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Abstract: 

Hip Resurfacing is an established treatment for osteoarthritis in young, active patients. Failure modes 

include femoral neck fracture and prosthesis loosening, which may be associated with medium term bone 

adaptation, including femoral neck narrowing and densification around the prosthesis stem. 

Finite Element modelling was used to indicate the effects of prosthesis sizing and positioning on bone 

remodelling and fracture strength under a range of normal and traumatic loads, aiming to understand these 

failure modes better. 

The simulations predicted increased superior femoral neck stress shielding in young patients with small 

prostheses, which required shortening of the femoral neck to give an acceptable implant-bone interface. 

However with a larger prosthesis, natural femoral head centre recreation in the implanted state was 

possible, so stress shielding was restricted to the prosthesis interior, and its extent was less sensitive to 

prosthesis orientation. With valgus orientation, the implanted neck strength was, at worst, within 3% of its 

intact strength. 

The study suggests that femoral neck narrowing may be linked to a reduction in horizontal femoral offset, 

occurring if the prosthesis is excessively undersized. As such, hip resurfacing should aim to reproduce the 

natural femoral head centre, and for valgus prosthesis orientation to avoid femoral neck fracture. 
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1 Introduction 

     Resurfacing Hip Replacement (RHR) is an established alternative to traditional Total Hip Replacement 

(THR) for young, active osteoarthritis patients. Resurfacing prostheses offer greater femoral bone 

conservation to aid revision surgery, reduced dislocation risk, shorter recovery time and, in theory, more 

natural joint biomechanics, reducing patient perception and adverse bone remodelling effects [1, 2]. The 

results of early hip resurfacing surgery showed high levels of aseptic loosening, resulting from osteolytic 

response to wear particles from the cobalt chromium – polyethylene bearing couple [3, 4]. Since the 

introduction of metal-on-metal (MoM) resurfacing implants in the late 1990s, the procedure has achieved 

similar medium term results to THR, despite the demanding young patient cohort [5]. The main failure 

mode seen in the latest generation of implants is early femoral neck fracture in the first post-operative year, 

with an incidence of 0.5-2%. There is considerable debate surrounding the cause, and a combination of 

surgical, patient selection and implant design related factors are thought to contribute [6-11]. As longer 

follow-up evidence has been collected, narrowing of the femoral neck at the head-neck junction has been 

identified radiographically in a considerable proportion of resurfacing patients [3, 12-15]. In the most 

recent studies, narrowing was observed to stabilise after two to three years, and hence the clinical 

significance is unknown. However, radiographic changes are reported to be more extensive prior to 

prosthesis migration [14], so a greater understanding of the underlying causes would be beneficial. 

     In an attempt to find a biomechanical explanation for fracture and narrowing of the femoral neck, the 

results of several computational stress analysis studies have been published which have made predictions of 

the stress and strain distribution in the bone supporting femoral resurfacing heads. Early, simplified finite 

element analysis (FEA) models demonstrated a reduction in stress within the resurfaced femoral head [16-

18] and biomechanical theory [19] and analysis [20] showed that valgus orientation reduced the risk of 

femoral neck fracture. Later, more detailed, patient specific models with geometry and materials properties 

based on Computer Tomography (CT) scans were used to obtain more precise, absolute bone strain 

predictions [21-30]. These studies have considered the effects of different prosthesis-bone interface 

conditions, fixation methods including cementless and cemented fixation with different cement mantle 

thicknesses, and variations in prosthesis positioning including varus-valgus orientation and incomplete 
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prosthesis seating. The main findings, in agreement with clinical observations, were that the extent of stress 

shielding is higher with a fully bonded prosthesis and stem, a larger diameter stem and a thicker cement 

mantle. Cementless fixation was not found to change the biomechanics compared to those with a cemented 

implant. However, the effects of varus-valgus orientation have been reported [25, 26, 28] with 

contradictory results. 

     The above studies have not predicted patterns of bone remodelling stimulus which are entirely 

consistent with clinically observed radiographic changes in the resurfaced hip. While these studies permit a 

preliminary understanding of the biomechanical behaviour of the resurfaced hip, there are still a number of 

factors that have yet to be addressed in detail in the literature to date; for example, the effect of clinically 

relevant implant positioning on the strains in the femur has been the subject of a limited number of studies 

[25, 28]. Of increasing significance and relevance to the younger patient population, conventional studies 

have focussed on gait loading patterns, while the active patient is likely to subject the implant to more 

traumatic loading regimes such as stumbling and sideways falls. 

