Skip to main content

Advertisement

Log in

Limited Cardiotoxicity after Extensive Thoracic Surgery and Intraoperative Hyperthermic Intrathoracic Chemotherapy with Doxorubicin and Cisplatin

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Recently, pleural mesothelioma has been treated by cytoreductive surgery and intraoperative hyperthermic intrathoracic chemotherapy with doxorubicin and cisplatin. The well-established cardiotoxicity of doxorubicin and distressing data from an animal study raised concern about its impact on cardiac function. In the present study, early cardiotoxicity of this treatment modality was prospectively analyzed.

Patients and Methods

In 13 pleural mesothelioma patients, cardiotoxicity was monitored by clinical examination, electrocardiography, Troponin levels, cardiac ultrasonography, and estimation of left ventricular ejection fraction (LVEF) by radionuclide ventriculography before and during the first 6 months after cytoreductive surgery and intraoperative hyperthermic intrathoracic chemotherapy with doxorubicin (25–54 mg/m2) and cisplatin (65–120 mg/m2).

Results

No clinical cardiac failure or treatment-related death was observed. In two patients transient atrial fibrillation was noted; one associated with pulmonary emboli. Early posttreatment Troponin release was not of predictive value. Ultrasonography did not reveal significant alterations. LVEF decreased significantly (mean 0.07 or 11%, P = .001) during the first 3 months and remained stable thereafter. In univariate analysis, the degree of LVEF reduction was statistically related to maximal intrathoracic doxorubicin concentration (P = .031) and total cisplatin dose (P = .029). Direct exposure of the heart to the drugs as a result of partial pericardectomy was not associated with greater LVEF decrease. On the contrary, partial pericardectomy seemed to be associated with a smaller LVEF decline than when the pericardium remained intact (P = .045). In this small series, no statistically significant correlation between other treatment or pharmacokinetic parameters and LVEF decline was found. Notably, higher doxorubicin plasma concentrations and exposure were not associated with increased LVEF reduction.

Conclusions

Early cardiotoxicity is limited after this treatment modality using substantial doses of doxorubicin and cisplatin. Hence, this study suggests that intrathoracic chemotherapy with doxorubicin and/or cisplatin may be used for primary and secondary pleural malignancies, even immediately after extensive thoracic surgery, without concern of severe early cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.

Similar content being viewed by others

References

  1. Tan C, Sedrakyan A, Browne J, et al. The evidence of the effectiveness of management for malignant pleural effusion: a systemic review. Eur J Cardiothorac Surg 2006; 29:829–38

    Article  PubMed  Google Scholar 

  2. Witkamp AJ, de Bree E, van Goethem R, et al. Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy. Cancer Treat Rev 2001; 27:365–74

    Article  PubMed  CAS  Google Scholar 

  3. de Bree E, van Ruth S, Baas P, et al. Cytoreductive surgery and intraoperative hyperthermic intrathoracic chemotherapy in patients with malignant pleural mesothelioma or pleural metastases of thymoma. Chest 2002; 121:480–7

    Article  PubMed  Google Scholar 

  4. van Ruth S, Baas P, Haas RLM, et al. Cytoreductive surgery combined with intraoperative hyperthermic intrathoracic chemotherapy for stage I malignant pleural mesothelioma. Ann Surg Oncol 2003; 10:176–82

    Article  PubMed  Google Scholar 

  5. Monneuse O, Beaujard AC, Guibert B, et al. Long-term results of intrathoracic chemohyperthermia (ITCH) for the treatment of pleural malignancies. Br J Cancer 2003; 88:1839–43

    Article  PubMed  CAS  Google Scholar 

  6. Matsuzaki Y, Shibata K, Yoshioka M, et al. Intrapleural perfusion hyperthermo-chemotherapy for malignant pleural dissemination and effusion. Ann Thorac Surg 1995; 59:127–31

    Article  PubMed  CAS  Google Scholar 

  7. Yellin A, Simansky DA, Paley M, et al. Hyperthermic pleural perfusion with cisplatin. Early clinical experience. Cancer 2001; 92:2197–203

