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Danshensu, the effective ingredient of the plant Salvia miltiorrhiza (Danshen), has been widely used 
for treatment of cardiovascular diseases. Cardiac fibrosis is an important process in pathological cardiac 
remodeling and leads to heart failure. We investigated the effect of Danshensu on β-adrenergic receptor 
(β-AR)-mediated cardiac fibrosis and the involved signaling transduction. Danshensu inhibited cardiofibro-
blast proliferation and collagen I synthesis induced by isoproterenol (ISO), a selective β-AR agonist. Phos-
phorylation of p38 mitogen-activated protein kinase (MAPK), which mediates ISO-induced cardiac fibrosis, 
was negatively regulated in this process. The negative regulation depended on the ISO inhibition of reactive 
oxygen species (ROS) production. Taken together, Danshensu may inhibit β-AR-mediated cardiac fibrosis by 
negative regulation of ROS-p38 MAPK signaling.
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Cardiac fibrosis is a pivotal phenomenon in pathological 
cardiac remodeling and is a hallmark of heart diseases. It is 
characterized by excessive extracellular matrix accumulation 
and fibroblast deposition and eventually destroys the organ 
architecture and abolishes normal function.1–3) Myocardial 
fibrosis is a major biological determinant of fatal events in 
cardiac remodeling, including heart failure, severe arrhyth-
mias and sudden cardiac death.4,5) Cardiac fibrosis can be 
caused by various factors, such as the chronic activation of the 
sympathetic nervous system, myocardial hypoxia, ischemia, 
senescence, inflammation and hormones. β-Adrenergic recep-

tors (β-ARs) and their associated guanine nucleotide regula-
tory protein (G protein)/adenylyl cyclase signal transduction 
pathways, are central to the regulation of cardiac function. 
Continuous activation of β-ARs plays an important role in 
cardiac dysfunction.6–8) Cardiac function was altered in β1-AR 
transgenic mice with cardiac hypertrophy, which could be 
inhibited by β-AR blockers.8) Consecutive administration with 
isoproterenol (ISO), a β-AR agonist, caused cardiac fibrosis in 
rats.9,10)

p38 mitogen-activated protein kinase (p38 MAPK) and 
reactive oxygen species (ROS) play a critical role in cardiac 

* To whom correspondence should be addressed.  e-mail: lizijian@bjmu.edu.cn;  
zhengxh@nwu.edu.cn

The authors declare no conflict of interest.
# These authors contributed equally to this work.

Fig. 1. Effect of Danshensu (DSS) on Isoproterenol (ISO)-Induced Cardiofibroblast (CF) Proliferation and Type I Collagen Synthesis
CFs were treated with vehicle, ISO or DSS plus ISO for 24 h. (A) Cell proliferation was examined by use of the cell counting kit-8 (CCK-8). ** p<0.01 vs. vehicle, 

# p<0.05 vs. ISO. (B) ELISA of type I collagen synthesis. * p<0.05 vs. vehicle; # p<0.05 vs. ISO. N=4.
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fibrosis. ROS can activate matrix metalloproteinases, which 
mediate cardiac fibrosis.11) The β-adrenergic system may 
contribute to cardiac dysfunction and extracellular matrix 
remodelling by activating the β2-AR-Nox-ROS-p38 MAPK 
axis.12) Our previous study also found that β-AR stimulated 
interleukin 6 production, which is important for activating p38 
MAPK signaling and the consequent cardiac fibrosis.13) There-
fore, the axis is a promising target for drugs against cardiac 
fibrosis.

Danshensu (DSS) is the major water-soluble ingredient 
extracted from the plant Salvia miltiorrhizae (Danshen). S. 
miltiorrhizae is used in traditional Chinese medicine and is 
widely used to treat various microcirculatory disturbance-
related diseases such as cardiovascular disease, cerebrovas-
cular disease, renal dysfunction and liver fibrosis. DSS has 
biological activities in improving microcirculation, suppress-
ing the formation of ROS, protecting the myocardium against 
ischemia,14) protecting endothelial cells against injury induced 
by inflammation, and enhancing anti-apoptosis.15,16) However, 
the role of DSS in cardiac fibroblasts (CFs) remains unclear. 
In this study, we assessed the effect of DSS on CFs and its 
mechanism.