     In the present study therefore, the influence of femoral resurfacing head prosthesis positioning on the 

biomechanical performance of the joint was investigated. Performance was assessed in terms of the 

remodelling stimulus under gait loads, and the distribution of failing bone in trauma, for stumbling and 

oblique falling load cases. 



5 

2 Methods and Materials 

     A subject specific CAD model of the proximal third of the femur was obtained from the computer 

tomography (CT) scan of a 63 year old male angiograph patient (height 1.77m, weight 85kg) with no 

known orthopaedic disorder. The femur geometry was extracted from the CT scan as a mesh using Amira 

software (Mercury Computer Systems Inc, Chelmsford, MA), and CAD surface geometry was fitted to the 

anatomy in SolidWorks 2007 software (SolidWorks Corp, Concord, MA). The femoral head was 

resurfaced with a traditional design hip resurfacing prosthesis, representative of the BHR (Smith&Nephew, 

Memphis, TN, USA) and the ADEPT (Finsbury Orthopaedics, Leatherhead, UK) designs. 

     The prosthesis was positioned according to contemporary operative technique, referencing the 

maximum diameter of the femoral neck, rather than the femoral head centre. Using SolidWorks, the femur 

model was partitioned at the prosthesis-bone interface so that it could be analysed first in the intact, pre-

operative state, and then again with the cut bone removed and the prosthesis introduced. In this way, the 

mesh in the retained bone would be identical in the pre- and post-operative models, removing averaging 

errors from the remodelling stimulus calculation. The only deviation of the cut surface of the bone from the 

prosthesis internal geometry was where the distal section of the traditional design stem tapers, and the 

drilled bore for the stem was parallel sided and drilled over length by 5mm. 

     The biomechanical geometry and free body diagrams in the pelvic and femoral frames of reference are 

shown in Fig. 1. Two surgical variation metrics were investigated. First, the prosthesis was implanted with 

±10° varus-valgus orientation relative to the neutral femoral neck axis, indicated by the neck-shaft angle 

(NSA). With the selected 50mm bearing diameter prosthesis, this was the maximum variation which could 

be achieved without notching the femoral neck or leaving exposed cancellous bone at the head-neck 

junction. However, achieving the desired head neck junction using this small sized prosthesis resulted in 

reduction of the horizontal femoral offset and the abductor muscle moment arms (HFO and AMA, Fig. 1), 

as shown by the data in Table 1. A coordinate system was created, aligning the mechanical axis of the 

femur with vertical (Fig. 1, right). The mechanical axis-shaft angle (MASA) was adjusted where the 

prosthesis position changed the femoral head centre by tilting the bone in the frontal plane, so that the 

mechanical axis remained vertical (Table 1). This is based on the assumption of a constant femoral 
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equilibrium force (FEF) and femoral equilibrium moment (FEM) applied to the bone by the other muscles 

and bone structures. To isolate the effect of femoral offset from that of varus-valgus positioning, a second 

group of models was produced by resurfacing with a 52mm bearing diameter prosthesis, which permitted 

the natural femoral head centre position and horizontal offset distance to be recreated in the resurfaced 

joint, throughout the range of varus-valgus angles.  

     The bone and prosthesis geometry was imported into ANSYS V11 (ANSYS Inc, Canonsburg, PA) FEA 

software where it was meshed with second order solid elements: tetrahedral in the bone, and mapped 

hexahedra in the prosthesis. The implanted mesh contained approximately 160,000 nodes, refined in the 

proximal bone and at the prosthesis-bone interface. The bone elements were assigned linear isotropic 

materials properties using Bonemat software (Rizzoli Institute, Bologna, Italy) referring to the original CT 

data and linking the bone Young’s Modulus to the bone density using the relationship E = 6950 ρ
1.49

 [31]. 

The prosthesis elements were assigned a Young’s Modulus of 200GPa representing Cobalt Chromium, and 

a region of elements approximately 2.5mm thick in the bone at the interface with the prosthesis were set at 

2.8GPa, representing PMMA bone cement interdigitated bone [22]. The stem was modelled in sliding 

contact with the bone with a nominal friction coefficient of 0.4 [22]. The mesh was verified using a 

convergence analysis with the distribution of Young’s Modulus, strain and strain energy density (SED) 

throughout the bone as convergence criteria. 

     Three load cases were modelled, representing one gait and two traumatic scenarios. First, the femoral 

neck fracture scenario was analysed in stumbling, by applying a joint contact force (JCF) to the femoral 

head at 8° adduction representing the worst case loading condition identified from a cadaver study [32]. 