    Article  PubMed  CAS  Google Scholar 

  8. Ratto GB, Civalleri D, Espositi M, et al. Pleural space perfusion with cisplatin in the multimodality treatment of malignant mesothelioma: a feasibility and pharmacokinetic study. J Thorac Cardiovasc Surg 1999; 117:759–65

    Article  PubMed  CAS  Google Scholar 

  9. Rafaely Y, Simansky DA, Paley M, et al. Resection and perfusion thermochemotherapy: a new approach for the treatment of thymic malignancies with pleural spread. Ann Thorac Surg 2001; 72:366–70

    Article  Google Scholar 

  10. Shigemura N, Akashi A, Nakagiri T, et al. Pleural perfusion thermo-chemotherapy under VATS: a new less invasive modality for advanced lung cancer with pleural spread. Ann Thorac Surg 2004; 77:1016–22

    Article  PubMed  Google Scholar 

  11. Fujimara T, Yonemura Y, Nojima N, et al. Intrathoracic hyperthermochemotherapeutic perfusion for intrathoracic malignancies in gastric cancer. Hepatogastroenterology 1995; 42:878–84

    Google Scholar 

  12. Richards WG, Zellos L, Bueno R, et al. Phase I to II study of pleurectomy / decortication and intraoperative intracavitary hyperthermic cisplatin lavage for mesothelioma. J Clin Oncol 2006; 24:1561–7

    Article  PubMed  CAS  Google Scholar 

  13. van Ruth S, van Tellingen O, Korse CM, et al. Pharmacokinetics of doxorubicin and cisplatin used in intraoperative hyperthermic intrathoracic chemotherapy after cytoreductive surgery for malignant pleural mesothelioma and pleural thymoma. Anticancer Drugs 2003; 14:57–65

    Article  PubMed  Google Scholar 

  14. Elisson LO, Bjorkman S. Congestive heart failure in rabbits after a single intrapleural administration of a low dose of doxorubicin or epirubicin. Pharmacol Toxicol 1988; 62:84–9

    PubMed  CAS  Google Scholar 

  15. Schimmel KJM, Richel DJ, van den Brink RBA, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 2004;30:181–91

    Article  PubMed  CAS  Google Scholar 

  16. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91:710–7

    Google Scholar 

  17. Danesi R, Fogli S, Gennari A, et al. Pharmacokinetic – pharmacodynamic relationship of the anthracycline anticancer drugs. Clin Pharmacokinet 2002; 41:431–44

    Article  PubMed  CAS  Google Scholar 

  18. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents. Incidence, treatment, and prevention. Drug Safety 2000; 22:304–9

    Article  Google Scholar 

  19. Swain M, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer 2003; 97:2869–79

    Article  PubMed  CAS  Google Scholar 

  20. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 1998;25 (suppl 10):72–85

    PubMed  CAS  Google Scholar 

  21. Icli F, Karaoguz H, Dincol D, et al. Severe vascular toxicity associated with cisplatin-based chemotherapy. Cancer 1993; 15:587–93

    Article  Google Scholar 

  22. Doll Dc, List AF, Greco FA, et al. Acute vascular ischemic events after cisplatin-based combination chemotherapy for germ-cell tumors of the testis. Ann Intern Med 1986; 105:48–51

    PubMed  CAS  Google Scholar 

  23. Meinardi MT, Gietema JA, van der Graaf WT, et al. Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol 2000; 18:1725–32

