, T. P. Seshadri and M. A. Viswamitra, *ibid.*, C44, 138 (1988).
- a) T. Ueda, H. Usui, S. Shuto and H. Inoue, *Chem. Pharm. Bull.*, 32, 3410 (1984); b) T. Sano, H. Inoue and T. Ueda, *ibid.*, 33, 1856 (1985);
 c) T. Ueda, *Nucleosides & Nucleotides*, 4, 67 (1985).
- P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq and M. M. Woolfson, MULTAN 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain Belgium, 1978.
- 11) T. Ashida and N. Yasuoka (eds.), "The Universal Crystallographic Computing System-Osaka," Library of Programs, Computing Center, Osaka Univ., 1979.
- 12) W. R. Busing, K. O. Martin and H. A. Levy, ORFLS. Report

- ORNL-TM-305, Oak Ridge National Laboratory, Tennessee, 1962.
- C. K. Johnson, ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, 1976.
- E. Westhof and M. Sundaralingam, J. Am. Chem. Soc., 102, 1493 (1980).
- T. P. Haromy, J. Raleigh and M. Sundaralingam, *Biochemistry*, 19, 1718 (1980).
- 16) M. Sundaralingam, "Conformations of Biological Molecules and Polymers," ed. by E. D. Bergmann and B. Pullman, The Israel Academy of Sciences and Humanities, 1973, p. 417.
- C. E. Bugg, M. Sundaralingam and S. T. Rao, *Biopolymers*, 12, 175 (1971).
- D. M. Brown and A. R. Todd, "The Nucleic Acids," ed. by E. Chargaff and G. N. Davidson, Academic Press, New York, 1955, p. 409.
- a) G. Kartha, J. Bello and D. Harker, Nature (London), 213, 862 (1967); b) C. H. Carlisle, R. A. Palmer, S. K. Mazumdar, B. A. Gorinsky and D. G. R. Yeates, J. Mol. Biol., 85, 1 (1974); c) A. Wlodawer and L. Sjolin, Biochemistry, 22, 2720 (1983); d) N. Borkakoti, R. A. Palmer, I. Maneef and D. S. Moss, J. Mol. Biol., 169, 743 (1983); e) A. MacPherson, G. D. Brayer and R. D. Morrison, ibid., 189, 305 (1986).
- B. Howlin, G. W. Harris, D. S. Moss and R. A. Palmer, J. Mol. Biol., 196, 159 (1987).
- 21) a) F. M. Richards, H. W. Wyckoff, W. D. Carlson, N. M. Allwell, B. K. Lee and Y. Mitsui, Cold Spring Harbor Symp. Quant. Biol., 36, 35 (1973); b) S. Y. Wodak, M. Y. Liu and H. W. Wyckoff, J. Mol. Biol., 116, 855 (1977).
- 22) a) N. Gautham, T. P. Deshadri and M. A. Viswamitra, Acta Cryst., C39, 456 (1983); b) Y. Yamagata, Y. Kobayashi, N. Okabe, K. Tomita and T. Ueda, Nucleosides & Nucleotides, 2, 327 (1983).
- S. K. Katti, T. P. Seshadri and M. A. Viswamitra, *Acta Cryst.*, B37, 407 (1981).
- 24) W. Saenger and F. Eckstein, J. Am. Chem. Soc., 92, 4712 (1970).
- 25) J. Bode and H. Schenk, Cryst. Struct. Commun., 6, 645 (1977).
- 26) B. S. Reddy and W. Saenger, Acta Cryst., B34, 1520 (1978).
- 27) A. J. de Kok, C. Romers, H. P. M. de Leeuw, C. Altona and J. H. van Boom, J. Chem. Soc., Perkin Trans. 2, 1977, 487.
- 28) C. L. Coulter, J. Am. Chem. Soc., 95, 570 (1973).
- T. P. Seshadri, N. Gautham and M. A. Viswamitra, Acta Cryst., C39, 1706 (1983).
- 30) N. Gautham, T. P. Deshadri and M. A. Viswamitra, *Acta Cryst.*, C39, 459 (1983).
- Y. Yamagata, Y. Kobayashi, N. Okabe, K. Tomita, T. Sano, H. Inoue and T. Ueda, *Nucleosides & Nucleotides*, 2, 335 (1983).
- W. J. Cook, S. E. Ealick and J. A. Secrist III, Acta Cryst., C40, 885 (1984).