The joint contact force was applied using a circular pressure distribution over a circular patch of nodes on 

the bearing surface according to Hertzian theory [33] and corroborated by Udofia et al [34], of 5mm radius 

for the implanted cases and an approximated 10mm radius for the intact case.  Second, femoral neck 

fracture was investigated for ‘oblique’ falling, in a sideways and backwards direction, also studied 

previously for the intact hip [35-37]. The femur was oriented with the femoral shaft inclined at 30° to 

horizontal and the femoral neck angled 20° anteriorly, and the joint contact force applied to the femoral 

head, and reacted at the greater trochanter. Finally, a gait scenario was modelled representing normal 

walking, simulated by 2.0kN (or 2.4 x bodyweight) joint contact force on the femoral head with 13° 
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adduction and 8° flexion [38], and a 0.87kN (or 1 x bodyweight) abductor muscle force (AMF) at 33° to 

vertical in the frontal plane, directed towards the centroid of the gluteus muscle origins and wrapping points 

on the pelvis. 

     The femoral neck fracture risk was assessed quantitatively by calculating a risk factor (RF) for each 

element [36, 39-42], as the ratio of the greater of its tensile and compressive principal strains to a tensile or 

compressive yield strain from in-vitro data [43]. In tension, yield strains of cancellous and cortical bone 

were set at 6200με and 7300με respectively. For compression, a yield strain of 10400με was used. To 

compare the performance of the models, loading was increased in 0.05kN increments and RF was 

calculated, and the load of the first failing element recorded as the predicted femoral neck fracture load. 

     The remodelling stimulus was quantified using strain energy density (SED) based methods [44, 45], 

whereby the percentage change in SED was calculated from the pre- to post-operative conditions. A 

threshold level of remodelling stimulus of ±75% change was used in accordance with previous studies [23, 

28]. This value was an empirical fit of FE model results to radiographic data from older, total hip 

arthroplasty patients [44] and resulted in relatively small volumes of remodelling bone, so a second 

threshold value of ±50% change was used, to represent the younger patient with a more active metabolism- 

the target patient for hip resurfacing. 
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3 Results 

Results are presented in two sections:  

 the femoral neck fracture risk in traumatic loading, and  

 the bone remodelling stimulus in gait loading. 

 

3.1 Femoral Neck Fracture Risk 

     The femoral neck fracture load was predicted for the bone resurfaced with the 50mm and 52mm 

prostheses in varus, neutral and valgus orientations and compared to the natural bone, for stumbling and 

sideways falling loads. The results are included in Fig. 3 and Fig. 4, with the distribution of failing 

elements in Fig. 5 for a given load: 6kN in stumbling and 3kN in falling. 

     Under stumbling loading, the results predicted that resurfacing the femoral head with the smaller, 50mm 

prosthesis would reduce the femoral neck fracture risk, giving a higher predicted femoral neck fracture 

load. Compared to the natural case, the fracture load was predicted to increase by approximately 8%, 9% 

and 18% for varus, neutral and valgus orientations respectively. When the 52mm prosthesis was used, and 

the natural femoral head centre was recreated postoperatively, the femoral neck fracture risk was increased 

by resurfacing, reducing the predicted fracture load by approximately 20% with varus implant orientation 

and 9% in neutral orientation. In valgus orientation, the predicted neck fracture load was within 2% of the 

intact case. 

     The results obtained from the 52mm prosthesis models (without any confounding effects of femoral 

offset) showed a positive correlation between the femoral neck fracture load and increasing valgus 

prosthesis orientation. This may be explained by the increased proportion of load which is transferred to the 

femoral neck in compression when the prosthesis is valgus oriented, reducing bending stresses and shear at 

the head-neck junction [19, 20]. It is also illustrated by analysis of the location of damage initiation, as seen 

in Fig. 5. In the valgus case, where the predicted neck fracture load was within 2% of the natural case, the 

damage initiated in the superior femoral neck, in the same location as the natural case. However, with the 

neutral and varus oriented prostheses, the first damage initiated in the bore for the stem of the prosthesis, 
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and the reduced predicted fracture loads suggest that the femoral neck would be weakened in these cases. 

Fig. 5 does not contain results for the 50mm prosthesis because the damage initiation stumbling load was 

greater than 6kN in all cases. 

     The same trend of reduced neck strength with increasing varus prosthesis orientation was seen for the 

smaller, 50mm prosthesis as with the 52mm resurfacing head, but the femoral neck fracture load was 

higher for all the femurs resurfaced with the smaller prosthesis. Neck strength was highest when the 

femoral offset was reduced most, with valgus orientation of the 50mm prosthesis, and this may be 

explained by the reduced femoral offset which generates a lower bending moment on the femoral neck. The 

applied load was sustained to a greater extent as compression in the femoral shaft, resulting in higher 

femoral neck fracture strength. 