    PubMed  CAS  Google Scholar 

  24. Lu P. Monitoring cardiac function in patients receiving doxorubicin. Semin Nucl Med 2005; 35:197–201

    Article  PubMed  Google Scholar 

  25. Ng R, Better N, Green MD. Anticancer agents and cardiotoxicity. Semin Oncol 2006; 33:2–14

    Article  PubMed  CAS  Google Scholar 

  26. Herman EH, Zhang J, Lipshultz S, et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol 1999; 17:2237–43

    PubMed  CAS  Google Scholar 

  27. Cardinale D, Sandri M, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109:2749–54

    Article  PubMed  CAS  Google Scholar 

  28. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997; 96:2641–8

    PubMed  CAS  Google Scholar 

  29. Sandri MT, Cardinale D, Zorzino L, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem 2003; 49:248–52

    Article  PubMed  CAS  Google Scholar 

  30. Kremer LC, Bastiaansen BA, Offringa M, et al. Troponin T in the first 24 hours after the administration of chemotherapy and the detection of myocardial damage in children. Eur J Cancer 2002; 38:686–9

    Article  PubMed  CAS  Google Scholar 

  31. Koseoglu V, Berberoglou S, Karademir S, et al. Cardiac troponin I: is it a marker to detect cardiotoxicity in children treated with doxorubicin. Turk J Pediatr 2005; 47:17–22

    PubMed  Google Scholar 

  32. Mathew P, Suarez W, Kip K, et al. Is there a role for serum cardiac troponin I as a marker for myocardial dysfunction in pediatric patients receiving anthracycline-based therapy? A pilot study. Cancer Invest 2001; 19:352–9

    Article  PubMed  CAS  Google Scholar 

  33. Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for the detection of anthracycline Cardiotoxicity in adults with haematological malignancies. Ann Hematol 2003; 82:218–22

    PubMed  CAS  Google Scholar 

  34. Kismet E, Varan A, Ayabakan C, et al. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer 2004; 42:220–4

    Article  PubMed  Google Scholar 

  35. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 1999; 15:79–107

    Article  PubMed  CAS  Google Scholar 

  36. Urano M, Begley J, Reynolds R. Interaction between adriamycin cytotoxicity and hyperthermia: growth-phase-dependent thermal sensitization. Int J Hyperthermia 1994; 10:817–26

    PubMed  CAS  Google Scholar 

  37. Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperthermia 2003; 19:373–84

    Article  PubMed  CAS  Google Scholar 

  38. Dewhirst MW, Viglianti BL, Lora-Michelis M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003; 19:267–94

    Article  PubMed  CAS  Google Scholar 

  39. Nagaoka S, Kawasaki S, Sasaki K, et al. Intracellular uptake, retention and cytotoxic effect of adriamycin combined with hyperthermia in vitro. Jpn J Cancer Res 1986; 77:205–11

    PubMed  CAS  Google Scholar 

  40. Los G, Sminia P, Wondergem J, et al. Optimisation of intraperitoneal cisplatin therapy with regional hyperthermia in rats. Eur J Cancer 1991; 27:472–7

    Article  PubMed  CAS  Google Scholar 

  41. Sesan S. Indications and limitations of radiotherapy in malignant pleural mesothelioma. Curr Opinion Oncol 2003; 15:144–7

    Article  Google Scholar 

  42. Boutin C, Rey F, Viallat J-R. Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma. A randomized trial of local radiotherapy. Chest 1995; 108:754–8

    PubMed  CAS  Google Scholar 

  43. Cuzick J, Stewart H, Rutquist L, et al. Cause specific mortality in long term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994; 12:447–53

    PubMed  CAS  Google Scholar 

  44. Marks L, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 2005; 63:214–23

    Article  PubMed  Google Scholar 

  45. Ozols RF, Locker GY, Doroshow JH, et al. Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res 1979; 39:3209–14

    PubMed  CAS  Google Scholar 

  46. van der Vaart PJM, van der Vange N, Zoetmulder FAN, et al. Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: Pharmokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer 1998; 34:148–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eelco de Bree MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bree, E., van Ruth, S., Schotborgh, C.E. et al. Limited Cardiotoxicity after Extensive Thoracic Surgery and Intraoperative Hyperthermic Intrathoracic Chemotherapy with Doxorubicin and Cisplatin. Ann Surg Oncol 14, 3019–3026 (2007). https://doi.org/10.1245/s10434-007-9508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9508-3

Keywords

Navigation