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Abstract: Probabilistic analysis methods are being increasingly applied in the orthopaedics
and biomechanics literature to account for uncertainty and variability in subject geometries,
properties of various structures, kinematics and joint loading, as well as uncertainty in implant
alignment. As a complement to experiments, finite element modelling, and statistical analysis,
probabilistic analysis provides a method of characterizing the potential impact of variability in
parameters on performance. This paper presents an overview of probabilistic analysis and a
review of biomechanics literature utilizing probabilistic methods in structural reliability,
kinematics, joint mechanics, musculoskeletal modelling, and patient-specific representations.
The aim of this review paper is to demonstrate the wide range of applications of probabilistic
methods and to aid researchers and clinicians in better understanding probabilistic analyses.
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1 INTRODUCTION

; Uncertainty and variability are present in many

aspects of biomechanics and orthopaedics; factors

such as patient geometry, material properties of

various structures, kinematics and joint loading,

implant design and component alignment, as well

as clinical outcomes are all variable in nature. As a

result, the use of statistical analysis has long been

the standard in the field. Anthropometric measures

have been characterized with distributions and

correlations; Student’s t tests and analysis of var-

iance (ANOVA) have been performed to assess

statistically significant differences in experimental

data. Sensitivity of a system has been assessed with

parametric studies, perturbing individual para-

meters, and design of experiments (DOE), utilizing

a matrix of tests or analyses with parameters set at

various levels to account for interaction effects

(Fig. 1). Sensitivity studies determine which of the

parameters considered has the most influence on

the outcome of the system when it’s varied. Such

studies have been applied widely, particularly in

computational studies; however, these methods

often exclude statistical information about the

probability distribution for the input factors by

taking trials evenly sampled across an input range.

Similarly, parametric sweep studies (where a parti-

cular factor is varied across a range of values) fail to

map out the entire design space, and while such

studies are an essential first step, they provide no

information about the effect of variability.

In contrast to a deterministic study where an

output can be exactly determined from a set of

inputs, probabilistic analysis attempts to predict the

output (and its likelihood) accounting for uncer-

tainty associated with the inputs. Consider, for

example, the response of an implanted hip. A

deterministic analysis is likely to assess the potential

differences in the response for a large, active patient

and a small, elderly patient. However, there are often
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many other factors that could impact the hip’s

response in a specific patient, including bone

quality, location and alignment of the implant,

integrity of the surrounding soft tissue structures,

and musculature. Many of these factors are difficult

to quantify and may not be known explicitly, yet

have the potential to impact the response of the hip.

If enough information is known about the system

and its input parameters, it is possible to use

statistical methods to quantify the response of the

system. As the system becomes more complex,

increasingly sophisticated methods are required to

account for the various sources of uncertainty, as is

often the case in orthopaedic biomechanics.

In probabilistic studies, each of the input para-

meters is represented as a distribution instead of a

single mean value. A distribution can be defined by a

probability density function (PDF) or histogram

indicating the likelihood of the parameter taking

on a specific value. Alternatively, a distribution can

be represented by a cumulative distribution function

(CDF), which involves ordering the data from the

smallest to the largest and evenly spacing them

between 0 and 1 on the ordinate [1]. A distribution

may take any form, but a number of common types

are encountered (e.g. normal or Gaussian, lognor-

mal, Poisson, binomial, Weibull). Once defined,

probabilistic methods use the input distributions to

predict a distribution of performance; the distribu-

tion characterizes the range of possible outcomes

and their likelihood, which leads to an understand-

ing of the probable outcomes. The resulting dis-

tribution can be used to assess the bounds of

performance, including performance associated with

a specific level of risk or risk associated with a

specific level of performance. In addition, sensitivity

factors, commonly computed as part of the prob-

abilistic analysis, can provide insight into which

parameters are affecting performance and to what

extent. By representing uncertainty in multiple

inputs, potential interaction effects are incorporated

and the evaluation is more robust than sensitivity

studies performed by varying parameters individu-

ally.

Fig. 1 Representation of sample points for two variables with (a) perturbation-based sensitivity,
(b) design of experiment with two levels, (c) Monte Carlo analysis with 1000 trials, (d)
Latin hypercube sampling with 20 trials
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Probabilistic methods have been extensively ap-

plied in biomechanics applications. Monte Carlo

simulation, which involves randomly generating

values for each variable according to its distribution

and then predicting the distribution of performance

through repeated trials, remains the most commonly

applied probabilistic method (Fig. 1). While robust,

Monte Carlo simulation is computationally expen-

sive and a variety of other more efficient probabil-

istic methods have been developed. Generally, these

methods improve efficiency by either reducing the

sample space based on knowledge of the system or

they are more approximate. While details of these

methods can be found in textbooks [1, 2] and

statistics journals, this paper seeks to present

probabilistic modelling in the context of the unique

applications in the biomechanics field.