      For sideways falling, all fractures were predicted to originate from the anterior-medial femoral neck, as 

seen in Fig. 5. A similar improvement in neck fracture strength with smaller prosthesis size and therefore 

reduced femoral offset can be identified in the results for sideways falling, as seen in Fig. 4, where the 

strength was higher for the hips resurfaced with the 50mm head, by up to 12% for neutral orientation. 

However, the proximity of the prosthesis stem bore to the medial femoral neck when the prosthesis was 

oriented in valgus resulted in lower fracture strength than the other orientations, despite its lower offset, but 

all strength values were above that for the intact bone. The neck strength was lower for the larger 

prosthesis, but within 3% of the natural strength for all orientations. Again, Fig. 5 does not contain results 

for the 50mm prosthesis because the damage initiation falling load was greater than 3kN in all cases 
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3.2 Bone Remodelling Stimulus 

     The remodelling stimulus (percentage change in strain energy density) was calculated for the six 

implanted cases and is shown for a cross section along the femoral neck axis in Fig. 6. This indicates the 

locations in which bone resorption and densification would be expected; for an elderly patient these 

correspond to a stimulus below -75% and above 75% respectively, shown by the bottom and top contours 

on the charts. In all cases, extensive stress shielding was predicted within the superior femoral head, with 

densification around the stem bore, particularly around the narrowest point of the femoral neck, and at the 

tip of the stem bore. Apart from a small region in the inferior side of the stem bore, stress shielding was 

restricted to the interior of the femoral head for the elderly patient. 

     However, if a threshold remodelling stimulus of 50% was assumed, for a younger patient, stress 

shielding and bone densification are indicated by the bottom and top two contours. In that case, stress 

shielding was predicted to extend into the superior femoral neck when the smaller, 50mm prosthesis was 

used, for all orientations. 

     Fig. 7 quantifies the relative extents of bone remodelling for the six models, containing charts showing 

the volume of bone which would be stress shielded and in hypertrophy for each of the six cases, for an 

elderly patient (±75% threshold remodelling stimulus) and for a younger patient with a more reactive 

metabolism (±50% threshold stimulus). These charts predict a trend for increased remodelling as the varus-

valgus angle of the prosthesis increases. The volume of hypertrophic bone was predicted to be similar for 

both sizes and all orientations, but the results suggested that stress shielding would increase with valgus 

positioning, particularly for the smaller (50mm) prosthesis and the younger patient. The volume of bone at 

the extreme magnitudes of remodelling stimulus (±75% threshold) was between 7.5% and 8.1% for the 

50mm prosthesis, of which 6.5% to 7.0% represented stress shielding. There was a slight increase in stress 

shielding with increasing valgus orientation, and a hip resurfaced with the 52mm prosthesis was predicted 

to follow a similar trend with 6.9% - 8.1% of the proximal bone stress shielded. However, the volume of 

densifying bone was predicted to be higher for the larger prosthesis, in particular in the inferior femoral 

head and at the tip of the stem bore. 
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     Analysis of the volume of bone with a remodelling stimulus greater than the ±50% threshold- 

representing the younger patient- indicated that stress shielding in particular would be more severe if a 

small prosthesis were used, oriented in valgus. This is evident in Fig. 7. From Table 1, it may be 

hypothesised that this increase in stress shielding results from the reduction of the cantilever length and 

therefore the bending moment on the femoral neck as a result of the shortened femoral offset measurement. 

Analysis of the remodelling stimulus distribution charts in Fig. 6 shows that the extent of stress shielding 

inside the femoral head was similar for all prosthesis orientations, and that this increased remodelling 

stimulus arose instead from increased stress shielding in the superior femoral neck, which would be 

consistent with a reduced femoral neck bending moment. This theory is further supported by the fact that 

the volume of stress shielded bone was predicted to be considerably lower and almost unaffected by 

prosthesis varus-valgus orientation for the younger patient if the 52mm prosthesis were used. In that case, 

the natural joint centre (and therefore the femoral offset) could be recreated postoperatively. In this 

scenario, irrespective of prosthesis orientation, stress shielding was not predicted to extend into the femoral 

neck. This trend of increased stress shielding with reduced femoral offset is illustrated in Fig. 8. 
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4 Discussion 

     Despite excellent medium term clinical results, there is scope for improvement of resurfacing hip 

prosthesis surgery to reduce the incidence of early femoral neck fractures, and to prevent longer term bone 

adaptation which may lead to later neck fractures or prosthesis loosening. Whilst patient selection and 

education play a major role in the outcome, the biomechanics of the resurfaced hip joint have a 

considerable effect and were investigated in this study using an FE model, considering the effects of a 

range of surgical orientations and two prosthesis sizes on the femoral neck fracture risk and the extent and 

pattern of bone remodelling in the femoral head and neck. 