MATERIALS AND METHODS

Animals  One to 2 d-old Sprague-Dawley rats were sup-
plied by the animal research center of Beijing Medical Univer-
sity. The experiments were performed in accordance with the 
U.S. National Institutes of Health Guidelines for the Use of 
Laboratory Animals and were approved by the Beijing Medi-
cal University Committee on Animal Care. Neonatal rat CFs 
were isolated as described previously.17)

CF Culture  Neonatal CFs were isolated from minced rat 
ventricles digested with 0.01% collagenase II (Worthington, 
Columbia, NJ, U.S.A.). Cells were collected and plated for 2 h 
at 37°C. Unattached cardiomyocytes were removed. CFs were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Hyclone, Beijing) with 10% fetal bovine serum (Hyclone 
Laboratories, Omaha, NE, U.S.A.) at 37°C.18)

CF Proliferation Assay  CFs were counted by use of the 
cell counting kit-8 (CCK-8) (Dojindo, Japan).19) CFs at pas-
sage 2 or 3 were digested with 0.25% trypsin and ethylene 
diamine tetraacetic acid (EDTA), then cultured in 96-well 

Fig. 2. Effect of p38 Inhibitor SB202190 on CF Proliferation Induced 
by ISO

CFs were treated with vehicle, ISO or ISO plus SB202190 (SB) for 24 h. 
** p<0.01 vs. vehicle; ## p<0.01 vs. ISO. N=3.

Fig. 3. Effect of DSS on ISO-Induced p38 Mitogen-Activated Protein 
Kinase (MAPK) Activation

CFs were treated with vehicle, ISO or ISO plus DSS for 24 h. (A) Western blot 
analysis and (B) quantification of p38 MAPK phosphorylation. ** p<0.01 vs. ve-
hicle; # p<0.05 vs. ISO; ## p<0.01 vs. ISO. N=3.

Fig. 4. Effect of DSS on ISO-Induced ROS Production
CFs were treated with vehicle, ISO or ISO plus DSS for 30 min. Intracellular 

ROS accumulation was assessed with dihydroethidium incubation. (A) Representa-
tive micrographs of ROS accumulation. (B) Quantification of intracellular ROS as a 
ratio to vehicle levels. ** p<0.01 vs. vehicle; # p<0.05 vs. ISO. N=3.



June 2014� 963

plates (3×103 to 5×103 cells per well) in serum-free, high-
glucose DMEM with or without concentrations of DSS (The 
National Institute for Food and Drug Control, China) for 1 h 
before treatment with ISO (Sigma). After incubation for 24 h, 
the supernatant was removed, and 100 µL DMEM containing 
10 µL CCK-8 was added to each well for another 4 h at 37°C. 
The optical density was read at 450 nm (Microplate Reader 
Model 550, Bio-Rad).

Enzyme-Linked Immunosorbent Assay (ELISA)  The 
secretion of collagen type I by CFs was measured by use of a 
commercially available ELISA kit (R&D Systems, Minneapo-
lis, MN, U.S.A.). All samples were assayed in triplicate.

Measurement of Intracellular ROS  Dihydroethidium 
(DHE) (Molecular Probes, OR, U.S.A.) was used to assess 
intracellular ROS formation in cultured CFs.20) Cells were 
loaded with 10 µM DHE for 30 min at 37°C, then washed with 
Hanks’ solution. After treatment with ISO (10 µM), cells were 
washed twice with Hanks’ solution. ROS production was ana-
lyzed by inverted fluorescence microscopy (Leica).

Western Blot Analysis  Protein expression was exam-
ined by Western blot analysis as described.21) Proteins were 
electrophoresed and incubated with the antibodies rabbit anti-
phospho-p38 MAPK (1 : 1000), anti-p38 MAPK (1 : 1000), and 
anti-eukaryotic initiation factor 5 (anti-EIF5) (1 : 5000, all Cell 
Signaling Technology).

Statistical Analysis  Data are shown as mean± S.D. One-
way ANOVA was used to compare groups, with Tukey’s test, 

by use of GraphPad Prism 5.0 (GraphPad Software, La Jolla, 
CA, U.S.A.). A p<0.05 was considered statistically significant.

RESULTS

DSS Attenuated ISO-Induced CF Proliferation and Type 
I Collagen Synthesis  To evaluate the effect of DSS on car-
diac fibrosis induced by ISO, we detected CF proliferation. CF 
proliferation was significantly increased after stimulation with 
ISO (10 µM) for 24 h (Fig. 1A). DSS (0.1, 1, 10 µM) significantly 
inhibited the ISO-increased CF proliferation dose-dependent-
ly. ISO (10 µM) significantly increased the expression of type 
I collagen in cultured CFs (Fig. 1B). The increased collagen 
synthesis was dose-dependently inhibited by DSS (0.1, 1, 
10 µM). Thus, DSS may attenuate ISO-induced CF prolifera-
tion and collagen synthesis.

p38 MAPK Pathway Mediated ISO-Induced CF Prolif-
eration  p38 MAPK plays an important role in CF prolifera-
tion.22) ISO (10 µM) stimulation significantly induced CF prolif-
eration, and the p38 inhibitor SB202190 (10 µM) reversed this 
process, so the p38 signaling pathway mediated ISO-induced 
CF proliferation (Fig. 2).