Accordingly, the objective of this review paper is to

present the probabilistic methods and analysis

techniques as they are commonly used in biome-

chanics applications, demonstrating the wide range

of applications and aiding the scientific community

in understanding these methods, their benefits, as

well as limitations. The paper is organized by

presenting a brief overview of methods and com-

monly used tools, followed by common applications

in structural reliability, kinematics, joint mechanics,

musculoskeletal modelling, and patient-specific re-

presentation.

2 PROBABILISTIC ANALYSIS METHODS

2.1 Overview of analysis methods

The most commonly applied probabilistic method is

Monte Carlo simulation, which involves repeated

randomly sampling of variables according to their

distributions to populate a distribution of perfor-

mance. Typically many thousands of trials are

required to obtain useful results, and the number

of trials required will increase when the probabilities

involved are small. While Monte Carlo simulation is

often referred to as the ‘gold standard’, it should be

noted that the accuracy of the results are dependent

on the number of trials; associated sampling errors

are dependent on the probability level and can be

computed [1]. A strength of the Monte Carlo method

is its ability to converge to the correct solution, even

if it may be computationally expensive.

A variation of Monte Carlo simulation that

involves more efficiently controlling the sampling

is Latin hypercube sampling (LHS). Rather than

distribute the trials entirely at random across the

possible sample space, LHS attempts to ensure an

even coverage of the design space by partitioning it

such that the associated probability of each partition

is equal [1]. Thus larger partitions or samples exist at

the tails of the distributions and more partitions at

the peaks, thus reducing the risk of clustering of

samples (Fig. 1). For problems with multiple dimen-

sions, samples are selected to give a good statistical

spread by ensuring that each sample falls into a

unique row and column. The two-dimensional case

is called ‘Latin square’ sampling, while an N-

dimensional case is known as ‘Latin hypercube’

sampling. It should be noted that for problems with

multiple dimensions, the LHS method can still result

in clustering. In addition, as the number of trials

increases, the possibility of clustering decreases with

Monte Carlo and the benefits of LHS are reduced.

Another adaptation of Monte Carlo simulation is

the importance sampling method (ISM). With ISM,

the design space is not fully explored and instead

sampling focuses on areas of interest. The effect is to

multiply the accuracy; for example, if it is known

that three-quarters of the design space will not be

associated with a certain performance outcome then

samples can be focused in the remaining quarter,

such that the same accuracy is achieved 4 times

faster.

Response surface methods (RSMs) fit a simple

analytical function of the input variables to approx-

imate the output parameter over the full range of the

sample space. Typically, this will be a low-order

polynomial equation (the response surface equation,

RSE) and regression techniques will be used to select

the term coefficients. Once an RSE is derived, this

can be used as the basis for a Monte Carlo

simulation, since it can be evaluated much faster

than the true model. This method works best when

the true output is well represented by the analytic

function. This is the case for very linear models;

however, highly non-linear functions may not be

well represented and the higher the order of the RSE,

the more samples are needed to achieve a good fit

with the regression. A limitation of this technique is

that results do not generally achieve a high degree of

accuracy because the same analytic function must

approximate the output across the entire sample

space.

In order to reduce analysis time, especially when

deterministic model run times are long, a series of

approximate most probable point (MPP) methods

have been utilized that are more computationally

efficient [1, 3]. The MPP represents the combination

of input parameter values that predict performance
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at a specified probability level (Fig. 2), where perfor-

mance often represents failure in structural relia-

bility applications. The MPP methods typically

determine the most probable point using optimiza-

tion on a first-order Taylor series approximation of

the performance function [1]. Some implementa-

tions map the original random variables into

independent standard normal variables to facilitate

optimization with variables of similar magnitudes.

The various techniques differ in terms of how the

MPP is computed; for example, the FORM (first-

order reliability method) and SORM (second-order

reliability method) use a first-order or second-order

approximation respectively. While the MPP methods

are approximate, they have been shown in many

analyses to be quite accurate in comparisons with

Monte Carlo simulation results, while requiring a

small fraction of the number of computations. The

low computational cost of the MPP methods comes

with a tradeoff; this method only provides informa-

tion for a single point (e.g. probability), so in order to

construct a full PDF or CDF, the method must be

applied repeatedly at each point of interest. The

MPP approaches can have difficulty dealing with

highly non-linear limit state functions. It is impor-

tant to highlight that the MPP methods require a

well-behaved monotonic system; when multiple

combinations of parameters result in the same

output, the method has difficulty converging to a

meaningful solution.

Further detailing the MPP family of methods, the

mean-value (MV) method constructs a mean-based

response function and computes the MPP for the

specified probability levels. As a first-order method,

it provides a good approximation of the solution

near the mean. It is suitable for fairly linear pro-

blems, but can deviate significantly towards the tails

for non-linear problems. The MV method requires

n + 1 trials, where n is the number of random

variables. The advanced mean-value (AMV) method

utilizes the MV as a basis to achieve a better

representation of the response. It does this by

including corrective terms to approximate higher-

order effects and requires n + 1 + m trials, where m is

the number of specified probability levels [4]. Unlike

the RSM, FORM, and SORM, the AMV method does

not provide a parametric function that can be

applied anywhere in the possibility space; instead,

it takes the MV prediction and, using data from the

calculated MPP of interest, corrects this value for a

single level of desired probability (or desired output).

