Skip to main content

Advertisement

Log in

The BRAF Mutation Is Predictive of Aggressive Clinicopathological Characteristics in Papillary Thyroid Microcarcinoma

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

This study analyzed the utility of BRAF mutation screening of ultrasonography-guided fine-needle aspiration biopsy (FNAB) specimens for predicting aggressive clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC).

Methods

We assessed the T1799A BRAF mutation status in FNAB specimens obtained from 61 PTMC patients before undergoing operations for PTMC. We examined whether the BRAF mutation was associated with clinicopathologic characteristics in PTMC. Additionally, we reviewed the BRAF mutation status, and clinical, ultrasound (US), hematological, and pathology records of the patients and analyzed the associations between these characteristics and lateral lymph node metastasis (LNM).

Results

Analysis of the preoperative FNABs accurately reflected the BRAF status of the resected tissues in 19 of the 20 paired samples (95% concordance). We observed that the BRAF mutation was statistically significantly associated with multifocality, extrathyroidal invasion, lateral LNM, and advanced tumor stages III and IV. The BRAF mutation, pathologic features (central LNM), and US features (upper pole location) were independent predictive factors for lateral LNM in a multivariate analysis with odds ratios of 18.144 (95% confidence interval [95% CI], 1.999–164.664; P = 0.01), 8.582 (95% CI, 1.014–76.662; P = 0.049) and 9.576 (95% CI, 1.374–66.728; P = 0.023), respectively.

Conclusions

BRAF mutation-positive PTMCs were more likely to manifest aggressive characteristics (extrathyroidal extension and LNM). The BRAF mutation screening of FNAB specimens can be used to predict aggressive clinicopathological characteristics of PTMC. Lateral neck nodes should be meticulously analyzed for cases of PTMC demonstrating the following three characteristics: BRAF mutation, central LNM, and US features in the upper pole location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leenhardt L, Grosclaude P, Cherie-Challine L. Increased incidence of thyroid carcinoma in France: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid. 2004;14:1056–60.

    Article  PubMed  Google Scholar 

  2. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    Article  CAS  PubMed  Google Scholar 

  3. Mazzaferri EL, Harmer C, Mallick UK, et al. Practical management of thyroid cancer: a multidisciplinary approach. New York: Springer; 2006. p. 1–28.

  4. Sobin LH, Wittekind CH, editors. International Union Against Cancer (UICC): TNM classification of malignant tumors, 6th edn. New York: Wiley-Liss; 2002.

    Google Scholar 

  5. Yokozawa T, Miyauchi A, Kuma K, Sugawara M. Accurate and simple method of diagnosing thyroid nodules by the modifi ed technique of ultrasound-guided fine needle aspiration biopsy. Thyroid. 1995;5:141–5.

    Article  CAS  PubMed  Google Scholar 

  6. Chow SM, Law SC, Chan JK, et al. Papillary microcarcinoma of the thyroid—prognostic significance of lymph node metastasis and multifocality. Cancer. 2003;98:31–40.

    Article  PubMed  Google Scholar 

  7. Ito Y, Miyauchi A. A therapeutic strategy for incidentally detected papillary microcarcinoma of the thyroid. Nat Clin Pract Endocrinol Metab. 2007;3:240–8.

    Article  PubMed  Google Scholar 

  8. Ito Y, Miyauchi A. Prognostic factors and therapeutic strategies for differentiated carcinomas of the thyroid. Endocr J. 2003;56:177–92.

    Article  Google Scholar 

  9. Xing MZ. BRAF mutation in papillary thyroid microcarcinoma: the promise of better risk management. Ann Surg Oncol. 2009;16:801–3.

    Article  PubMed  Google Scholar 

  10. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  CAS  PubMed  Google Scholar 

  11. Kim TY, Kim WB, Song JY, et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 2005;63:588–93.

    Article  CAS  Google Scholar 

  12. Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sedliarou I, Saenko V, Lantsov D, et al. The BRAFT1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int J Oncol. 2004;25:1729–35.

