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WEIGHTED LOCAL HARDY SPACES AND
THEIR APPLICATIONS

LIN TANG

ABSTRACT. In this paper, we study weighted local Hardy spaces
hE (R™) associated with local weights which include the classical
Muckenhoupt weights. This setting includes the classical local

Hardy space theory of Goldberg, and the weighted Hardy spaces
of Bui.

1. Introduction

The theory of local Hardy space plays an important role in various fields of
analysis and partial differential equations; see [16], [17], [19], [22]. In partic-
ular, pseudo-differential operators are bounded on local Hardy spaces h? for
0 <p <1, but they are not bounded on Hardy spaces H? for 0 < p <1; see
[10].

On the other hand, Bui [3] studied the weighted version h2, of the local
Hardy space h? considered by Goldberg [10], where the weight w is assumed
to satisfy the condition (As) of Muckenhoupt. Recently, Rychkov [16] in-
troduced and studied some properties of the weighted Besov—Lipschitz and
Triebel-Lizorkin spaces with weights that are locally in A, but may grow
or decrease exponentially, which includes Hardy spaces as its part. In fact,
Rychkov explicitly identifies weighted local Hardy space hP, with FI?Q(W) in
Theorem 2.25 of [16]. In particular, Rychkov [16] extended a part of theory
of As.-weighted local Hardy spaces developed in Bui [3] to the A% weights,
where A°¢ weights denote local A, -weights which are non-doubling weights,
and the A¢ weights include the A, -weights.

The main purpose of this paper is twofold. The first goal is to estab-
lish weighted atomic decomposition characterizations of weighted local Hardy
space h? with local weights. The second goal is to show that strong singular
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integrals and pseudodifferential operators and their commutators are bounded
on weighted local Hardy spaces.

The paper is organized as follows. In Section 2, we first recall some no-
tation and definitions concerning local weights and grand maximal function;
and we then obtain a basic approximation of the identity result and the grand
maximal function characterization for L% with ¢ € (q., 0], where ¢, is the
critical of w. In Section 3, we introduce weighted local Hardy spaces hi N Via
grand maximal functions and weighted atomic local Hardy spaces h??*(R™)
for any admissible triplet (p, ¢, s)., and study some properties of these spaces.
In Section 4, we establish the Calderén—Zygmund decomposition associated
with the grand maximal function. In Section 5, we prove that for any admissi-
ble triplet (p,q,s)w, hZN(R") = hP?5(R™) with equivalent norms. Moreover,

we prove that || - || nets gy and | - [| 7 (rny are equivalent quasi-norms on
e %5, (R™) with g < 0o, and we obtain criterions for boundedness of sublinear

operators in hP in Section 6. In Section 7, we show that strong singular in-
tegrals and pseudodifferential operators and their commutators are bounded
on weighted local Hardy spaces by using weighted atomic decompositions.
Finally, in Section 8, we will give a characterization of weighted local Hardy
spaces hl.

It is worth pointing out that we can not adapt the methods in [3] and [10]
while w is a local weight. In fact, adapting the same idea of (global) weighted
Hardy spaces ([1], [2], [7], [18], [20]) and subtle analysis (see the proof of
Lemma 5.4), we give a direct proof for weighted atomic decompositions of
weighted local Hardy spaces. In addition, it also should be pointed out that
Yang and Yang [23] extended our results to Orlicz-Hardy spaces very recently.

Throughout this paper, C' denotes the constants that are independent of
the main parameters involved but whose value may differ from line to line.
Denote by N the set {1,2,...} and by Nj the set NU{0}. By A ~ B, we mean
that there exists a constant C' > 1 such that 1/C < A/B<C.

2. Preliminaries

We first introduce weight classes Al°¢ from [16].

Let @ run through all cubes in R™ (here and below only cubes with sides
parallel to the coordinate axes are considered), and let |Q| denote the volume
of Q. We define the weight class Ag’c (1 < p < 00) to consists of all nonnegative
locally integral functions w on R"™ for which

1) Ap©(w) = sup L/Qw(:c)d:c</QW—p’/p(x) dx)”/p'

Q<1 QP
<oo, 1/p+1/p =1.
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The function w is said to belong to the weight class of A°¢ on R” for which

22 A) _|le1£1 IQI/ jlelg[ (y)]_l) =

REMARK 2.1. For any C > 0, we could have replaced |Q| <1 by |Q|] < C
n (2.1) and (2.2).

In what follows, Q(z,t) denotes the cube centered at = and of the side-
length ¢. Similarly, given @ = Q(x,t) and A > 0, we will write AQ for the
A-dilate cube, which is the cube with the same center x and with sidelength
At. Given a Lebesgue measurable set E and a weight w, let w(E) = [ pwdz.
For any w € A%¢, LP with p € (0,00) denotes the set of all measurable func-

tions f such that
1/p
e = ([ lr@Pateras) <o
R’n

and L2° = L. We define the local Hardy-Littlewood maximal operator by

loc _ . L d
M f(x) oS Q|/Q|f(y)\ y.

Similar to the classical A, Muckenhoupt weights, we give some properties for
weights [5] w € Al%¢ = Ui<pcoo Ae.

LEMMA 2.1. Let 1 <p<oo, weE ALOC, and Q be a unit cube, i.e. |Q|=1.
Then there exists a w € A, so that w=w on Q and

(i) Ap(@) < CAP°(w).
if w € Al°C then there exists € > 0 such that w € A°°_ for p > 1.

14 p—e€

) if 1 <pp <py < oo, then ALOIC C A;,O;.
(iv) we A;,OC if and only if wTFT € A;,‘?C.
) z'waA;,OC for 1 <p< oo, then

w(tQ) < exp(eut)w(Q) (t >1,|Q|= 1).
(vi) the local Hardy-Littlewood mazximal operator M'°¢ is bounded on LP, if
w € AlP° with p € (1,00).
(vii) M'™¢ is bounded from LY to LL* if w e Alec.

Proof. (i)—(vi) have been proved in [16]. (vii) can be proved by the standard
method. O

We remark that Lemma 2.1 is also true for |Q] > 1 with ¢ depending now
on the size of . In addition, it is easy to see that A, C A;,OC for p>1 and

el (1 + 2| In® (2 + |=]))? € AP with a > 0,8 €R and c € R.
As a consequent of Lemma 2.1, we have following result.
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COROLLARY 2.1. If w € A%, then there eists a constant C >0 such that

w(2Q) < Cw(Q)
if Q| <1, and
w(Q(zo, 7+ 1)) < Cw(Q(z0,7))
if |Q(xo,7) = 1.
From Lemma 2.1, for any given w € A;OC, define the critical index of w by
(2.3) qu=inf{p € [1,00): weAIIDOC}.

Obviously, g, € [1,00). If g, € (1,00), then w ¢ A}IC:)C.
The symbols D(R™) = C§°(R™),D’'(R™) is the dual space of D(R™). The
multi-index notation is usual: for a = (ay,...,a,) and 0% = (9/0,,)** -+

(0/0s,,)" .
LEMMA 2.2. Let w € A% q,, be as in (2.3), and p € (qu,00]. Then

(i) if 1/p+1/p' =1, then D(R™) C Lf},l/(pfl)(R”);
(ii) L2 (R™) C D'(R™) and the inclusion is continuous.

Proof. We only prove the case p < co. The proof for the case p = oo is
easier and we omit the details. Since p € (g, 0), then w € Ag’c. Therefore,
by the definition of A}, for all ball B = B(0,r) with radius r and centered
at 0, we have

[ ot O e < Clum)] OB <o,
B
From this, for any ¢ € D(R™) and supp ¢ C B, we obtain

=1/(p—1)
(2.4) el o & S C’/ [w(z)] "V dz < oo
w—1/(p—1) B
For (ii), if f € LP(R™) and ¢ € D(R™), by Hélder inequality and (2.4), we

have

1/p’
! —-1/(p—-1)
o) < 1l ( [ Je@P fwt) da:) <Ol flnen.
Thus, Lemma 2.2 is proved. O
For ¢ € D(R™) and ¢ > 0, set

o) = t"so(%).

It is easy to see that we have the following results.

PROPOSITION 2.1. Let ¢ € D(R™) and [, ¢(x)dx=1.
(i) For any ® € D(R™) and f € D'(R™), ®xp; — & in D(R™) as t — 0 and
fxo— fin D'(R™) as t — 0.
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(i) Let w e A and q, be as in (2.3). If q € (qu,0), then for any f €

LL(R™), f*@;— f in LL(R™) as t — 0.

Let N € Ny and
M?Vf(x)sup{|gpt*f(x)| : 0<t<1,gp€D(R"),/<p7éO,
suppy C B(0,1),||D%|| _ <1 |a| <N+ 1},
/\;l(])vf(x):sup{’got*f(x)’ : O<t<1,<peD(R”),/<p7éO,
supp C B(0,23194™) |DY|| <1 |af <N+1},
and
MNf(x):sup{’Lpt*f(zﬂ : |z—x|<t<1,<p€D(]R"),/(p7é0,
suppp C B(0,2310%™)) D% <1 |af §N+1}.