The higher-order approximation achieved by AMV

cannot be applied at any point other than that for

which it was derived; getting estimates for additional

points requires additional applications of the AMV

method. The advanced mean-value with iterations

Fig. 2 The most probable point (MPP) methods use optimization to find the MPP along the limit
state equation. The MPP represents the shortest distance to the origin in the standard
normal space and the highest frequency along the limit state equation. (The figure is
reprinted from NESSUS Theoretical Manual, 2001, with permission from Southwest
Research Institute, San Antonio, Texas)
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(AMV+) method involves the implementation of

AMV but also includes iterations on the MPP to

ensure that convergence to a specified level is

reached. AMV+ has been shown to be very accurate,

even for non-linear problems, though the number of

trials varies with the problem [4].

2.2 Design sensitivity factors

Design sensitivity factors are another valuable result

of probabilistic analyses, as they indicate the effect

of each individual parameter on a given system

output. Knowledge of the most important para-

meters impacting performance is relevant to en-

gineers, designers, and clinicians. Sensitivity factors

can also serve as a useful guide on which factors to

keep or remove in future probabilistic studies if

computational resources are limited. In the case of

predictions for a motion cycle (e.g. gait), sensitivity

factors for each performance measure are often

averaged over the cycle to provide a more straight-

forward ranking of the variables.

There are relative and absolute sensitivities, each

with unique advantages. Relative sensitivities are

commonly referred to as probabilistic importance

factors, a, and give the change in reliability index, b,

with respect to the standard normal variate, u. The

importance factor is defined as

ai~
Lb

Lui
~

Lb

Lp

Lp

Lui
ð1Þ

for each variable with p equal to a specific

probability level. The reliability index, b, represents

performance in the standard normal variate space,

where, for example, probabilities of 0.001 to 0.999

are represented by standard normal variates of 23 to

+3. The sensitivity factor a is computed from the unit

vector to the MPP and represents the relative

contribution of each variable to the variability in

performance. A positive sensitivity indicates a direct

relationship between the value of the variable and

the response, while a negative sensitivity indicates

an inverse relationship. As the standard normal

variate is a function of the mean, standard deviation,

and distribution type, the a sensitivity factor is not

always ideal for the design process.

Instead, absolute sensitivities, Sm and Ss, may be

evaluated. These give the change in probability with

respect to the mean and standard deviation respec-

tively and are determined by

Sm~
Lp

Lmi

si

p
, Ss~

Lp

Lsi

si

p
ð2Þ

where the sensitivities are non-dimensional, allow-

ing comparisons to be made between all of the

variables [5]. These sensitivities indicate how much

the mean and standard deviation of each random

variable contribute to the variability in the response.

In Monte Carlo analyses, relationships between

each variable and the performance measure can be

used as a measure of sensitivity. Specifically, correla-

tion coefficients serve as a measure of the strength of

the relationship, while slopes assess how a change in

input parameter affects the output. Correlation

values near 1 or 21 indicate direct or inverse

relationships (high sensitivity) between the input

parameter and the output, while correlation values

near 0 indicate no relationship (low sensitivity).

Notably, a high correlation speaks to the level of

agreement and can identify the parameters influen-

cing performance, but slope is required to charac-

terize how a change in an input variable affects

performance. As they are linear measures, correla-

tion coefficients and slopes may not provide a good

representation of sensitivity in highly non-linear

systems.

2.3 Common challenges

The most common challenges in probabilistic

analysis are the number of analyses or evaluations

required and determining the appropriate input

parameter representations. Whether performing a

patient-specific analysis or an implant design phase

evaluation, achieving the solution in a timely

manner is critical. When performing a probabilistic

analysis, the repeated model evaluations will require

more computation time than a deterministic evalua-

tion, but are justified in many cases by the additional

information gained. In general, there are typically

tradeoffs between accuracy and efficiency; the

efficient sampling and approximate techniques

described in the previous section can provide

accurate and timely solutions, but may require

validation for a specific system.

Input parameters are represented by a distribution

type (e.g. normal, lognormal, Weibull) and the

associated parameters, which should be derived

from measured data when available. The appropriate

selection of the input parameters is especially

important as it directly affects the predicted bounds

of performance and sensitivity factors. For material

properties, for example, the distribution type and

parameter values (mean, standard deviation) can be

determined from an experimental dataset. However,

input data for some parameters, like component
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alignment, friction, or dimensional tolerances, are

often not known, not available, and/or difficult to

measure. In these cases, distributions can be

estimated based on bounds and tolerances.