     The first part of the study looked at the effects of prosthesis positioning and sizing upon the femoral 

neck fracture load under stumbling and sideways falling scenarios. In stumbling, the natural femoral neck 

fracture strength was predicted to be recreated in the resurfaced joint if the prosthesis was oriented with 10° 

of valgus compared to the neck axis, with its bearing centre at the natural joint centre location. This was 

achieved with a 52mm prosthesis. Neck fracture strength was predicted to decrease approximately linearly 

as the prosthesis angle moved through neutral to 10° of relative varus orientation. The results are in close 

agreement with clinical experience which has identified excessive varus orientation as a risk factor [8, 20]. 

The results are also in agreement with in-vitro mechanical test results, such as the study of resurfaced 

synthetic and cadaveric femurs by Davis et al [46], which also identified an approximately linear 

correlation between neck strength and varus-valgus angle, and recreated natural fracture strength with a 

prosthesis at around 10° of valgus orientation. 

     Prosthesis positioning with a reduction in the horizontal femoral offset distance was necessary when the 

smallest possible (50mm prosthesis) was used, in order to avoid notching the femoral neck. This increased 

the femoral neck fracture load for all prosthesis orientations. Whilst a reduction in femoral offset distance 

would, during gait, result in increased abductor muscle force and therefore joint contact force, under 

instantaneous traumatic events without muscle involvement such as those modelled in this study, this 

femoral neck cantilever length effect dominates, so the shortened femoral neck made the resurfaced joint 

stronger. The predicted fracture origin in the natural bone, the superior femoral neck, was representative of 

one of the morphologies identified by Cristofolini et al’s cadaveric tests [32] using the same loading 
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conditions, and the fracture origin only moved from this region when the prosthesis was oriented and sized 

to weaken the femoral neck. In this case, damage initiated in the bore for the prosthesis stem around the 

narrowest point of the femoral neck, and could reasonably propagate across to the prosthesis rim. This 

would be in agreement with the implanted fracture morphologies identified by Morlock et al’s retrieval 

analysis [47]. 

     The model indicated that under loads representing a sideways fall, the femoral neck bone damage 

initiation load was increased by up to 10% when the femoral offset was shortened. In this case, the damage 

initiation load was predicted to be lowest, and the same as the intact bone, for the valgus oriented 

prosthesis, because this is the position in which the stem bore is closest to the damage initiation site at the 

medial femoral neck, as seen in Fig. 5. The femoral neck fracture risk was very similar to the intact case 

when the hip was implanted with the larger prosthesis (within 3% of the fracture load), so considering the 

degree of uncertainty associated with the FEA modelling approach, it can be concluded that in a sideways 

fall onto the greater trochanter, there may be no significant increase in the femoral neck fracture risk 

following resurfacing. 

     The second part of the study was concerned with the effects of prosthesis varus-valgus orientation and 

prosthesis sizing, and therefore femoral offset, upon the remodelling occurring in the supporting femoral 

head and neck bone. Patterns of bone remodelling based on the immediate post-operative remodelling 

stimulus were predicted to be in agreement with previous modelling studies and clinical observations. This 

included bone resorption in the superior femoral head, observed in loosened implants [16-18, 20-29], and 

densification to form sclerotic ‘pedestal lines’ around the prosthesis stem tip and along its superior edge 

[14, 48]. These were predicted to occur for both prosthesis sizes and all implant orientations. Previous 

modelling studies have linked these pedestal lines to stem tip load transfer [17, 24], although in the 

immediate post-operative state there is no contact between the stem tip and the bone, and these results 

agree with more recent modelling results by Ong et al [28] which indicated that the presence of the bore 

alone is sufficient to cause bone densification around the stem. 