For any N € Ny and z € R™, obviously,
MR f(z) < MY f(2) < M f(2).

For convenience, we write

D] <1 a|§N+1}

D?V:{@EDZ suppgoCB(O,l),/@?éOa

and

Dy = {gﬁED: suppcpCB(O,23(10+”)),/907£0,||D°‘<p||oo <1 |al §N+1}.

PROPOSITION 2.2. Let N > 2. Then:

(i) There exists a positive C' such that for all f € (L (R™)ND'(R™)) and

almost everywhere z € R™, | f(z)] < MY f(z) < CM™* f(z).

(ii) If w € A with p € (1,00), then f € LE(R™) if and only if f € D'(R™)

and MY f € LE; moreover, || fllr ~ |MR Ly,
(iii) If w € Ale, then MY is bounded from LL(R™) to LL>°(R").

The proof of (i) and (iii) is obvious, (ii) has been proved in [16], we omit

the details here.
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3. The grand maximal function definition of Hardy spaces

In this section, we introduce weighted local Hardy spaces via grand max-
imal functions and weighted local Hardy spaces. Moreover, we study some
properties of these spaces.

Let p € (0,1], w € A% and ¢, be as in (2.3). Set

a3

For each N > N, ,, the weighted local Hardy space is defined by
W w(RY) = {f e D'(R") : Miy(f) € LL(R™) }-

Moreover, we define || f|l,r  (&n) = MY (f)llLp@n). From Theorem 2.24 in

[16], we know that [| MR ()|l Lz @n) ~ MY ()l @y ~ M (s @ny-
For any integer N, N with N, , <N < N, we have

Wy, (RY) CHE n (RY) CRE 5 (RT)

and the inclusions are continuous.

Notice that if p € (qu,, o0] and N > N, ,, = 2, then by Proposition 2.2(ii), we
have hf, v (R™) = LE(R") with equivalent norms. However, if p € (1,¢,), the
element of A}, \(R") may be a distribution, and hence, h{, \(R") # L% (R").
But, (hf, y(R™)) N L{,.(R™) C LE(R™). For applications considered in this
paper, we concentrate only on h? \(R™) with p € (0,1].

We introduce the following wefghted atoms.

Let w € A%¢ and ¢, be as in (2.3). A triplet (p,q,s)., is called to be
admissible, if p € (0,1], g € (qu, oc] and s € N with s > [n(% —1)]. A function
a on R™ is said to be a (p,q, s),-atom if

(i) suppa C @,
(ii) llall g @ny < [W(@)]Y9 17,
(iii) fR,ﬂ a(x)z®dz =0 for a € (Np)™ with |a] <s, if |Q] < 1.
Moreover, we call a is a (p,q)., single atom if [|a| 1 @) < [w(R™)]V/971/P,

Let w € A% and (p,q,s). be an admissible triplet. The weighted atomic
local Hardy space h2%°(R"™) is defined to be the set of all f € D'(R") satis-
fying that f =3 .o, Nia; in D'(R™), where {\;}ien, CC,> 0 [Ni]? < 00 and
{a;}ien are (p,q,s),-atom and ag is a (p,q). single atom. Moreover, the
quasi-norm of f € h%%*(R"™) is defined by

oo 1/p
| fllpzsas mny = inf{ [Z |)\i|p] }v

=0

where the infimum is taken over all the decompositions of f as above.
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It is easy to see that if the triplets (p,q,s). and (p,q,3), are admissible
and satisfy § < ¢ and 5 < s, then (p,q, s),-atoms are (p,q, 3),-atoms, which
further implies that h?;%(R™) C h?;75(R™) and the inclusion is continuous.

Next, we give some basic properties of hl, r(R™) and hZ%*(R").

PROPOSITION 3.1. Let w € A, Ifp€ (0,1] and N > N, ., then the inclu-
sion hf, N (R™) = S'(R") is continuous.

Proof. Let f € hf, y(R™). For any ¢ € DY (R™), and supp ¢ C By = B(0,1),
we have

(.01 =1+ 20)] < Ipllo int M3 (F)(x)

~1/
< [w(Bo)] p”SOHDUN(]R")”f”hfj,N(R")a

where @(z) = ¢(—x). This implies f € D'(R™) and the inclusion is continuous.
The proof is finished. O

PROPOSITION 3.2. Let w € A, If p€ (0,1] and N > [(n(q,/p—1)] +2,
the space h? (R™) is complete.

Proof. For every p € DY (R") and every sequence {fi}ien in D'(R™) such
that >, f; converges in D’ to the distribution f, the series ) . f; * ¢(x) con-
verges pointwise to f x p(x) for each z € R™. Thus,

M f(x)P < (ZM%M@) < Z(M%ﬁ(z))” for all z € R",

and hence [ fllpz | ®n) <225 1 fillnz,  @n)-
To prove that hf, - (R") is complete, it suffices to show that for every se-

quence { f;}jen with || fjllpz @ny <277 for any j € N, the series 3, f; con-
vergence in hf, \ (R"). Since {Zzzl fi}jen are Cauchy sequences in hl, \(R™),
by Proposition 3.1 and the completeness of D'(R™), {>"7_, fi}jen are also
Cauchy sequences in D’(R™) and thus converge to some f € D'(R™). There-

fore,

p p

J 00 0o .
157 RS DoF S SES
i=1 ln? (") i=j+1 2 G(®n) =i+l
as j — oo. This finishes the proof. O

THEOREM 3.1. Let w € A%C. If (p,q,s). is an admissible triplet and N >
Npw, then hE;25(R™) C hg%y  (R™) C hg, n(R™), and moreover, there exists a
positive constant C such that for all f € k275 (R™),

Iz, @y < W fllaz @y < Cllfllages @n-
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Proof. Obviously, we only need to prove h?%% C hfi N, w(R") for all f €
hP:25(R™), Hf”hf;,prw(Rn) < |Ifllnzsas mny- To this end, it suffice to prove that
there exists a positive constant C' such that

(3.1) HMNp . )HLE,(Rn) <C for all (p,q,s),-atoms a,
and
(3.2) ||M9Vp‘w(a)||L£(Rn) <C for a (p,q). single atoms a.

Since ¢ € (q,,,00], so w € A}fc. We first prove (3.2). Let a is a (p,q). single
atom. Using the Holder inequality, the LZ(R™)-boundedness of M?Vp ,, and
wE A;OC together with Proposition 2.2(i), we have

MR, (@[]

n\11-p/
s ey < Clal oy [0 (B)] 7 <

It remains to prove (3.1). Let a be a (p, g, s).-atom supported in @ = Q(zo, 7).
The first case is when |@Q| < 1. Then if @ is the double of @,

/n [Mz%p,w(a)(x)]pW(x) d
:/’[M]%P’W(a)(x)]pw(x)dx+/ (MY, w(a)(@)] w (@) da
Q

c

= Il +IQ

For I, by the properties of ALOC (see Lemma 2.1), we have
— 1— /
1 < Claly g (@] " < C.
To estimate Iy, we claim that for 2 € Q°
(3.3) MY, (@)(@) < Cla — ao|~ ot g|leottim/n

X [W(Q)] _l/pX{\zfmg|<4n} ($)7

where sg = [n(q,/p —1)]. Indeed, let P be the Taylor expansion of ¢ at the
point (x — )/t of order sg. Thus, by the Taylor remainder theorem, note
that 0 <t <1, we then have

|(axpi)(x)| = ’t‘"/na(y)@(x;y) —P(x_tmo)) dy‘

< CX{Jo—ao|<any ()| — wo| =0+ D) /Q‘a(y)Hy — zo|* T dy

— (S n S n n 71
< C|£C*£CO| (s0+1+ )|Q|( otl+n)/ [W(Q)] /pX{|x—;c0\<4n}(x)'
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Hence, (3.3) holds. Choose 7 > 0 such that, then by w € A}fﬁrn and Proposi-
tion 2.2(i), we have

I <C|QPHsotm/m [4y(Q)] o /2 | » |z — 20| TPEOHIF y(2) da < C.
r|r—xo|<4n

To deal with the case when |@| > 1, the proof is simple. In fact, let Q* =
Q(zo,7 +n), by Corollary 2.1, we get

[ D1} @@ s@de= [ R, @)@ w(@)do

< Cllaly oy [w(@)]

1-p/
< Clally oy [(@)] ™"
<C.
Thus, Theorem 3.1 is proved. O

4. Calder6n—Zygmund decompositions

In this section, we establish the Calderén—Zygmund decompositions associ-
ated with grand maximal functions on weighted R™. We follow the construc-
tions in [18], [1] and [2].