In contrast to material properties or applied load-

ing, which can be easily varied in the model when

the distribution is known, implementing geometric

changes is usually more challenging as such changes

often require remeshing the model geometry. In

structural reliability analyses, for example, it is

desirable to include the effects of dimensional

tolerances and alignment, and in kinematics and

joint mechanics predictions, it is desirable to include

variability in patient geometry. As a result, many

probabilistic studies begin with a deterministic or

idealized geometry with varying material properties

and loading input parameters. Recently, automated

model generation and statistical shape modelling

techniques have been successfully demonstrated in

probabilistic applications.

Probabilistic analyses have traditionally evaluated

a single performance measure. In many biomecha-

nics applications, it is desirable to predict multiple

performance measures (e.g. 6 degree-of-freedom

kinematics, contact mechanics, etc.) and the mea-

sures are often a function of the motion cycle. These

more complex analyses can be performed, but

typically require custom interfacing between the

probabilistic method and the model.

2.4 Common tools

To perform probabilistic analyses, there are dedi-

cated probabilistic packages, e.g. Nessus (Southwest

Research Institute, San Antonio, Texas), or probabil-

istic modules within other modelling packages, e.g.

iSight in Abaqus (Simulia, Providence, Rhode Is-

land), PDS in Ansys (Ansys, Inc., Canonsburg,

Pennsylvania), PamOpt in Pamcrash (ESI Group,

Paris, France), and Adams (MSC, Santa Ana, Cali-

fornia). The dedicated probabilistic packages can be

linked with any analysis and tend to offer a wider

variety of analysis capabilities and control, but also

require interfacing with the model (e.g. the finite

element model). The algorithms in Nessus (South-

west Research Institute, San Antonio, Texas) have

undergone verification and validation with the

methods presented in peer-reviewed journal pub-

lications [4, 6–8]. Modelling packages with probabil-

istic modules commonly implement Monte Carlo

and response surface methods; several have im-

proved efficiency by approximating response sur-

faces from derivatives of parameters, including

material properties and even dimensional variability,

within the solution methodology [9]. It is important

to note that an understanding of the underlying pro-

babilistic methods is critical in understanding the

performance predictions and their accuracy. If a

Monte Carlo simulation was performed on a re-

sponse surface, for example, it is possible to have

millions of Monte Carlo simulations, but the under-

lying accuracy of the solution is based on the

number of analyses used to develop the response

surface itself.

3 STRUCTURAL RELIABILITY

Probabilistic methods have traditionally been ap-

plied in applications of structural reliability in

turbine discs [10], automobile and aerospace com-

ponents [11, 12], and offshore structures [13].

Structural reliability applications typically evaluate

failure referring to the likelihood that stresses in a

component will exceed the strength of the compo-

nent’s material. Even when a safety factor, indicating

that stresses are below the material’s strength, is

present, when uncertainty is considered failure may

occur a small percentage of the time.

Early probabilistic studies in biomechanics as-

sessed the structural reliability of orthopaedic

components [14, 15]. Browne et al. applied reliability

theory to aid in fracture mechanics-based life pre-

diction procedures for a tibial tray component

represented as a cantilever beam subjected to

constant amplitude loading [14]. Dar et al. demon-

strated how the Taguchi design of experiments and

probabilistic methods could complement each other

to account for uncertainties when predicting stresses

with finite element analysis in a study of a fixation

plate represented as a cantilever beam [15]. The

effects of geometric tolerances and material property

variability on stress and fatigue life were evaluated

with an automated computational tool to perform

geometric modifications of a hip stem by Easley et

al. [3].

The complexity of the analyses expands consider-

ably when the implant is considered within its

construct, including the surrounding bone and bone

cement. Nicolella et al. developed a three-dimen-

sional model of an implanted cemented hip stem as

the subject of a probabilistic study where variability

in material properties and loading was considered in

order to predict a probability of failure due to three

separate cement failure modes [16]. Mehrez et al.

used an idealized cylindrical finite element model to

represent an implanted cemented hip stem in order
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to assess the most likely mode of failure and to

identify which parameters had the largest contribu-

tion, where geometry, material properties, and

loading were considered to be random variables

[17]. Excellent agreement in results was noted for

FORM and Monte Carlo probabilistic methods.

Similarly, Bah and Browne [18] used an idealized

cemented hip model to look at the effect of

geometrical uncertainty on the cement stresses in

the implanted hip. A response surface was created

using LHS, which was benchmarked using Monte

Carlo simulation; it was found that bone and

prosthesis geometry played a significant role and it

was suggested that these parameters should be

accounted for in future probabilistic analyses. Bah

et al. have evaluated changes in implant alignment

and the corresponding effect on structural integrity

using a mesh morphing technique [19]. The ap-

proach can efficiently generate models with geo-

metric perturbations that can prove useful in

optimization and probabilistic studies. Chang et al.

combined optimization techniques with sensitivity

analysis to demonstrate a robust design of a hip stem

within a bone and cement construct by minimizing

the bone remodelling signal [20]. Latin hypercube

and a statistically based meta-model, based on a

design dimensional, patient-specific load, surgical

placement, and environmental input parameter,

were used to develop a robust acetabular cup design

efficiently [21].