DSS Negatively Regulated ISO-Induced Phosphoryla-
tion of p38 MAPK in CFs  We hypothesized that ISO may 
stimulate p38 phosphorylation with CF proliferation and that 
DSS inhibits this process. The phosphorylation of p38 was 
significantly increased with ISO (10 µM) treatment in CFs and 

Fig. 5. The Interaction of p38 MAPK and ROS in CFs Treated with ISO
(A) Western blot analysis and (B) quantification of the effect of scavenging ROS with NAC on p38 MAPK activity. ** p<0.01 vs. vehicle; # p<0.05 vs. ISO. (C) Repre-

sentative micrographs and (D) quantification of the effect of p38 inhibitor SB202190 on ROS activation. *** p<0.001 vs. vehicle; NS: no significance. N=3.
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DSS (1, 10, 100 µM) dose-dependently reversed the increased 
phosphorylation (Fig. 3).

DSS Decreased ISO-Induced ROS Generation in CFs  
ISO can generate free radicals and stimulate lipid peroxida-
tion,23) and ROS plays an important role in ISO-induced organ 
fibrosis.24) We found that ISO stimulation for 30 min signifi-
cantly promoted ROS production (Fig. 4). DSS (1, 10, 100 µM) 
dose-dependently inhibited the increased ROS production. 
Thus, ISO may trigger an increase in ROS levels in CFs and 
DSS may reduce the ISO-induced ROS production.

The Phosphorylation of p38 Depended on ISO-Induced 
ROS Production  Previous studies have shown that the 
ROS-p38 signal pathway is involved in CF proliferation.25) We 
found that ROS scavenger (NAC) abrogated the ISO-induced 
phosphorylation of p38. However, the p38 inhibitor SB202190 
did not inhibit ISO-increased ROS production in CFs (Figs. 
5C, D). Thus, increased ROS accumulation mediated the ISO-
induced phosphorylation of p38, but p38 activation did not af-
fect ISO-generated ROS in CFs.

DSS Decreased ISO-Induced ROS Production Depen-
dent on Reduced Nicotinamide Adenine Dinucleotide Phos-

phate (NADPH) Oxidase 2 (NOX2)  Increased ROS accu-
mulation was from imbalance between ROS production and 
elimination. To clarify the mechanism by which DSS reduces 
ROS production, we examined the expression of NADPH 
oxidase and antioxidant enzymes superoxide dismutase (SOD). 
NADPH oxidase, the major enzymatic source of ROS, was 
examined in CFs by measuring levels of NOX2 and NOX4, 
two major NAD(P) H oxidase subunits. The NOX2 protein lev-
els were significantly upregulated in ISO-treated (10 µM) CFs 
and reversed by DSS (Fig. 6A). However, either ISO (10 µM) 
or DSS (10 µM) treatment had no effect on NOX4 protein ex-
pression in CFs (Fig. 6B). Thus, the inhibitory effect of DSS 
on NADPH oxidase expression was NOX2-dependent. Super-
oxide dismutase (SOD) is most powerful natural antioxidant 
enzymes. Here, we determined levels of SOD1 and SOD2, 
two major forms of SOD, in CFs with treatment. The results 
showed that both ISO (10 µM) and DSS (10 µM) treatment had 
no effect on SOD1 and SOD2 protein expression in CFs (Figs. 
6C, D). Taken together, these results suggested that DSS de-
creased ISO-induced ROS production depended on NOX2.