Throughout this section, we consider a distribution f so that for all A > 0,

w({z eR": Mn(f)>A}) < oo,

where N > 2 is some fixed integer. Later with regard to the weighted local
Hardy space hf, (R™) with p € (0, 1], we restrict to

N > [ng./p]-
For a given A > inf, crn My f(z), we set
Q={zeR": My(f)(z)> A},

which implies {2 is a proper subset of R™. As in [19], we give the usual Whit-
ney decomposition of 2. Thus, we can find closed cubes @), whose interiors
distance from Q°¢, with Q =], Q and

diam(Qy) < 27 dist (Qy, Q°) < 4diam(Qy,).

Next, fix a =1+2"014") and b =14 2710+ if Qp = aQy, QF = bQy, then
Qr C Qr C Q5. Also, Qi =, and the {Q}} have the bounded interior
property: every point is contained in at most a fixed number of the {Q}}.
Fix a positive smooth function £ that equal 1 in the cube of side length 1
centered at the origin and vanishes outside the concentric cube of side length a.
We set & (x) = &([x — xx]/lk), where zy, is the center of the cube Q) and I
is its side length. Obviously, for any « € Q, we have 1 <), &, (x) < L. Write
e = fk/(zj &;). The n; form a partition of unity for the set  subordinate
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to the locally finite cover {Qy} of ; that is to say, xo = >_ 7, with each
supported in the cube Q.

Let s € Ny be some fixed integers and Ps(R™) denote the linear space of
polynomials in n variables of degrees no more than s. For each ¢ and P €
Ps(R™), set

(a.1) IPh= | g [P ) o
rr Tl n

Then (Ps(R™),| - ||;) is a finite dimensional Hilbert space. Let f € D'(R"™).
Since f induces a linear functional on Ps(R") via Q| = 1/ [ 7:(x) dz(f, Qn;),
by the Riesz lemma, there exists a unique polynomial P; € Ps(R™) for each ¢
such that for all Q € P,(R™),

1/2

1
(f,Qni) = W<P17Qm>

1
Jgn mi(z) dz i (1) dx

1
- @ L, PERE@ @)
For every 14, define distribution b; = (f — P;)n; if I; < 1, we set b; = fn; if [; > 1.

We will show that for suitable choices of s and NV, the series ), b; converges
in D'(R™), and in this case, we define g = f —>", b; in D'(R™).

The representation f =g+, b;, where g and b; are as above, is said to be
a Calderén—Zygmund decomposition of degree s and the height A\ associated
with My (f).

The rest of this section consists of series of lemmas. In Lemmas 4.1 and 4.2,
we give some properties of the smooth partition of unity {7;};. In Lemmas 4.3—
4.6, we derive some estimates for the bad parts {b;};. Lemmas 4.7 and 4.8
give controls over the good part g. Finally, Corollary 4.1 shows the density of
LL(R™) NAY (R™) in kY, \(R™), where g € (., 00).

LEMMA 4.1. There exists a positive constant Cy, depending only on N,
such that for all i and | <l;,

sup sup |0%n;(lz)| < C1.
la|<N z€R"

Lemma 4.1 is essentially Lemma 5.2 in [1].

LEMMA 4.2. Ifl; < 1, then there exists a constant a constant Cy > 0 inde-
pendent of f € D'(R™), l; and A >0 so that

sup | Pi(y)ni(y)| < CoA.
yeR”
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Proof. As in the proof of Lemma 5.3 in [1]. Let m,...,m, (m = dimP;)
be an orthonormal basis of Ps with respect to the norm (4.1). We have

(42) P, :i( o [s@m o de)m,

where the integral is understood as (f,mn;). Hence,

= —— | |me(@) iz m
(4.3) 1fm/| k()] () |Q |/ | () *ns(2)
2" Ydo =27 T (x T
Zm/@lhk(l"” dx =2 /QO| k( )| dz,

where 7y (7) = 7, (z; + l;z) and Q° denotes the cube of side length 1 centered
at the origin.

Since Py is finite dimensional all norms on P, are equivalent, there exists
Aq >0 such that for all P € Pq

sup sup |8“P(z)|§A1< 0}P(z)|2dz>1/2.

la|<s zebQO
From this and (4.3), for k=1,...,m, we have
(4.4) sup sup |97 (2)| < A 2n2
|a|<s zebQ®

For k=1,...,m define

[
Pi(y) = flnﬂk(z = Ly)ni(z — Liy),

where z is some point in 29t"nQ; N Q°.

It is easy to see that supp ®x C B, := B(0,23104™) and || @y p, < Az by
Lemma 4.1.

Note that

flm /f(x)m(w)m(a:)dx = (f*(@4)1)(2),
since [; < 1, we then have

1
o / F (@) ()i (x) da
)

By (4.2), (4.4) and above estimate

<My f(2)||@rllpy < A2

sup
zEQT

Thus,

sup ’P ni(z )‘ < Oy
zER™

The proof is complete. O
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LEMMA 4.3. There exists a constant C3 > 0 such that
(4.5) Mbi(z) <CsMpyf(x)  forz€Q;.

Proof. Take ¢ € DY, and = € Q}.

Case I. For t <l;, we write

(bi * i) (x) = (f * @) (z) = ((Pima) * ¢) (2),
where ®(z) := p(z)n;(z — tz). Define 7;(z) = n;(x — tz). Obviously, supp® C
B,,. By Lemma 4.1, there exists a positive constant C' such that
[@]lpy < Ci.
Note that for N > 2 there is a constant C' > 0 so that [¢[/z1(n) < C for all
¢ € DY;. Therefore, by Lemma 4.2 and (4.5), we have
b u(2)| < (1@l M f(2) + CoM[[@ll 11 (ny < Cs My f(2),

since My f(z) > X for z € Q.
Case II. For [; <t <1 by a simple calculation we can write

I
(0% or) () = 5 (f * @) (@) = (Pomi) # 20 (),
where ®(2) = p(l;z/t)ni(x — 1;z). Define @(z) := p(l;2/t) and 7;(z) = n;(x —
l;z). Tt is easy to see that supp ® C B,,. By Lemma 4.1, we can find a positive
constant C' independent of 1 > ¢ >[; so that

sup sup |3O‘<,5(z)| <C, sup sup |80‘17i(z)| < (1.
|a| <N z€R™ Ja|<N zeR™

Hence, there exists a positive constant C such that ||®||p, < C, and
llellLrmny < C for ¢ € Dy for N >2. As in Case I

(bi * 00)(@)] < [ @llpy M f (@) + CoA[@l] 1. (wny < C M f ().

By combining both cases, we can obtain the desired result. O

LEMMA 4.4. Suppose Q@ CR"™ is bounded, convex, and 0 € QQ, and N is a
positive integer. Then there is a constant C' depending only on Q and N such
that for every ¢ € D(R™) and every integer s,0 < s < N we have

sup sup [0“R,(2)| <Csup sup |9%¢(2)|,

z€Q |a|<N €Q s+1<|a|<N
where R, is the remainder of the Taylor expansion of ¢ of order s at the point
y € R™.

Lemma 4.4 is Lemma 5.5 in [1].

LEMMA 4.5. Suppose 0 < s < N. Then there exist positive constants Cs,Cy
so that for i e N,
)\lﬂ+s+1
‘ )n+s+1x{‘I*£E¢‘<C3}(‘r) fo¢Qi'

(4.6) MYy (bi)(2) < S r——
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Moreover,
M (b)) (2) =0, ifz¢Qf andl; > Cy.

Proof. Take ¢ € D(R™). Recall that 7; is supported in the cube Q;, and we
have taken @); to be strictly contained in @F. Thus if = ¢ QF and 7;(y) # 0,
then there exists a positive constant C such that |z —y| < |z —z;| < Cslz—1y],
and the support property of ¢ requires that 1 >t > |z —y| > 27117"/;. Hence,
|z — 25| < Cst and I; <2117 := Cy and I; < Cyt . Pick some w € (287"nQ;) N
QC

Case I If 1 <1; < Cy and ¢ € DY, where define ¢(2) = ¢(l;z/t) and I; =
;/Cy < 1. We have

(b * 1) ( —t”/b ((x —2)/t)d=

where
D(2) i = by, (2)i(w = 12),  Pla—uy i, (2) = ¢(2 + (x — w)/1;).

Obviously, supp ® C B,,. Note that [; < tCy and |z — z;| < Cst, we obtain
ln+e+1

i
) <O <ONE < i .
4.7) |(b* o) (@) _CtnMNf(w) <OAL _C/\(li+|x_xi| ——

Case I If I; <1 and ¢ € DY, define ¢(z) = ¢(l;z/t). Consider the Taylor
expansion of ¢ of order s at the point y:= (x — w)/I;,

s+2)= Y LWy gy,

lorf<s

where R, denotes the remainder.
Thus,

(4.8) (bx i) (x /bzgo z—2)/t)d
o b0l - 2)/t) s
:tin/biR(x_w)/li((’w—Z)/li) dz

= ) w)
-t / Pi(2)0i(2) Riz—w) 1, (0 — 2)/1;) dz
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where
D(2) = Rig—w) /1, (2)ni(w — 1;2).