Recent studies have applied probabilistic ap-

proaches to account for fatigue and micromotion

failure mechanisms with uncertainty in material

behaviour, microstructural features, and damage

accumulation. Jeffers et al. applied a Monte Carlo-

based approach to a finite element and continuum

mechanics model to predict the locations of pores

and evaluated fatigue performance of coupons and

an implanted femoral construct [22, 23]. Pidaparti et

al. developed a Monte Carlo-based damage accu-

mulation model for microcracks related to bone

fatigue, including a microdamage parameter with

impact on fatigue life and bone stiffness loss [24]. A

Monte Carlo analysis was performed on a hip stem

construct to evaluate the likelihood of instability or

micromotion based on uncertainty in the bone

material properties, body weight loading, implant

size, and the region of contact [25]. Considering

uncertainty in bone property, loading, and also

component alignment in a hip stem construct,

Dopico-Gonzalez et al. applied probabilistic meth-

ods to find that the volume of strained bone was

sensitive to the implant version angle, bone mod-

ulus, and applied load; good agreement was demon-

strated for Monte Carlo and Latin hypercube

sampling [26, 27]. In a study evaluating the response

of three femurs to two types of implants, one with a

stem and one without a stem, Dopico-Gonzalez et al.

showed that micromotion in both implants was

most sensitive to implant positioning parameters

(Fig. 3) [28]. The stemless design demonstrated

much higher sensitivities, although the order of

sensitivity changed with femur characteristics. Con-

sidering the amount of bonding at the stem–cement

interface as a probabilistic parameter, Pérez et al.

characterized the impact of interface bonding on the

region, mechanisms, and likelihood of failure [29].

When considering bone structures, local material

properties can be applied based on density measure-

ments from computerized tomography (CT) scan

data. Automated techniques have been developed to

build geometries and assign material properties to

patient specific bones from CT scan data [30–32].

Radcliffe and Taylor applied perturbations of com-

ponent alignment [33] and cement mantle thickness

[34] to assess bone strain in a hip stem construct

and, by using a population of 16 subjects, the

analysis considered patient variability. Laz et al.

included uncertainty in the density-to-modulus and

density-to-strength relationships used in assigning

bone material properties and predicted large

amounts of variability in stress and risk in a proximal

femur [35]. Monte Carlo and Latin hypercube

approaches were implemented by Taddei et al. to

evaluate the impact of uncertainty in geometry,

density, and material properties of the bone tissue

on bone displacement stresses and strains under

compression and torsion loading [36]. Using corre-

lation coefficients, the study reported that scaling of

the geometry had the greatest impact on the

performance measures.

4 KINEMATICS

In experimental studies, probed anatomical land-

marks are commonly used to define coordinate

frames in which kinematic motions are reported.

Uncertainty in the identification and location of the

anatomical landmarks were quantified by Della

Croce et al. at intra- and interexaminer levels and

led to variability in predicted kinematics in motion

analysis [37, 38]. Using ANOVA on kinematic data

for the shoulder, de Groot characterized the relative

contributions of palpation errors, motoric noise

(kinematic repeatability), and intersubject differ-

ences [39]. While this study was able to quantify

Probabilistic analysis in orthopaedic biomechanics 7
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the impact of various uncertainties, it required

knowledge of the results a priori.

Alternatively, probabilistic approaches have intro-

duced uncertainty in the anatomical landmark

locations and characterized the impact on reference

frame and kinematic description [40, 41]. Morton et

al. predicted the 1 and 99 per cent bounds for

tibiofemoral and patellofemoral kinematics during

gait and identified the most important landmarks

contributing to the variability [41]. Similarly, in the

shoulder, Langenderfer et al. predicted variability in

reported shoulder Euler angles for 10 subjects due to

anatomical landmark location uncertainty and also

demonstrated that the important parameters were

consistent between subjects [40].

5 JOINT MECHANICS

Kinematic data from motion studies, fluoroscopy,

and experiments are often used to drive inverse

dynamics models to predict intersegmental forces

and moments or finite element analyses to predict

joint contact mechanics. Sensitivity of joint kinetics

during gait has been investigated using non-prob-

abilistic and probabilistic approaches. By applying

ANOVA, uncertainty in body segment parameters,

based on using various estimation models, resulted

in significant differences of up to 20 per cent in the

flexion–extension moment at the hip [42]. In a

motion capture and inverse dynamics study, Holden

and Stanhope showed that changing the knee centre

location by ¡10 mm in the anteroposterior (AP)

direction did not greatly affect the shape of the knee

moment patterns, but the moment magnitude was

significantly impacted and even changed sign at the

slower walking speeds [43].