    CAS  PubMed  Google Scholar 

  14. Lee X, Gao M, Ji Y, et al. Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol. 2009;16:240–5.

    Article  PubMed  Google Scholar 

  15. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–70.

    Article  PubMed  Google Scholar 

  16. Rodolico V, Cabibi D, Pizzolanti G, et al. BRAF(V600E) mutation and p27(kip1) expression in papillary carcinomas of the thyroid ≤1 cm and their paired lymph node metastases. Cancer. 2007;110:1218–26.

    Article  PubMed  Google Scholar 

  17. Kwak JY, Kim EK, Chung WY, et al. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology. 2009;253:854–60.

    Article  PubMed  Google Scholar 

  18. Xing MZ, Clark D, Guan H, et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Oncol. 2009;27:2977–82.

    Article  CAS  PubMed  Google Scholar 

  19. Kwak JY, Kim EK, Kim MJ, et al. Papillary microcarcinoma of the thyroid: predicting factors of lateral neck node metastasis. Ann Surg Oncol. 2009;16:1348–55.

    Article  PubMed  Google Scholar 

  20. Ito Y, Kobayashi K, Tomoda C, et al. Illdefined edge on ultrasonographic examination can be a marker of aggressive characteristic of papillary thyroid microcarcinoma. World J Surg. 2005;29:1007–11.

    Article  PubMed  Google Scholar 

  21. Kwak JY, Kim EK, Youk JH, et al. Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid. 2008;18:609–14.

    Article  PubMed  Google Scholar 

  22. Kim EK, Park CS, Chung WY, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol. 2002;178:687–91.

    PubMed  Google Scholar 

  23. Gu LQ, Li FY, Zhao L, et al. BRAF(V600E) Mutation and X-linked inhibitor of apoptosis expression in papillary thyroid carcinoma. Thyroid. 2009;19:347–54.

    Article  CAS  PubMed  Google Scholar 

  24. Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–7.

    CAS  PubMed  Google Scholar 

  25. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  26. Fonseca E, Soares P, Rossi S, Sobrinho-Simoes M. Prognostic factors in thyroid carcinomas. Verh Dtsch Ges Pathol. 1997;81:82–96.

    CAS  PubMed  Google Scholar 

  27. Gilliland FD, Hunt WC, Morris DM, Key CR. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program, 1973–1991. Cancer. 1997;79:564–73.

    Article  CAS  PubMed  Google Scholar 

  28. Sherman SI, Brierley JD, Sperling M, et al. Prospective multicenter study of thyroid carcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer. 1998;83:1012–21.

    Article  CAS  PubMed  Google Scholar 

  29. Ries LAG, Melbert D, Krapcho M, et al. Surveillance, epidemiology, and end results program. Cancer statistics review, 1975–2005. Bethesda: National Cancer Institute; 2008.

    Google Scholar 

  30. Ito Y, Uruno T, Nakano K, et al. 2003 An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 13:381–8.

    Article  PubMed  Google Scholar 

  31. Witt RL. Initial surgical management of thyroid cancer. Surg Oncol Clin N Am. 2008;17:71–91.

    Article  PubMed  Google Scholar 

  32. Brown AP, Chen J, Hitchcock YJ, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.

    Article  CAS  PubMed  Google Scholar 

  33. Jin L, Sebo TJ, Nakamura N, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15:136–43.

    Article  CAS  PubMed  Google Scholar 

  34. Chung KW, Yang SK, Lee GK, et al. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf). 2006;65:660–6.

    Article  CAS  Google Scholar 

  35. Pizzolanti G, Russo L, Richiusa P, et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF(V600E) mutation and RET/PTC rearrangement. Thyroid. 2007;17:1109–15.