Obviously, supp® C B,,. Apply Lemma 4.4 to ¢(z) = p(liz/t),y = (x —w)/l;
and @ = B,,. We have

sup sup |0°R,(2)| <C sup sup  [0%¢(2)]

2€Bn |a|<N z2€Y+By s+1<|a|<N
L (s+1)
<C sup (i> sup  |0%p(liz/t)|
z€y+By t s+1<|a|<N

L (s+1)
<Cl= .
<o(%)

Note that I; <tCy and |z — x;| < Cst, therefore by (4.8), we have
n

(4.9)  (bx@e)(x) < 5 |(f * @) (w)]
7 [P R (0 2)/1) d2

m

< O (Ma @) @]py + 2 sup sup [0°F, (2)])
2€B, |a|<N

ln—‘—s—&-l

<CA t .

T (it o)t

Combining (4.7) and (4.9), we obtain (4.6). d

LEMMA 4.6. Let w € A% and q, be as in (2.3). If p€ (0,1], s> [ng./p]
and N > s, there exists a positive constant Cs such that for all f € hZN(R"),
A>infere My f(2) and i,

(4.10) /n (MR (0:)(2)]"w(z) dz < Cs /Q My (£)(2)] w(z)da.

Moreover, the series ;b converges in hf, y(R™) and

(4.11) /n {M(])\, <zl: bi) (x)] w(z)dx < Cs/Q[MN(f)(m)]Pw(x) dz.
Proof. By Lemma 4.4, we have
(4.12) / M (b;)(2)] w(z) dx < /@ [M(b;) ()] w(z) da

+/ (M (b)) ()] w () de,
CsQI\Q7
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where QY = Q(z;,1). Note that s > [ng,/p] implies 27 "(dwtm2(stnt+lp 5 1
for sufficient small > 0. Using Lemma 2.1(ii) with w € A!°°, = Lemma 4.5

G+
and the fact that My (f)(x) > A for all x € QF, we have
(4.13) / (MR () ()] w(z) dx
C3Q\Q;
ko
< MO () ()] w(z) da
D~ [, RGO
ko
<M (Q:ﬂ) Z [2_77’(‘1w+7/)+(s+n+1)p} -
k=0

<C o [MNf(x)]pw(x) dx,

where ko € Z such that 2k~ < Cy < 20,
Combining (4.12) and (4.13), then (4.10) holds. By (4.10), we have

/n [M?V(bl)(aj)]pw(x) dz < CZ/Q* [MNf(x)]pw(x) dx

SCAMmmumem

which together with complete of hz, ~ (see Proposition 3.2) implies that >, b;
converges in h” . So by Proposition 3.1, the series ) ,b; converges in

D'(R™), and therefore M% (3", 0:)(z) < >, MQ(b;)(x), which gives (4.11).
Thus, Lemma 4.6 is proved. (|

LEMMA 4.7. Let w € A% and q, be as in (2.3), s € Ng,a nd N > 2.
If g € (qu,00] and f € LL(R™), then the series Y, b; converges in LL(R™)
and there exists a positive constant Cg, independent of f and A, such that

132 1billl g mmy < Csll £l g -

Proof. The proof for ¢ = co is similar to that for g € (q,,,00). So we only
give the proof for ¢ € (g,,00). Set Fy ={i e N: |Q;| > 1} and Fr = {i €
N: |Qi| < 1}. By Lemma 4.3, for i € F, we have

/|b e dx</|f e dx+/|P 2yi() ")
|f ()] w(e) do + Nw(QF).
Q7

For i € F1, we have

/yb (2)|"w(z dx</|f )| w(a
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From these, we obtain

/|b o= /|b Jw(e dx+2/|b Jew(e)

1€EF 1€Fy

/ |f |q dx—i—/ |P x)n;i(x |w dx

S 5) RUCTRETIS s

i€ Fy
<Z/ | f(2)| w(z) dz + CXw (1)

<Gy [ |f(@)|"w(e) da.

From this and applying b; have finite covers, we have
< CsllflLa@n)-
L3,(R™)
The proof is finished. O

LEMMA 4.8. If N >s>0 and ), b; converges in D'(R™), then there exists
a positive constant C7, independent of f and X\, such that for all x € R™,
ln+s+1

MY (9)(x) < MR (f)(@)xoe (2 +C7)\Z 7L+S+1X{|x—a:,y|<03}(x)'

li+ |z — 2y
Proof. If = ¢ Q, since M%(g)(z) < MY (f)(z) + >, M (b;)(z), by Lem
ma 4.5, we obtain

ln+s+1
Mi(a)(a) < M) oo o)+ ON Y Gy = e Ko< (0)

If z € Q, choose k € N such that z € Q5. Let J:={i e N: Q;NQ; #0}. Then
the cardinality of J is bounded by L. By Lemma 4.5, we have

ln+s+1

0
;MN(b <C)\Z 0t o = arort Xla- i]<Cs} (T).
It suffices to estimate the grand maximal function of 9+Zz¢ sbi=f=>"
Take p € DY, and 0 <t < 1. We write

(f_zbz) *pr(x) = (f&) * o + <2Pm¢> *

i€J ic€J

= [* P (w (ZPm> * Pt

ieJ

ZEJ
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where w € (2°1"nQ) NQ°, E=1—>", ., n; and

D(2) ==z + (z—w)/t)(w — tz).
Since for N > 2 there is a constant C' > 0 so that ||¢|| 11 (g < C for all ¢ € DY,

and Lemma 4.2, we have

<CAM

’ (Z Pﬂh) * i ()

icJ

Finally, we estimate f * ®;(w). There are two cases: If ¢t <2~ (11+™)], then
f*®¢(w) =0, because § vanishes in @} and ¢, is supported in B(0,t). On
the other hand, if ¢+ > 2~ (11+7)], then there exists a positive constant C' such
that supp ® C B,, and ||®|p, < C. Hence,

|(f * @) < M f(w)]|®]lpy <O

By the above estimates, we have

‘(bez) oy <O
i€J
That is
MY (f — Zm) () <O
icJ
Thus, Lemma 4.8 is proved. ]

LEMMA 4.9. Let w € A%, q,, be as in (2.3) and p € (0,1].
(i) If N > s > [nq,/p] and My(f) € LP(R™), then My(g) € LL(R™) and

there exists a positive constant Cg, independent of f and X, such that

/n [M(J)V(g)(:z:)]qw(z)dx < 08)\17;;/ [MN(f)(x)]pw(:c) dx.

n

(ii) If N>2 and f € LL(R"), then g € L (R™) and there exists a positive
constant Cy, independent of f and A, such that || g||Le < CoA.

Proof. Since f € hf, y(R"), by Lemma 4.6, 3, b; converges in hf, (R")
and there in D’(R™) by Proposition 3.1. Observe that s > [nq,/p], by Lem
ma 4.8, we obtain

[ Mg @)wte) de
Z(n+s+1)
= C’)\Z/” l; + |xl— 2] ) (s D) X{la—:| <} (T)w (@) do

+ /C [MN(f)(x)]w(x)dm
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goxzzw(@;) —I—/C[MN(f)(x)]w(x)dm
<Cnw(@)+ OV [ [My ()] o) do

c

<ONTP /QC My (f)(2)] w(z) dz.

Thus, (i) holds.
Moreover, if f € LL(R"), then g and {b;} are functions, and Lemma 4.7,
>, bi converges in LZ(R™) and thus in D’(R") by Lemma 2.2. Write

gfzbif(lzm) + Y Pmi=fxoc+ Y Pimie

1€ Fo i€ Fo

By Lemma 4.3, we have |g(z)] < C\ for all x € ©, and by Proposition 2.2,
lg(z)] = |f(x)] < Mnf(z) <X for almost everywhere x € Q°, which leads to
that [|g|| Lo (rn) < CA and thus yields (ii). The proof is finished. O

COROLLARY 4.1. Let w € A%¢ and q,, be as in (2.3). If ¢ € (qu,0), N >
[nq./p] and p € (0,1], then hf, (R™) N LL(R™) is dense in hf, r(R™).