Fig. 6. Effect of DSS on ISO-Induced the Expression of NADPH Oxidase and Antioxidant Enzymes in CFs
Western blot analysis and quantification of the effect of DSS on ISO induced the expression of Nox2 (A), Nox4 (B), SOD1 (C) and SOD2 (D). * p<0.01 vs. con; 

** p<0.01 vs. ISO. N=3.
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DISCUSSION

Excessive CF proliferation and the consequent increased 
collagen synthesis contribute significantly to cardiac fibrosis 
and inevitably lead to heart failure. Early intervention in the 
cardiac fibrogenesis process could slow down and prevent the 
progression of fibrosis. Although DSS has therapeutic effects 
on fibrosis of several organs, such as liver,26–28) lung and kid-
ney, its effect on cardiac fibrosis remained unclear. We investi-
gated the effect of DSS on β-AR-mediated cardiac fibrosis and 
the involved signaling transduction. DSS inhibited CF prolif-
eration and collagen I synthesis induced by ISO, a selective 
β-AR agonist; p38 MAPK phosphorylation, which mediates 
ISO-induced cardiac fibrosis, was negatively regulated in this 
process. The negative regulation depended on the inhibition 
of ISO-induced ROS production. DSS inhibits β-AR-mediated 
cardiac fibrosis by negatively regulating ROS-p38 MAPK sig-
naling.

p38 MAPK is a class of evolutionarily conserved serine/
threonine MAPKs that link extracellular signals to the in-
tracellular machinery to regulate multiple cellular processes 
including proliferation, differentiation, and inflammation. The 
MAPKs cascade can be activated by various receptors, includ-
ing G-protein-coupled receptors by activating protein kinases 
A and C and can regulate cell proliferation and collagen syn-
thesis. In particular, p38 activation is involved in CF prolif-
eration as well as fibrosis of various organs. F2-Isoprostanes 
promote liver fibrosis by activating p38 MAPKs.29) Inhibition 
of p38 MAPK can attenuate renal and lung fibrosis.23,30,31) In 
addition, p38 MAPK plays an important role in CF prolif-
eration.32,33) In this study, CFs showed a significant increase in 
p38 phosphorylation when treated with ISO, as compared with 
untreated controls. Both the p38 inhibitor SB202190 and DSS 
significantly reduced p38 phosphorylation and CF prolifera-
tion. Therefore, p38 signaling is necessary for ISO-stimulated 
CF proliferation.

ROS is a major cause of cardiac diseases, including cardiac 
fibrosis and hypertrophy. It is generally considered the mecha-
nism of cardiac injury in that ROS generation causes mito-
chondrial damage and alters gene expression in myocytes and 
fibroblasts.34) Anti-oxidation can prevent adverse cardiovascu-
lar events. Indeed, drugs such as DSS play an anti-fibrosis role 
by reducing oxidant levels.35) Interestingly, we showed that 
DSS can dose-dependently inhibit ISO-induced ROS produc-
tion.

Imbalance between ROS production and elimination results 
in increased ROS accumulation. SOD is a class of enzymes 
that catalyze the dismutation of superoxide into oxygen and 
hydrogen peroxide. As such, it’s an important antioxidant 
defense in nearly all cells exposed to oxygen. Our results 
showed that DSS had no effect on SOD1 and SOD2 protein 
expression in CFs, suggesting DSS decreased ISO-induced 
through inhibiting ROS production. ROS are produced in tra-
cellularly through multiple mechanisms and depending on the 
cell and tissue types. The major source of ROS generated in 
the cardiovascular system is the NOX family of enzymes. In 
the present study, we found DSS inhibted ISO-induced ROS 
production depended on NOX2. NOX2 is expressed in vascu-
lar, cardiac, renal, and neural cells and localizes to intracel-
lular and plasma membranes. Pathological increases in NOX2 
contribute to oxidative injury, vascular and cardiac damage. 

Consistent with our results, NOX2 has been shown to be im-
portant roles in models of cardiac remolding.36,37)

There are discrepancies in the relationship between ROS 
and p38 MAPK pathways. ROS was reported as the up-
stream signal molecule of p38 MAPK, directly regulating 
the phosphorylation of p38, and ultimately affecting biologi-
cal effect.38–41) However, some studies demonstrated contrary 
views.42–44) The different regulation networks may cause 
varied biological effects in diverse cells and organisms. To 
elucidate the specific relationship between ROS and p38, we 
checked the effect of NAC and SB202190, selective inhibitors 
of ROS and p38, respectively. NAC almost completely inhib-
ited the phosphorylation of p38, but SB202190 was unable 
to suppress ISO-induced ROS production in CFs. Thus, p38 
may be the downstream substrate of ROS. DSS inhibited CF 
proliferation induced by ISO by inhibiting ROS-p38 MAPK 
signaling.

In conclusion, our study indicates that DSS prevents CF 
proliferation and type I collagen synthesis induced by ISO 
by inhibiting ROS-p38 MAPK signaling. These findings will 
be beneficial to further understand the protective molecular 
mechanisms of DSS in the heart and provide potential drug 
targets for the treatment of heart diseases.
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