    Article  CAS  PubMed  Google Scholar 

  36. Rowe LR, Bentz BG, Bentz JS. Utility of BRAF V600E mutation detection in cytologically indeterminate thyroid nodules. Cytojournal. 2006;3:10.

    Article  PubMed  Google Scholar 

  37. Bramley MD, Harrison BJ. Papillary microcarcinoma of the thyroid gland. Br J Surg. 1996;83:1674–83.

    Article  CAS  PubMed  Google Scholar 

  38. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid “normal” finding in Finland—a systematic autopsy study. Cancer. 1985;56:531–8.

    Article  CAS  PubMed  Google Scholar 

  39. Pelizzo MR, Boschin IM, Toniato A, et al. Natural history, diagnosis, treatment and outcome of papillary thyroid microcarcinoma (PTMC): a mono-institutional 12-year experience. Nucl Med Commun. 2004;25:547–52.

    Article  PubMed  Google Scholar 

  40. Shaha AR. Thyroid cancer: extent of thyroidectomy. Cancer Control. 2000;7:240–5.

    CAS  PubMed  Google Scholar 

  41. McHenry CR, Rosen IB, Walfish PG. Prospective management of nodal metastases in differentiated thyroid cancer. Am J Surg. 1991;162:353–6.

    Article  CAS  PubMed  Google Scholar 

  42. Akslen LA, Haldorsen T, Thoresen SO, Glattre E. Survival and causes of death in thyroid cancer: a population-based study of 2479 cases from Norway. Cancer Res. 1991;51:1234–41.

    CAS  PubMed  Google Scholar 

  43. Ito Y, Miyauchi A. Lateral lymph node dissection guided by preoperative and intraoperative findings in differentiated thyroid carcinoma. World J Surg. 2008;32:729–39.

    Article  PubMed  Google Scholar 

  44. Wang YG, Ji MJ, Wang W, et al. Association of the T1799A BRAF mutation with tumor extrathyroidal invasion, higher peripheral platelet counts, and overexpression of platelet-derived growth factor-B in papillary thyroid cancer. Endocr Relat Cancer. 2008;15:183–90.

    Article  PubMed  Google Scholar 

  45. Hernandez E, Donohue KA, Anderson LL, Heller PB, Stehman FB. The significance of thrombocytosis in patients with locally advanced cervical carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2000;78:137–42.

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda M, Furukawa H, Imamura H, et al. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol. 2002;9:287–91.

    Article  PubMed  Google Scholar 

  47. Verheul HM, Pinedo HM. The importance of platelet counts and their contents in cancer. Clin Cancer Res. 2003;9;3219–21.

    CAS  PubMed  Google Scholar 

  48. Shimada H, Oohira G, Okazumi S, et al. Thrombocytosis associated with poor prognosis in patients with esophageal carcinoma. J Am Coll Surg. 2004;198;737–41.

    Article  PubMed  Google Scholar 

  49. Brown KM, Domin C, Aranha GV, Yong S, Shoup M. Increased preoperative platelet count is associated with decreased survival after resection for adenocarcinoma of the pancreas. Am J Surg. 2005;189:278–82.

    Article  PubMed  Google Scholar 

  50. Bensalah K, Leray E, Fergelot P, et al. Prognostic value of thrombocytosis in renal cell carcinoma. J Urol. 2006;175:859–63.

    Article  PubMed  Google Scholar 

  51. Ito Y, Tomoda C, Uruno T, et al. Papillary microcarcinoma of the thyroid: how should it be treated? World J Surg. 2004;28:1115–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Xiang-Yang Xue for critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Zhang MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KL., Wang, OC., Zhang, XH. et al. The BRAF Mutation Is Predictive of Aggressive Clinicopathological Characteristics in Papillary Thyroid Microcarcinoma. Ann Surg Oncol 17, 3294–3300 (2010). https://doi.org/10.1245/s10434-010-1129-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-1129-6

Keywords

Navigation