More recently, Reinbolt et al. applied Monte Carlo

analysis to characterize the uncertainty in inverse

dynamics, including uncertainty in the joint para-

meters (axis positions and orientations) and inertial

parameters (segment masses, mass centres, and

moments of inertia) [44]. The study found that the

predicted joint torques varied by up to 4 per cent of

body weight6height <and were impacted more by

joint parameters than inertial parameters. Langen-

derfer et al. reported similar findings in a small

fraction of the number of analyses using efficient

Fig. 3 Probabilistic application in a hip construct from Dopico-Gonzalez et al. [28]. Three bones
were implanted with two uncemented designs: (a) variable parameters including implant
orientation, muscle forces, and loading, (b) a sensitivity analysis showing the effect of
variable parameters on micromotion for each bone and design
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probabilistic techniques (AMV) and also presented

sensitivity factors to identify the most important

input parameters [45].

The sensitivity of joint mechanics predictions has

been investigated with computational models by

perturbing individual parameters, including defined

axes, component alignment, and material represen-

tations for cartilage, ligaments, muscles, and inter-

vertebral discs. By evaluating the transepicondylar

and geometric centre axis, knee joint kinematics

were shown to be highly sensitive to the selection of

the flexion axis by Most et al. [46]. In a fluoroscopy-

driven finite element study, Fregly et al. character-

ized significant differences in contact force, pres-

sure, and area based on small ¡0.1 mm or degree

perturbations in the pose of total knee replacement

(TKR) components [47].

Probabilistic analysis allows consideration of un-

certainty in multiple parameters, including the

potential impact of interaction effects. Under simu-

lated gait conditions, uncertainty in component

alignment (standard deviations of 0.5 mm and

0.5u), loading and experimental set-up was included

to predict 1–99 percentile envelopes of AP and IE=
kinematics and contact pressure [48, 49]. The

studies showed that efficient AMV results agreed

closely with Monte Carlo results and demonstrated

differences in the relative rank of the important

input parameter for two TKR designs. Utilizing a

similar probabilistic approach with Archard’s law,

Pal et al. presented an efficient platform for predict-

ing implant wear and its variability [50]. Further,

Strickland et al. demonstrated design-dependent

correlations between passive laxity and active gait

mechanics for a cruciate-retaining fixed-bearing

TKR design [51]. Using Monte Carlo simulation on

a rigid-body model, a good correlation was observed

for kinematics and peak contact pressures with those

of Laz et al. [49] under normal gait, and it was shown

that a larger degree of output variability was possible

through the incorporation of spring elements repre-

senting knee ligament restraint.

As soft tissue constraint naturally influences joint

mechanics, numerous experimental and computa-

tional studies have attempted to characterize un-

certainty in ligament material properties, reference

strains, subject-to-subject differences in attachment

site location, and overall passive joint laxity. Varia-

bility in ligament linear stiffness of more than 30 per

cent of the mean has been reported from controlled

experimental characterization tests [52–54]. Prob-

abilistic representations of ligament stress–strain

behaviour have been developed with a microstruc-

tural model accounting for fibre recruitment to

account for the ‘toe’ and linear regions [55] and

with a collagen fibre model [56]. Ligament attach-

ment sites are typically located by digitizing points

in cadaver experiments or from imaging data. In

experiments, the uncertainty is likely to be compar-

able to locating and digitizing anatomical land-

marks, which resulted in standard deviations of up

to 12.2 mm [38]. When using image data, there is

additional uncertainty in defining attachment

boundaries and differentiating between ligament

and adjacent bony or other anatomical structures.

Experimentally measured force–displacement and

torque–rotation knee laxity curves contain large

amounts of variability [57-59]. For example, Markolf

et al., in in vivo AP and IE laxity tests on 49 and 20

subjects, reported standard deviations of up to

2.7 mm and 12.1u respectively [58]. Recognizing the

potential impact of uncertainty, Weiss et al. [60]

advocate performing sensitivity studies, especially

when applying population averages to subject-

specific models. Recent studies have investigated

the effects of uncertainty in the ligament mechanical

properties on the predicted knee joint constraint

(e.g. see references [61] to [63]). Other experimental

[64–66] and computational [62] studies have shown

that varying ligament attachment site locations by as

little as 2 mm affected joint kinematics. Due to the

expensive computational cost of exploring all com-

binations and levels of input parameter variations,

constraint sensitivity predictions typically involved

discrete changes in ligament input parameters

(stiffness) and were focused on the cruciate liga-

ments under specific loading scenarios. Recently,

Baldwin et al. [67] developed a probabilistic repre-

sentation of knee ligament constraints, including

uncertainty in ligament stiffness, reference strain,

and attachment site (Fig. 4). The predicted laxity

bounds showed that the efficient AMV method

agreed closely with the Monte Carlo method, with

a fourfold reduction in computation time and

sensitivity factors identifying the critical properties

agreed with reported ligament recruitment [67].