Proof. Let f € hf)_’N(R"). For any \ > inf,epn My f(z), let f=g*+ > b}
be the Calderén—Zygmund decomposition of f of degree s with [ng,, /p] <s <
N and height A associated to My f. By Lemma 4.6,

2.0

Therefore, g* — f in hl, y(R") as A — oco. But by Lemma 4.9, Mn(gt) €
LL(R™), so by Proposition 2.2(i), g* € LL(R™). Thus, Corollary 4.1 is proved.
O

<C [MNf(x)]pw(a:) dx.
hf}ﬁN(Rn) {zeR™": Mny f(z)>A}

5. Weighted atomic decompositions of h{, \(R")

We will follow the proof of atomic decomposition as presented by Stein in
[18].

In this section, we take kg € Z such that 2¥~1 <inf,cgs My f(x) < 2F0, if
inf,crn My f(z) =0, write kg = —o00. Let w € A%¢ q,, be as in (2.3), p € (0,1]
and N > s = [nq,/p]. Let f € hf y(R"). For each integer k > ko consider
the Calderén-Zygmund decomposition of f of degree s and height \ = 2%
associated to My f,

f=g"+) bk,

ieN
where

QF = {zeR": Myf(z)> 2"}, QY =Qu

i
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and bF == (f — PF)nF if IF <1 and bF := fnF if 1F > 1.

Recall that for fixed k > ko, (z; = xf‘)ZeN is a sequence in QF and (I; = 1¥);en
for Q = QF n; =¥ given in Section 4 and P; = PF is the projection of f onto
Ps with respect to the norm given in Section 4.

Define a polynomial Pf-“ as an orthogonal projection of (f — Pf“)ng on
Ps with respect to the norm

1 2
1P||* = T /R |P(2)| "y (z) de,
R 'lj "

that is PZ-’}H is the unique element of Py such that

[ (@) =P @)t @@ @ = [ PR @QM @) de

For convenience, we denote Q% = (1 4+ 2-Ot")QkF EF = {i ¢ N: |QF| >
1/(24n)} and E§ = {i e N: |Q¥| < 1/(2*n)}, Ff ={i e N: |QF| > 1} and
Fy={ieN:|Qf| <1}.

There are two things we need to know about the polynomials PkJr1 First,
P;}H #0 only if Q¥* N Qk+1* # (); this follows directly from the deﬁmtlon of
PZ-];-H (since it involves nkH, which is supported in Qgﬂ*)
we have the following results.

. More precisely,

LEMMA 5.1. Note that Q¥t1 C Q¥ then
(i) If Q¥ N@QYT™ #£0, then IJTH <28/nlf and QYT C 25nQF C OF.
(ii) There exists a positive L such that for each j €N the cardinality of {i €
N: QFn Q;:H* £ () is bounded by L.
k+1
LEMMA 5.2. If ;7 <1,

(5.1) Sulé:) ’Pk'H )77?+1(y)| < o2kt
e n

LEMMA 5.3. For every k € Z with k > ko, ZieN(ZjeFk-%—l Pk“nfﬂ) 0,
where the series converges pointwise and in D'(R™).

Lemmas 5.1-5.3 can be proved by the methods in Lemmas 6.1-6.3 in [1].
The following lemma establishes the weighted atomic decompositions for a
dense subspace of h[, \(R").

LEMMA 5.4. Let w € A¢ and q,, be as in (2.3). If p€ (0,1], s > [nq./p]
and N > s, then for any f € (LL(R™) N hl, n(R™)), there exists numbers Ao

and {\} ez CC, (p,00,8),-atoms {a¥}rez; and single atom ag such that

F=Y2) " Meak + Mo,

keZ i
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where the series converges almost everywhere and in D'(R™), moreover, there
exists a positive C, independent of f, such that 3, [AF[P + AP <

Cllf e, e

Proof. Let f € (LL(R™)NAL (R™)). We first consider the case kg = —o0.
For each k € Z, f has a Cald’erérkagmund decomposition of degree s >
[nq./p] and height 2% associated to Mny(f),f=g" + > ,bF as above. By
Corollary 4.1 and Proposition 3.1, g* — f in both hf, \(R") and D'(R") as
k — oo. By Lemma 4.9(i), ||¢"||r®n) — 0 as k — —oo, and moreover, by
Lemma 2.2(ii), g¥ — 0 in D'(R") as k — —oo. Therefore,

oo

(5:2) f=> (-4

k=—o00
in D'(R™). Moreover, since supp(>_,;b¥) C Qx and w(€) — 0 as k — oo,
then g¥ — f almost everywhere as k — co. Thus, (5.2) also holds almost
everywhere.
By Lemma 5.1 and ), 77’“1)]“+1 kaj?*l = b?“ for all j, then >, nkblchl
X b5t =0 for all j,
o= (1) - (-
j i

= be - Z pitt
i J
S IUED A A

JEFF JEFY
_ 2 : k
pu— hz .
7

It is easy to see that the series above converges in D'(R™) and almost every-
where. Furthermore, we rewrite h¥ into

hE = fX(@uent = Piaf + Y PP gyt Y0 PRt
jeFk+t jeFk+

By Proposition 2.2, [f(x)] < My f(z) < 28! for almost everywhere x €
(Q%+1)¢, and by Lemma 4.2 and (5.1),

(5.3) 1) o ) < C2° for i€ N.

Next, we consider three cases about 1.
Case I. When i € FF, we have

:fnzk_ Z fnkJrl k_ Z (f Pk+1 k+1 k Z PkJrl k+1.

jeFkt? jeFrkt? jeFktt
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Case II. When i € E¥ N F§¥, we have
(f Pk 77 Z f kJrl k

jeFkt?

_ Z (f_kaJrl k+1 k+ Z Pk+1 k+1'

jeFktt jeFFH!

Case III. When i € E§, if j € P+, then I8 <1¥71/(24n), so Q" NQEH =
() by Lemma 5.1(i). Thus, we have

(f Pk: Z fnk+l k

eFk+1
72 : Pk+1 k+1 k+ 2 : Pk+1 k+1
JEF: jeFk+
_ kY., k k+1 k+1 k k+1 k+1
= (f=Pnl= Y (F=F oyl + Y P
jery ™t jer !

We next let y =1+ 271277, _
For Cases I and II. Obviously, h¥ is supported in a cube Q¥ that contains
Q¥ as well as all the Q?H* that intersect QF*. In fact, observe that if

QF N Q?H* # (), by Lemma 5.1, we have
Q1% € 2n Qb C OF,
So, if I¥ < Ln/(y—1), we set
QF =2°nQ}".
On the other hand, note that lf“ <1 and ¥ >1/(2%n), then Q?‘H* C
Q(zF,1% + Ln). So, if I¥ > Ln/(y — 1), we set @f :’yQ’?. Hence,
Qk-i-l* C Q(ak,IF + Ln) COF =QF = Q¥ c Ok,

if 1> Ln/(y—1).
From these, for Cases I and II, there exists a positive constant Cig such
that

Q¥ cQF and w(@f) < Clow(Qf*).
But, h¥ does not satisfy the moment conditions.

For Case III. We claim that hf is supported in a cube @f that contains
QF* as well as all the Q;-H'l* that intersect QF*. In fact, observe that if

QF N Q?H* #(), by Lemma 5.1, we have

Qi1 c 2%t c .



474 L. TANG
So, we set @f = QGan*. Note that l;ﬁ'l <1 and lf <1, then
QF cOF and w(QF) < Crow(QF).

Moreover, h¥ satisfies the moment conditions. This is clear for (f — PF)n¥
and (f Pk+1) k‘+1 k+Pk+1 k+1.

Let \f = 0102"”'[ (Qf)]l/p and a¥ = (\F)71hF. Moreover, by (5.3) and
above Cases I, II and 111, we know that a¥ is a (p, 00, s))-atom. By w € AloC
we have

DD =R 3 2me(Q) 0% 2 w(@r)

k€Z ieN keZ ieN k€Z ieN
< CY 2"0() < CIMN (N5 gy SCIIT  any
kEZL

We now consider the case kg > —oo, which together with f € hf)’ ~(R™) implies
w(R™) < co. Adapting the previous arguments, we have

o
f= Z(gk+1_gk)+gko ::f_'_gko_

k=kq

For the function f, we have the same (p,o00,s), atomic decomposition as

above and
SN <CIIR sy

k>ko i€N
For the function ¢g*o, it is easy to see that there exists a positive constant C;;
such that

9%l 2e oy < On2% <200 inf M (@),

Let
ao(z) = g* (z)27 Ot [w(R™)] e Ao = C112% [w(R™)] e
Hence,
Dol < C1PIAIE: goy and  llaoll g @) < [w(R™)] 7.
Then,
YoM Dol < CUFIRe -
k>ko i€N
The proof of Lemma 5.4 is complete. O

REMARK 5.1. In fact, from the proof of Lemma 5.4, we can take all
(p, 00, s),, atoms with sidelengths <2 in Lemma 5.4.
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The following is one of the main results in this paper.

THEOREM 5.1. Let w € A and q,, be as in (2.3). If q € (qu,0],p € (0,1],
N > Ny, and s > [n(q./p — 1], then hZ?°(R™) = hf)’N(R") = hf;,N,,‘_,(Rn)
with equivalent norms.