     Previous studies have investigated the effects of varus-valgus orientation on the bone remodelling 

stimulus, with modelling studies obtaining contradictory results. Long and Bartel [25] found that the 
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prosthesis had to be displaced by 5mm distally along the femoral neck axis from the natural head centre in 

order to avoid exposure of reamed cancellous bone; this resulted in very similar reductions in femoral 

offset to this study. They reported an increased risk of femoral component loosening for the varus 

orientation, but only by consideration of cement peak tensile stress. They also reported the load transfer 

across the implant-bone interface and indentified simply that the loading of the dense femoral head 

cancellous bone was reduced for all implanted cases. Radcliffe and Taylor [26] used a remodelling stimulus 

approach, and identified a more natural strain distribution in the femoral neck for a valgus oriented 

prosthesis. They investigated varus-valgus angles of ±10° but they sized the prosthesis sufficiently that the 

natural femoral head centre was recreated for all orientations. They also over-reamed the stem bore, and 

modelled the ASR prosthesis (DePuy International) which has a fully tapering stem: as such, there would 

be no remodelling effects of the prosthesis stem, only of the bore drilled to accommodate it. Conversely, 

the results obtained by Ong et al [28] from ±15° of varus-valgus orientation indicated a considerable 

increase in femoral head stress shielding and the extension of stress shielding into the superior femoral 

neck for the valgus prosthesis. They modelled the same design prosthesis as in this study, giving stem-bone 

contact along its cylindrical portion, just beyond the rim of the prosthesis. Furthermore, instead of over-

sizing the prosthesis to maintain the natural head centre, their models appeared to be more representative of 

clinical results, simulating a similar reduction in horizontal femoral offset with valgus prosthesis 

positioning. 

     Clinical data on hip resurfacing has enabled an understanding of the effects of prosthesis positioning and 

sizing on bone remodelling. Silva et al [49] reported in their study of 50 RHR patients that the pre- to 

postoperative horizontal offset was reduced by an average of 0.8mm (p=0.21) but that osteoarthritic hips 

had a significantly reduced horizontal femoral offset compared to the contralateral joint, by an average of 

8.4mm (p<0.00001). They identified that this horizontal offset decrease resulted largely from a shift of the 

natural neck-shaft angle into valgus, as an osteoarthritic deformity. However, all the operations were 

conducted by a highly experienced surgeon from a centre of excellence, so this may represent the best case 

of prosthesis positioning. Considering the clinical data on femoral neck narrowing, Hing et al [13] studied 

163 hips, also resurfaced by experienced surgeons, and identified the female gender and more valgus 

natural femoral neck-shaft angle as statistically significantly increased risk factors for neck narrowing. 
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They also identified a slightly increased risk of neck narrowing where a smaller prosthesis head size was 

used. Similarly, Amstutz et al [50] reported on 400 patients and identified a statistically significantly 

increased risk of femoral neck radiographic changes and femoral component loosening with smaller 

prosthesis size in males. 

     Stress shielding is only one potential cause of narrowing of the femoral neck. Other previously 

suggested causes include inflammatory response to wear particles, impingement, and bone necrosis, 

possibly caused by exothermic bone cement polymerisation or disruption of the blood supply to the femoral 

head, specifically the retinacular vessels [11, 13, 15, 51]. Considering its high reported incidence and the 

extreme biomechanical conditions that this modelling study suggests are required for it to occur, it is 

probable that a combination of these factors is required if narrowing of the femoral neck is to be observed. 

Spencer et al [15] report that neck narrowing occurs early and stabilises around two years postoperatively; 

therefore, stress shielding could be the most significant factor. The present model suggests how that factor, 

at least, may be avoided. If the surgeon aims to preserve the pre-operative horizontal femoral offset, the 

change in strain pattern in the femoral neck compared to the natural joint may be reduced. This could 

prevent narrowing of the femoral neck which, if extensive, may lead to loosening. However, provided the 

surgeon attempts to orient the prosthesis in valgus with respect to the femoral neck axis, this would still 

avoid weakening the femoral neck, which is the greatest short term concern. 

 

     The results of all computational modelling studies must be analysed with consideration of the limitations 

of the modelling techniques and simplifications. Standard verification checks were made during the 

modelling process, including comparison of the model’s global displacements and strains to clinical data 