Probabilistic methods have also been applied in

spine mechanics to assess the important factors

affecting torque–rotation behaviour. Variability in

annulus, nucleus, bone, and ligament material

properties were included in a cervical spine model

to predict the distribution of rotation due to an

applied flexion–extension moment, sensitivity fac-

tors, and the risk of injury [69]. Ng and Teo studied

the influence of material moduli uncertainty in

cervical spine components on biomechanical re-
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sponses and disc annulus stress using a three-

dimensional finite element model and Monte Carlo

simulation methods [70]. Lee and Teo [71] used

probabilistic sensitivity factors to identify the im-

portant bone, disc, and ligament material properties

affecting sagittal rotation in the L2–L3 functional

spinal unit (FSU). Highlighting computational effi-

ciency both in the finite element formulation and in

the probabilistic analysis, AMV-predicted torque–

rotation behaviour considering disc and ligament

material variability in a natural lumbar spine FSU

compared well with Monte Carlo results and

required only 4 per cent of the analysis time [72].

Using Monte Carlo simulation and an L3–L5/S1

model, Rohlmann et al. evaluated the effect of disc

replacement alignment, implant radius, facet spa-

cing, and scar tissue on intervertebral rotation and

facet loading [73].

6 MUSCULOSKELETAL MODELLING

In inverse-dynamics applications associated with

musculoskeletal modelling, kinematics are applied

to determine the muscle moment arms and forces

generated for a specified motion. The uncertainty

described in identifying anatomical landmarks and

constructing coordinate frames and intersubject

variability in kinematics will be carried forward to

affect moment arm and muscle force predictions. In

musculoskeletal modelling, moment arms are often

evaluated and compared to experimental data as a

verification step. Pal et al. have predicted substantial

levels of variability in moment arms for muscles in

the lower limb, considering uncertainty in the

muscle attachment site, kinematic variability, and

moment arm calculation technique [74].

In forward dynamic applications, muscle activa-

tion and a muscle model (e.g. Hill type) are used to

predict muscle forces and ultimately kinematics. The

sensitivity of forces predicted by a Hill-type muscle

during a forward dynamic simulation were esti-

mated by perturbing the individual muscle model

inputs [75]. By varying each muscle parameter by

¡50 per cent, Scovil and Ronsky found that muscle

force was very sensitive to the parameters defining

the length of the tendon (series elastic component),

the force–length curve of the contractile element,

and the maximum isometric force [75]. In a lower-

limb musculoskeletal model developed by McLean et

al. [76], Monte Carlo perturbations on activation

levels in the quadriceps and hamstrings and initial

contact conditions were used to evaluate three-

dimensional loading at the knee. Compared to

proposed injury mechanisms associated with sagittal

plane forces, the predicted distribution of joint

loading never exceeded the level expected for an

ACL tear [77].

The upper extremity has been the subject of

numerous probabilistic analyses due to the relative

importance and uncertainty associated with muscle

loading in the complex motions of the shoulder,

elbow, and hand. Flieg et al. [77] performed a Monte

Carlo simulation on a musculoskeletal model of the

glenohumeral joint with uncertainty in muscle

forces to compute the likelihood that the glenohum-

eral net reaction force would be directed to promote

superior humeral head migration. Moving away

Fig. 4 Probabilistic prediction of knee laxity bounds including uncertainty in ligament stiffness,
reference strain, and attachment site from Baldwin et al. [67]: (a) finite element model
with ligament structures, (b) predicted laxity bounds (mean, 5 and 95 per cent) for
anterioposterior translation at full extension for the Monte Carlo and AMV methods
compared to experimental data [68]
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from a single average musculoskeletal model, Lan-

genderfer et al. accounted for subject variability with

distributions characterizing musculoskeletal archi-

tecture and moment arm and showed that the

probabilistic predictions of glenohumeral strength

for healthy normal and subjects with rotator cuff

tears explained the variability in measured values

[78].

Probabilistic predictions with a biomechanical

model of the elbow evaluated differences in joint

force and torque distributions with and without long

head biceps rupture [79]. To account for anatomic

and kinematic variability in the hand, Valero-Cuevas

and co-workers applied Monte Carlo simulation to

forward and inverse musculoskeletal models of the

thumb [80, 81]. Valero-Cuevas et al. showed that

robabilistic analysis incorporating variability and

uncertainty in musculoskeletal parameters yielded

differences between thumbtip force predictions and

measurements, and non-physical results; accord-

ingly, kinematic descriptions, not parameter uncer-

tainty, were identified as the area requiring improve-

ment [80]. By converting anatomic variability into a

standard robotics formulation, Santos and Valero-

Cuevas were able to identify a set of models

accounting for anatomic and functional variability

as an alternative to subject-specific models [81].

7 REPRESENTATIONS OF SUBJECT GEOMETRY

Understanding the potential impact of intersubject

variability has been the focus of many prior works.

Recent advances in imaging and geometry extraction

techniques have facilitated the development of

subject-specific models from CT and magnetic

resonance (MR) scan data; however, the process

remains largely manual and time consuming. As a

result, many studies evaluated a small number of

subject-specific models. Recently, intersubject varia-

bility has been considered by expanding the number

of subject models. Based on reconstructed knee

cartilage geometries from a dataset of MR images

from 20 subjects, Connolly et al. characterized

relationships between tibiofemoral cartilage thick-

ness and a variety of anthopometric measures [82].