Proof. 1t is easy to see that
hEooS (R™) ChE®* (R™) C ALy (R™) CRE o (R™) CRE o(R™),

where 5 is an integer no less than s and N is an integer larger than N,
and the inclusions are continuous. Thus, to prove Theorem 5.1, it suffices to
prove that for any N > s> [n(q./p — 1], h¥ Ny (R™) C h%°*5(R™), and for all
fehg n@R™), N fllnze=s@ny < Cllfllne  @n)-

To this end, let f € hl, ;(R™). By Corollary 4.1, there exists a sequence
of functions, {fm}men C (A, y(R™) N LL(R™)), such that || fmllpr  @&n) <
27" fllnr ey and f =3, o fm in hl, y(R™). By Lemma 5.4, for each
m €N, fn, has an atomic decomposition f, =3,y Ai"af" in D'(R"), where
Yieng AP S Cll fnlls (&) and {a"}ien, are (p,00,s),-atoms. Since

w,N

Yo <OY Mally @y SCI I @y

méeNg t€Ng meNg
then f = > cn, 2ien, M@t € AEOS(R™) and || flppecs@ny < C %
[ flln> . @n)- Thus, Theorem 5.1 is proved. O

For simplicity, from now on, we denote by h? (R™) the weighted local Hardy
space h{, \(R™) associated with w, where N > N, ,. Moreover, it is easy to see
that hl, C LL(R") via weighted atomic decomposition. However, the elements
in A2 (R™) with p(0,1) are not necessary functions thus h? (R™) # L? (R"™).
But, for any ¢ € (g,,,0), by Lemma 5.4 and pointwise convergence of weighted
atomic decompositions, we have (kP (R"™) N LL(R™)) C L?(R™), and for all
fe (RE®R™) N LL,R™), [1f e @e) < 1 fllng @n)-

6. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of
weighted atoms when ¢ < oo, its norm in k2 (R™) can be achieved via all its
finite weighted atomic decompositions. This extends the main results in [15]
to the setting of weighted local Hardy spaces.

Let w € A°¢ and (p,q, ). be an admissible triplet. Denote by hf)%‘fn (R™)
the vector space of all finite linear combination of (p, g, s),-atoms and single
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atom, and the norm of f in h{;%7 (R") is defined by

k 1/p k
I fllppas gmy = inf{ [Z MP] f=> Xaj, k€N, {a;}i, are
j=0

w, fin
=0

(p, q, 8)w-atoms with sidelengths <2, and
ag is a (p, q)w single atom}.

Obviously, for any admissible triplet (p,q,s), atom and (p,q). single atom,

the set hl%; (R™) is dense in hZ®*(R") with respect to the quasi-norm

-z, o

w, fin

THEOREM 6.1. Let w € A%, q,, be as in (2.3), and (p,q,s). be an admissi-
ble triplet with sidelength <2. If ¢ € (g, 0), then |- ||h5«?fn(Rn) and || - ||pe (rm)

are equivalent quasi-norms on h}%; (R™).
:

Proof. Clearly, ||fllaz@n) < Ifllnzes gn) for f€ h%s, (R™) and for g €
(qu,00). Thus,we have to show that for every ¢ in (g,,00) there exists a

constant C such that for all f € h?%* (R™)

w, fin
(6.1) [ llnzes ®ny < ClIf g @n)-
Suppose that ¢ € (q,,00) and that f is in hf}”‘?’fn(R”) with || f][nz @n) = 1.

In this section, we take kg € Z such that 20~ <inf,cpn My f(z) < 2F0, if
inf,ecrn My f(z) =0, write kg = —oo. For each integer k > ko, set

Qu={zeR": Myf(z)>2"},

where and in what follows N = N, ,,. We use the same notation as in Lem-
ma 5.4. We first consider the case kg = —oco. Since f € (h?,(R™) N LL(R™)),
by Lemma 5.4, there exists numbers {\f}rezien C C and (p,00, s),-atoms

{aF}r.ien, Ao C C such that
f=2.2 N
k ieN

holds almost everywhere and in D'(R™), and (i) and (ii) in Lemma 5.4 hold.

Obviously, f has compact support. Suppose that supp f C Q(zo,19). We
write Q = Q(zo, 210t ry 4 2n). For ¢ in Dy and z € R*\ Q, for 0 <t <1,
we have

e f(x) =0.

Hence, supp Y}, >, cn Araf € Q.
We claim that the series ., >,y AFa¥ converges to f in LL(R™). For
any x € R”, since R" = J, o (% \ Qry1), there exists j € Z such that = €
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(€2;\Q;41). Since supp abcQFco, Q41 for k > j, then applying Lemmas
5.1, 5.2 and 5.4, we have

> D My

k ieN

<CY 28 <CY <CMy f(a).

k<j
Since f € LL(R™), we have My f € LI (R™). The Lebesgue dominated con-
vergence theorem now implies that Y, >, .y A¥a¥ converges to f in LL(R"),
and the claim is proved.

For each positive integer K, we denote by Fx = {(i,k) : k,|i| + |k| < K}
and fx = Z(i,k)eFK Mrak. Observing that for any ¢ € (0,1), if K is large
enough, by f € L, we have (f — fx)/e is a (p,q,s),-atom. Since (f — fx)/c €
Q = Q(x0,20F™)ry 4 2n), so we can divide @ into Ny (depending only
on rg and n) disjoint cubes {Qi}ivzol with sidelengths 1 <1[; < 2. Then,
(f = fx)Xxq. /€ is a (p, q, 8)w-atom for i =1,..., No. Thus, f = fix + >0 (f —
fr)xq, is a linear weighted atom combination of f. Taking € = Ngl/p and
by Lemma 5.4, we have

Hf”fzi"?fn(Rn) S Z ’)\ﬂp + N()Ep S C.
’ (i,k)EFK

We now consider the case kg > —oo. Since f € (h2(R™) N LI(R™)), by
Lemma 5.4, there exists numbers {A}iezien € C and (p,00,s),-atoms
{a¥} > ko .ien, Ao C C and the (p, 00),, singe atom ag such that

f: Z Z)\faf +)\0(L0

k>ko i€N
holds almost everywhere and in D’'(R™), and (i) and (ii) in Lemma 5.4 hold.
As the case ko = —oo, we can prove that the series Y-, -, 3.y Afal + Aoag

converges to f in LL(R™).

Finally, for each positive integer K we denote by Fx = {(i,k) : k > ko, |i| +
k| < K} and fx =3 1yer Meak 4+ Ngag. If K is large enough, then | f —
TrllLa@) < [w(R™)]a=1/P. So, (f — fx) is a (p,q). single atom. By Lem-
ma 5.4, we have

I s e = Do NP +AF<C.
" (4,k)EFx

Thus, (6.1) holds. The proof is finished. O

As an application of finite atomic decompositions, we establish bounded-
ness in h? (R™) of quasi-Banach-valued sublinear operators.

As in [2], we recall that a quasi-Banach space B is a vector space endowed
with a quasi-norm || - ||g which is nonnegative, non-degenerate (i.e., || f|lg =0
if and only if f =0), homogeneous, and obeys the quasi-triangle inequality,
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that is, there exists a positive constant K no less than 1 such that for all
£,9€ B, If +glls < K| flls + lglls).

Let 8 € (0,1]. A quasi-Banach space Bg with the quasi-norm || - [|5, is said
to be a S-quasi-Banach space if ||f+gH§ﬁ < ||f||§ﬂ + HgHgl3 for all f,g € Bs.

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-
Banach space [#,L?(R™) and h?(R") with 8 € (0,1) are typical S-quasi-
Banach spaces.

For any given -quasi-Banach space Bg with 8 € (0,1] and a linear space
Y, an operator T from Y to Bg is said to be Bg-sublinear if for any f,g € Bg
and A\, v € C, we have

1T +v9)lls, < (N7

and ||T(f) - T(g)”Bﬁ < HT(f - g)HBﬂ'

We remark that if 7' is linear, then T is Bg-sublinear. Moreover, if Bg =
LI (R™), and T is nonnegative and sublinear in the classical sense, then T is
also Bg-sublinear.

B B
s, + 1 IT@]5,)"

THEOREM 6.2. Let w € A 0<p< <1, and Bs be a [-quasi-Banach
space. Suppose q € (q.,,0) and T h %5 (R™) — Bg is a Bg-sublinear opera-
tor such that

S = {HT(a) ta is any (p,q, s)w-atom with sidelength <2

I,
or (p,q)w single atom} < oo,

Then there exists a unique bounded Bg-sublinear operator T from kP, (R™) to
Bg which extends T.