[52, 53] and previous modelling studies [54, 55], and a finite element mesh convergence study. Non-linear 

frictional contact was defined in the model, and the peak contact penetration was the order of 10
-3

mm, or 

1000 times less than the contact element size, which was considered acceptable. As discussed previously, 

comparisons were made where possible between the model’s predictions and clinical observations, in order 

to give confidence in the conclusions drawn. 
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     However, the model is still subject to several simplifications which must be noted. First, the model 

simulations were carried out on a model of a single femur. The model was generated from a CT scan of an 

ideal candidate, male patient, receiving a prosthesis from the most common size range [5]. To remove any 

effects of orthopaedic degeneration of the joint which would certainly be present, but subject to a very large 

range of variability, and to isolate the effects of prosthesis positioning, a disease-free candidate was 

selected from 15 available scans. This was considered to be reasonable because the effects of conditions 

such as sclerosis or destruction of the subchondral bone would be largely removed by the surgical cuts, and 

the isolated femur modelling method avoids the effects of narrowing of the joint space. Other effects such 

as formation of osteophytes and subchondral cysts, or avascular necrosis would be subject to greatest 

variability, but, if advanced, may be included in the list of contraindications for hip resurfacing. Therefore, 

this ideal candidate, disease-free patient was used for the same reasons that the investigated range of 

surgical variability was restricted to avoid surgical error scenarios as incomplete prosthesis seating, 

notching of the femoral neck, and excessive cement penetration: to allow reliable comparison of the 

variables of interest. The limitation of a single bone analysis is that results should be used to investigate the 

effects of surgical positioning and sizing variables in comparative quantitative terms rather than making 

absolute predictions, which was the approach taken in this study. 

     One simplification of the model boundary conditions concerns the fact that the same joint contact force 

(JCF) and abductor muscle force (AMF) were applied to the model irrespective of the reduction in 

horizontal femoral offset (HFO) and abductor moment arm (AMA) of the joint which resulted from 

resurfacing with the smaller, 50mm prosthesis. The forces and moments about the hip joint are shown in 

Fig. 1. Shortening the horizontal femoral offset (HFO) would reduce the range of abduction and the 

abductor muscle moment arm length (AMA), and therefore increase the muscle force required to counteract 

the moment about the joint arising from the body weight (BMF) in stance, and this would increase the 

resultant joint contact force – the opposite of the goal of positioning in total hip replacement surgery [56, 

57]. Conversely, joint ‘medialisation’, or shortening the bodyweight moment arm (BMA) is a surgical goal 

because it results in a lower JCF by reducing the moment generated across the joint by the bodyweight. 

These effects were quantified in a biomechanical modelling study by Johnston et al [58], who predicted the 

reduction in JCF and AMF resulting from up to 20mm joint centre medialisation and lateral trochanteric 
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transfer (increasing HFO). Identical force magnitudes were applied to the models in this study, in order to 

isolate the structural effects of the prosthesis positioning. Similarly, any abductor muscle weakening from 

surgical incisions, or loss of soft tissue tension, was neglected. However, this is judged to be an acceptable 

simplification. Johnston et al’s model [58] predicted that joint centre medialisation had a greater effect 

upon the joint force magnitudes than increasing the horizontal femoral offset. This may be extrapolated into 

reduction of HFO and AMA distances, and furthermore, Silva et al’s study [49] reported that hip 

resurfacing resulted in a mean joint centre medialisation of 6.5mm, whereas the greatest reduction in 

abductor moment arm in this study was 4.2mm. With linear interpolation of Johnston et al’s data [58], this 

medialisation would give a 12% lower JCF, compared to, at most, only a 3% increase in JCF as a result of 

the horizontal femoral offset increase. As such, the observed effects of the reduced femoral neck strains 

associated with a shorter joint horizontal femoral offset- improved femoral neck fracture strength but 

potentially an increased extent of stress shielding- are likely to become more marked if the associated joint 

contact and abductor muscle force reductions were taken into account. This study’s models therefore 

represent a conservative case. 

     In the application of the joint contact force over a 5mm radius circular patch, the Hertzian calculation 

was based on the initial, nominal clearance for the prosthesis design in question. The radius of the contact 

patch is dependent on the bearing clearance which is subject to manufacturing variability and will decrease 

on impacted implantation and as the prosthesis wears. The fact that a non-uniform pressure distribution was 

used, and that the stiffness of the prosthesis is considerably higher than that of the bone, support the 

assumption that within a feasible range, the contact patch diameter has a negligible effect upon the strain on 

the bone beneath the implant and cement mantle, so the nominal value was used. 

     A further simplification of the force application method was the use of a single, gait load case for the 

bone remodelling study. Particularly in a young hip resurfacing patient, a wide range of post-operative 

activities would be expected. However, Morlock et al [59] reported the activities of 31 total hip 

replacement patients of mean age 62.5 years, and their data suggested that normal walking may account for 

as much as 96% of a standard day’s dynamic loading. Any more strenuous loading conditions would be 

discouraged by the surgeon in the immediately postoperative period, which this study aims to simulate. 