Using a population of 16 subjects, Radcliffe and

Taylor considered patient variability [33, 34] and

with co-workers provided an approach to determine

the minimum sample size to evaluate a new implant

design or to characterize statistically significant

differences in design parameters [83].

An alternative approach for capturing intersubject

variability is statistical shape modelling, which

provides a representation of the variability present

in a training set. Statistical or active shape models

have used a point distribution model (PDM) to

develop point-to-point correspondences between

the instances in a training set [84–86]. Principal

component analysis is often used to identify the

common modes of variations, including the vectors

along which the PDM changes [87]. As a result, the

principal components can also be used to generate

geometries of new ‘subjects’ using the statistical

shape model. These techniques have been applied to

develop shape models of individual bones [85] and

statistical models that include both shape and bone

density material property information (Fig. 5) [88–

91]. Utilizing an underlying template mesh and

morphing mesh handles to structure locations in

scan data for a new subject, Baldwin et al. demon-

strated that mesh morphing can be applied effi-

ciently to build a training set for statistical shape

modelling [92]. Statistical shape modelling has been

used to evaluate sizing and optimize coverage of

implants on resected bone surfaces [93], to create

subject-specific representations from incomplete or

sparse datasets from less invasive methods (e.g.

ultrasound) [94–96], and to investigate morphologi-

cal correlation between multiple bones in a joint

[97].

When used in conjunction with a probabilistic

analysis technique, like Monte Carlo, statistical

shape models can create a ‘simulated’ population

of subjects that can be used for biomechanical

evaluations, like fracture risk or the performance of

an implant design. Bryan et al. applied a statistical

model of shape and bone density (Fig. 5) based on a

training set of 21 subjects in order to evaluate

femoral neck fracture risk in a population of 1000

models [91]. The shape modelling approach pro-

vides an efficient means to evaluate larger numbers

of subjects, including extremes, with the caveat that

the variability in the population is based on the

training set.

8 SUMMARY

This paper has demonstrated the wide range of

applications of probabilistic modelling techniques

within biomechanics. There is a long history of

traditional computational and experimental investi-

gations in the academic literature. These studies

have undoubtedly been valuable in directing current

practice in terms of implant design and performance

assessment. At the same time, despite good lab

practices, experimental data contain large amounts

Probabilistic analysis in orthopaedic biomechanics 11
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of variability due to inherent uncertainty. For

example, even very similar tests on total knee

replacements have resulted in a tenfold difference

in wear rate, demonstrating that experimental pro-

cedures and sources of variability may not be fully

controlled or understood [98, 99]. Many computa-

tional studies are focused on a small number of

subjects and have not considered the high levels of

variability inherent in the system under investiga-

tion. Given the rising demand for orthopaedic

surgery and the amount of patient variability in

factors such as age, size, and activity level, to name a

few, there is a clear need for improved pre-clinical

analysis methods that are computationally efficient

and can provide additional useful information that

has not been available to date using traditional

deterministic methods.

A benefit of probabilistic analysis is the quantita-

tive characterization of how an output measure is

affected by variability in input parameters, including

consideration of variable interaction effects and

prediction of bounds of performance. In addition, a

probabilistic analysis can provide valuable insight

into the range of possible outcomes and the

robustness of implant designs. It has also been

shown that in many studies probabilistic techniques

have been used to evaluate sensitivity of the output

measure and to identify the most important para-

meters impacting performance. In alignment-related

studies, knowledge of the critical parameters can

influence surgical or experimental techniques.

With continuing improvements in computational

resources and the desire for improved understand-

ing of factors affecting clinical performance, it is

expected that applications of probabilistic analysis

will continue to grow in the biomechanics field.

Applications of efficient probabilistic methods have

been highlighted in numerous studies as providing

accurate solutions in a small fraction of the

computation time; however, benchmarking of these

techniques against Monte Carlo simulation is re-

commended when applied to a new system.

While the benefits of probabilistic analysis may

seem compelling, it should be noted that probabil-

istic approaches require many more trials, and

therefore necessitate faster modelling methods than

the deformable finite element models historically

employed. Rigid-body modelling, even within the

finite element platform, can provide this speed

increase, usually with a minimal tradeoff in accuracy

[100]. Increased computational power is one factor

that has been highlighted as being crucial to the

development of probabilistic analyses. However, it is

the need for accurate, authentic data for input and

output parameters that is arguably the most im-

portant factor in the development of probabilistic

methods. Probabilistic analyses often make assump-

tions about an input distribution based on a limited

amount of available data. It is important that

conclusions based on predicted output distributions

are valid and based on accurate and reliable input

data. This underscores the importance of mutual

understanding and close collaboration between the

computational modeller and the experimentalist, so

that potential sources of variability can be quantified

during an experiment and accounted for in the

analysis. Considering the various sources of uncer-

tainty, probabilistic methods have the potential to

aid in the design of implants that are robust to

population variability, the development of relation-

ships between component alignment and perfor-

mance to assist clinicians, and more holistic assess-

ments of joint mechanics, musculoskeletal loading,

and pathologies.

F Authors 2010
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