Proof. For any f € h%; (R"), using Theorem 6.1, there exist numbers

{A}_o € C and (p,q,s),-atoms {aJ}l_1 and the (p, q),, single atom agy such

that f = EJ o Aja; pointwise and Zj —o NP < Cliflhe Then by the
assumption, we have

1 1/p
||T(f)HB,3 <Cl2|)\j|p1 <Ol fllnz @ny-
=0

Since h[)%;,(R") is dense in hZ(R"), a density argument gives the desired
results. 0

(R™)”

7. Applications

In this section, we study weighted LP inequalities for strongly singular
integrals and pseudodifferential operators and their commutators.
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Given a real number 6 > 0 and a smooth radial cut-off function v(x) sup-
ported in the ball {x € R™: |z| <2}, we consider the strongly singular kernel

eilzl ¢
k(l’) = W’U x
Let us denote by T'f the corresponding strongly singular integral operator:
Tf(x)=pv | klx—y)f(y)dy.
Rn

This operator has been studied by several authors, see [4], [6], [8], [12] and [24].
In particular, S. Chanillo [4] established the weighted LP (R™) boundedness for
strongly singular integrals provided that w € A4,(R™) (Muckenhoupt weights)
for 1 < p < oo. J. Garcia-Cuerva et al. [8] obtained weighted L? estimates with
pairs of weights for commutators generated by the strongly singular integrals
and the classical BMO(R™) functions. We have the following results for the
strongly singular integrals.

THEOREM 7.1. Let T be strongly singular integral operators, then
@) T fllpz @y < Cpwllfllpz@ny for 1 <p<oo and w e APC.
(1) ITF ] ey < Cull Fll 22 ) for o € A,
(i) 17111 (ay < Coll s ey Jor w € ALe.

Proof. We first note that for w € A, the inequality (i) is known to be true,
see [4]. For w e A;,OC, by Lemma 2.1(i) for any unit cube @ there is a @ € A4,
so that @ =w on 6Q. Then

ITfllzz Q) = HT(XGQf)HLﬁ(Q)
< HT(XGQf)HLg(Q)
< CH(XGQ«]E)HLE(Rn)
< COlfllzz6q)-

Summing over all dyadic unit I gives (i).

For (ii), similar to (i), note that for w € A; the inequality (ii) is known to
be true, see [4]. Since w € AP, by Lemma 2.1(i) for any unit cube I there is
a w € A; so that @ =w on 6Q. Then for any A >0

w{zeQ:|Tf(x)]>A}) <w({zeQ: |T(xsof)(@)|>A})
=o({z€Q: [Txwaf)(@)]>A})
< ON (ke N 1, gy
=N fllzys@)-

Summing over all dyadic unit @ gives (ii).
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Finally, to consider (iii). Let a(x) be an atom in hl(R"), supported in a
cube @ centered at zp and sidelength § <2 by Remark 5.1, or a(x) is a single
atom. To prove the (iii), by Theorem 6.2, it is enough to show that

(7.1) ITallLy @y < C,

where C is independent of a.
It is easy to see that (7.1) holds while a(x) is a single atom. It remains

to consider this kind of atom supported in a cube ) centered at zo and

55/(1+e

sidelength 0. In deed, let 09 be a number satisfying 49g = ), Obviously,

do < 1.
Case 1. 2> § > §p. This is the trivial case. Let Q* = (10n/dp)Q. Now

/ |Ta|w(x)dm:/ |Ta\w(x)dx+/ |Ta|w(x)dx:/ |Ta|w(x) dz.
R Q- R™M\Q Q-
Obviously,

(7.2) / Talw(z) dx <C</n |Ta|pw(x)d$)1/2°(/*w(x)dx>1/,,f
SC(/n, |alpw(m)dx)1/p(/*w(x)dx>l/p/

< Cu(Q) 1Y < / (@) dx) o

Case 2. § < &y. We let Q* =4Q and Q = Q(xo,0Y/ (). Then

/ |Ta\w(as)dx§/ \Ta|w(a:)da:+/ |Ta\w(x)da:+/ \Talw(z) dz
" Q* Q\Q* R™\Q
=1+ 1T+ 1II.

For I, similar to (7.2), we have

I< c(/ ITalPw(z) d:n) v (/ (@) d:c) o

We now estimate the term I1I. Clearly, by the mean value theorem,

(6
’Ta(x)‘ < WX{W—;%@M(@/Q‘@(?M dy

Cs
< [ g Xzl <an} (2)

< ([ ot Pute) dx)”p ([ o " dx)””/
cé

Q

< o— 01 .
- |x — I0|9+n+1 X{|z—zo|<4n} ({,13) M(Q)
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Hence, by the properties of AX¢ (see Lemma 2.1), we have
o) w(z)

OJ(Q) §1/0+0) < |z —xo|<4n |IL‘ - m0|9+n+1

Q| < 1 1
S0 X T (@ [ i)
<C,

where kg and k; are positive integers such that 2%0§ < 51/51+9) < 2kot+1l§ and
2k—1 < 4p < 2%, We now estimate the term II. For 2 € Q \ Q*

o) - [ Sy

|I’ _ y|n(2+9)/1"

I < dz

1 1 p
% |z — y[r(A=C+0)/) |z — z|n(-C+0)/r) ay) dy
; —6
P B ) a(y)
. |x — y|’ﬂ(2+9)/7" |1-0 _ x|n(1—(2+9)/7")
= A(z) + B(z),
where 7’ is taken so close to 1 to guarantee that 2+ 60 < r. Applying the mean

value theorem to the term in brackets in the integrand of A, and noting that
for y e Q, and x € Q\ Q*, |x — y| > c|x — x|, we have

dy

cd
|A($U)| < WX{|$IO|<4n}(x)/Q|a(y)’dy
clol w12
= |z — x|t {lz—zo|<4n} w(Q)’
Therefore,
C5|Q\/ w(zx)
II < ——dx
B w(Q) 0<|z—zo|<4n |£U _x0|n+1

w(z)
+C Ko, *xa y
/6<zzo<51/(1+9) | o | |$0 - .’I,‘|"(1_(2+9)/7“ )

1/r
§C+C’(/ |K9’T*a|rd:c>
R’n

r 1/r'
X (/ w(y) : dx)
S<|p—zo|<s1/(+0) |20 — x|P(A=(2HO)/T7)

ko 1/r’
oy (' =10+1) 1 v’
<C’+C’||a|Lr/(Rn)<§ '(259) (2’“5)”/| e dx)
T—0|<

k=0
<C,

dx
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-]
cilel

where 2F0—15 < §1/(1+0) < 2k Ky (1) := [ and we used the follow-
ing fact (see [4])
[ Ko,r* fllor@ny < Crllfll L @ny, 7>240.
Thus, Theorem 7.1 is proved. O
As in [13] we now introduce BMOj,. of locally integrable functions with

bounded mean oscillation which has a intimate relationship between the ALOC
weights. Namely,

1
bllgatone = sup — / b bol dz < o,

Q<1 1@l Jg
where by = ﬁ Jo f(x)dz.

It is easy to see that, we have the following result.

LEMMA 7.1. Fiz p>1 and let b€ BMO™. Then there exists € >0, de-
pending upon the BMO™® constant of b, such that e* € A;,OC for |z| <e.

LEMMA 7.2. Let b€ BMO™°, then there exist positive constants ¢; and co
such that for every cube Q with |Q| <1 and every A >0, we have

CaA
HzeQ: |b(z) —bg| > A}| < 01|Q|exp{—27}.
[[bllBaotee (rn)
As a consequence of Lemmas 7.2 and 2.1, we have the following result.

COROLLARY 7.1. Let b€ BMO™° and w € A%, then there exist positive
constants C3 and Cy such that for every cube Q with |Q] <1 and every X > 0,
we have

w{zeQ: |bz) —bg| > A}) < 63w(Q)exp{ L}

[0l Bmotoe ()
As an application of Corollary 7.1, we have the following proposition.

PROPOSITION 7.1. Let b€ BMO™°, 1< p < 0o, and w € Alec then there
exists a positive constant C' such that for every cube Q with |Q| <1

1
m /Q|b(m) — bQ|pw(x) dx < C||b||’];Moloc.

We now consider commutator of Coifman-Rochberg-Weiss [b,T] defined
by the formula

[0, T1f(x) =b(x)T f(z) = T(bf)(x) = / (b(z) = b(y)) k(z — y) f(y) dy.
Rn
As in the case of strongly singular integrals, we have the following theorem.

THEOREM 7.2. Let b € BMOy.(R™) and T be the strongly singular integral
operators, then
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@) o, T1f e ®ny < CpwllbllBmore @) I fllze@ny for 1 <p < oo and w e
Alee.

(i) 15, TN 1 oy < CooBlmat0n,. 2

Proof. By Lemma 7.1, there is n > 0 such that w1 ¢ AL‘)C. Then, we

choose § > 0 such that exp(sdéb(1+n)/n) € ALOC if 0<s(1+mn)/n<d with
uniform constant. For z € C, we define the operator

T.f= eZbT(e_be).

f”hi(R”) for we Allo".