Considering the traumatic loading scenarios modelled, again only single load cases were modelled but 
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these were designed to replicate in-vitro simplifications of, again, widely variable in-vivo traumatic load 

events [32, 35-37]. Worst case loading conditions from these studies were used, so it was considered that 

these load cases were a fair representation of common traumatic events. 

 

5 Conclusions 

     Resurfacing hip replacement is an established treatment for osteoarthritis in the young, active patient, 

and excellent medium term results have been achieved. Occasional femoral neck fractures and femoral 

prosthesis loosenings occur, and this modelling study provides corroborative evidence to support the 

following predictions, in the understanding and mitigation of these failure modes: 

1) following hip resurfacing, stress shielding can be contributed to narrowing of the femoral neck but only 

if there is a considerable reduction in the horizontal femoral offset. This was predicted to occur with valgus 

prosthesis positioning, if the prosthesis is undersized. 

2) recreation of the natural horizontal offset, which is possible with an adequately sized femoral head 

prosthesis, considerably reduces the change from the natural to postoperative strain distribution. 

3) the fracture strength of the intact femoral neck can be maintained after implantation of the resurfacing 

device provided the prosthesis is oriented in valgus relative to the femoral neck axis. 
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TABLES 

 

Table 1: Biomechanical Measurements for the Femur Resurfaced with a 50mm Prosthesis. 

Femur Model 

 Natural 10° Valgus Neutral 10° Varus 

Horizontal Femoral Offset 

(HFO) 

Absolute / mm 48.1 43.0 43.8 45.1 

vs. Natural / mm - -5.1 -4.3 -3.0 

 % of Natural - 89% 91% 94% 

Abductor Moment Arm 

(AMA) 

Absolute / mm 63.1 58.9 60.1 61.0 

vs. Natural / mm - -4.2 -3.0 -2.1 

 % of Natural - 93% 95% 97% 

Mechanical Axis – Shaft Angle (MASA) / ° 5.9 5.28 5.38 5.54 
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FIGURES 

 

 

Fig. 1: Biomechanical Measurements and Forces on Hip. 

Left: Pelvic Frame of Reference, Right: Femoral Frame of Reference. AMA=Abductor Moment 

Arm, AMF=Abductor Muscle Force, BMA=Bodyweight Moment Arm, BWF=Bodyweight Force, 

JCF=Joint Contact Force, FEF=Femur Equilibrium Force, FEM=Femur Equilibrium Moment, 

HFO=Horizontal Femoral Offset, MASA=Mech. Axis-Shaft Angle, NSA=Neck-Shaft Angle. 
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Fig. 2: Load Cases Investigated in the FE Modelling Study. Alignment and Boundary Conditions for: 

(top left) Gait, showing Joint Contact and Abductor Muscle Forces, (top right) Stumbling and 

(bottom) Sideways Falling. 
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Fig. 3: Predicted Femoral Neck Fracture Load under Stumbling conditions, for the Femur 

Resurfaced with a 50mm Prosthesis (left) and a 52mm Prosthesis (right). Dashed Line Marks 

Fracture Load for Intact Bone 

 

 

Fig. 4: Predicted Femoral Neck Fracture Load under Sideways Falling conditions, for the Femur 

Resurfaced with a 50mm Prosthesis (left) and a 52mm Prosthesis (right). Dashed Line Marks 

Fracture Load for Intact Bone 

 



26 

 

Fig. 5: Distribution of Yielding Bone Elements under Stumbling and Falling Loading Conditions, for 

the Natural Bone, and Resurfaced with the Prosthesis in Valgus, Neutral and Varus Orientation. 

 

Fig. 6: Strain Energy Density Remodelling Stimulus for Resurfacing with Valgus (left), Neutral 

(middle) and Varus (right) oriented 50mm (top) and 52mm (bottom) Prostheses. 
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Fig. 7: Percentage Volumes of Remodelling Femoral Head and Neck Bone, Resurfaced with 50mm 

and 52mm Prostheses, in Elderly (left) and Young (right) Patients 

 

Fig. 8: Chart showing the Relationship between the Reduction in Horizontal Femoral Offset and the 

Volume of Remodelling Bone for Elderly and Young Patients. 
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APPENDIX: NOTATION 

AMA  Abductor Moment Arm, 

AMF  Abductor Muscle Force, 

BMA  Bodyweight Moment Arm,  

BWF  Bodyweight Force, 

JCF  Joint Contact Force, 

FEF  Femur Equilibrium Force, 

FEM  Femur Equilibrium Moment, 

HFO  Horizontal Femoral Offset, 

MASA  Mech. Axis-Shaft Angle, 

NSA  Neck-Shaft Angle. 