We claim that
172 flle @y < Cllflle @ny
uniformly on |z| < s <dn/(1+n).
The function z — T, f is analytic, and by the Cauchy theorem, if s <
on/(1+n),

d 1 T,
—T.f| =-— / dz.
dz vmo 27 =g 82
Observing that
d
o} —bT
LS| =)

and applying the Minkowski inequality to the previous equality, we get

1 (T fll L (w)
|mﬂmmmsﬂ%;;—?—4d<4uyw

It remains to prove the claim, which is equivalent to
1/p
(7.3) </ |Tf(x | )| exp(R(2)pb(z) )w(z) dx)

1/p
< C( - ‘f(x)’pexp(R(z)pb(ac))w(x) dm) .

We write wp := exp(R(2)b(1 +n)/n) and wy := w'*T. Since wy and w; €
A;,OC, we have

</”‘Tf et )dx)l/pg(’( Rn\f(x)’p%(x)dxy/p
</]R” 7@ ur(a) dx) " <C <~/]Rn |f(@)]"wr () dff) l/p.

Now, by Stein—Weiss interpolation theorem, we have

1/p 1/p
(/ T ()Pl P wf dx) <C (/ (@) Pw§ P da:)
R™ Rn

and
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and taking 8= (1+n)~!, then we obtain (7.3). Thus, (i) of Theorem 7.2 is
proved.

For (i), Let the function a;(z) is a h,(R™) atom and suppa; C Q(z;,7;),
and qg is a single atom if w(R™) < co, we then have

w({z eR" 1 [b,T1f(x)| > A})
:w({xGR": > A Ta,(x >)\}>

J€No
gw({xeR”: > Al Tlaj(x >/\/3}>
JEEL
+w({xER": Z/\ [b,T)a,(x >/\/3}>
JEE2

+w({z eR™: [Ao[b, T]ao(z)| > A/3})
= F1 + Fy + F3,
where B4 ={j € N:r; <o} and Ep ={j e N: 2>1r; > 5y} and §p be a

number satisfying 4(50 (51/(1+6) Obviously, dg < 1.
For I, let b; = 13- |fQ y) dy. Note that

> N Tlaj(x) = > Aj[b—b;, Tla;(x)

JjEEL JEEL
Z >‘ Ta’]( )X4an (SC)
JEE,
+ ) X (b(x) = b;) Ta ()X anq,)- ()
jEEL
=T Aj(b(x) —bj)a; ) (z)
(2 =)o)
= Fi1(z) + Fiz(2) + Fis (o).

Thus, by (i) of Theorem 7.2 and Theorem 7.1, we obtain

w({z eR™: ’Fll(x)‘ >\/9}) < % Z ‘)‘J“H(b_ bj)(Taj)X‘L”QjHL}U(]R”)

JEE
C
<3 Z X (b — bj)szQj||L3(Rn)||aj||L3(Rn)
JEEL
C
< XZ|/\j||‘b||BM01°C
jEN
C

< S lbllpaionc s e
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By the weighted weak type (1,1) of T (see Theorem 7.1(ii)) and Proposi-
tion 7.1, we get

oz e |Fs@)] >2/01) < $ 3 16— )y oy
]EEI

C
< =3 Millbllbnon

jEN
< S bllmarore g -

Now, we consider the term Fja(x). Obviously,

(7.4) w({z eR™: |Fia(z)| > A/6})
AT Y |)\j\/RnT((b(at) —b;)a;) (z)w(x) dz.

We claim that
/n T((b(x) - bj)a;) (v)w(z)dz < C

holds for all atoms a; for j € ;. For convenience, we denote a; by a,
Qj(z;,75) by Q(x0,0) and b; by bg for j € Ej.
We let Q* =4Q and Q = Q(zo,0Y (1), Then

|T(b—b)a|w(x)dx§/ |T(b—bg)a|w(x) dx
R™ Q~

+/ |T(b—bg)a|w(x da:—i—/ |Ta|lw(z) dx
Q\Q~ R™\Q
=1+1I+ 111

For I, similar to (7.2), we have

1/p 1/p’
I< C( |T (b—bg) a| da:) (/ w(x) dx) <C.
Rn *

We now estimate the term III. Clearly, by the mean value theorem,
Célb(z) — be
[7(b = be)a(@)] < 1= it Xlo—sol<an) (¢ / |a(y)

_ O6lb(z) — bol
mx{lx wol<dn} (T)

([eron) " ( [l 7a)

Cé\b —bQ| | |
- ‘:E—I |9+n+1X{|x r0‘<4"}( )w( )
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Hence, by the properties of AX¢ (see Lemma 2.1), we have

ie] b(@) ~ bolew(a)

W(Q) 51/(1+9)<|I7I0‘<4TL |x_x0‘0+n+1

Cd|Q| 1 1 |b(z) — bg|w(x)
= w(Q) Z (286 1+9((2k5) /|x—;c0§2k6 |z — |0+ HL dx)

SC;

I <

where ko and k; are positive integers such that 2F0§ < 61/f1+9) < 2kot+1§ and
2k—1 < 4p < 2%, We now estimate the term II. For 2 € Q \ Q*

el sl oz — y)
Ta(x):/Rn |x_y|n(2+9)/,,./
! ! b b d
“\Jz = y[r=CT/™)  Jag — o[- @+0)/7) (b(z) = bq)aly) dy
eilz—y|~* _ _
+/ v(r —y) (b()bQ)()dy

|x_y|n(2+0 /r! |.’170 _(E|n (1—(246)/r")
= A(z) + B(z),
where 7’ is taken so close to 1 to guarantee that 2+ 60 < r. Applying the mean

value theorem to the term in brackets in the integrand of A, and noting that
for y€ @, and x € @\ Q*, |z — y| > ¢|x — x|, we have

C4|b(x) — bg|
|A(l’)|—x70|n+?><{|m wol<an} (¥ /|a )| dy

|
< C9]b(z) — bq
WXHI m0|<4n}( )m
Therefore,
i< 05|Q| / b(z) = blu(a)
6<|z—z0|<4n |x_m0|n+

|b(z) — bolw(x)
C Ky, _d
* /5'§|$—wo<61/(1+b) | or* a| |£L'0 — I|n(17(2+6)/r ) x

1/r
§C+C</ |Ka,r*a|’“dm>

b(z) —bolw(@)” |\
X R CERO dx
s<|o—zo|<st/(+0) |To — 2|n(1=(FO)/r)

<C.

Thus, the claim is proved.
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From (7.4), we have
w({x cR™: ‘Flg(l‘)‘ > /\/9}) < C)\_l Z |)\]‘ < C/\_l‘lth}d(R”)

JjEEL

It remains to consider the term F5. In fact, it is very simple. Let Q;‘ =
Note that for any atom a;

/Rn{[b,T]aﬂw(;v)dx:/Q;Hb,T]aj|w(ac)dx

Note that w(Q}) < Cw(Q;), we then have
> )\/3}>

Fz—w({:ceR”: > Aj[b, Tay(x

JjeE:>
<At
JGEQ
<A” IZ|>\|/ |1b, Ta;|w(x)
JjEE>
_ 1/2
<A Z [As1| 1 TG‘JHLQ(R” [w(@Q7)]
JjeES
< Clllgnroecr ™ S Nlllag ez ey [w(@5)]
jEE>
< Cllbllpaoes A D A
JEE>

It remains to estimate the term F3:

F; < C@ /Rng, T)a(z)|w(z)dz

<l 1/2

/\ [b’T]aHLg(Rn)[w(Rn)]
A

< Pl ol g oy o ()] < 22

From these, we have

w({z eR™: |[b,T]f(z)| > A}) Z|{xeR” |Fii(z)] > A/9}|

er({xeR”. |Fa(x)| > A/3})
+w({zeR™: |F3(x)| > \/3})

C
< XHbHBMOIDchthJ(Rn)-
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Thus, the proof of Theorem 7.2 is complete. O

Next, we show that the pseudodifferential operators are bounded on
hP (R™), where the weight w is in the weight class A,(¢) which is contained
in A;,OC for 1 <p < oo. Let us first introduce some definitions.

Let m be real number. Following [21], a symbol in ST’ is a smooth function
o(z,&) defined on R™ x R™ such that for all multi-indices o and /3 the following
estimate holds:

’DngU(%fﬂ <Cap(l+ |£|)m7|ﬂ|+5\a|’

where Cy g > 0 is independent of z and &.
The operator T' given by

Tf)= [ ol fe)ds

is called a pseudo-differential operator with symbol o(z,§) € S7"s, where f is
a Schwartz function and f denotes the Fourier transform of f.

In the rest of this section, we let ¢(t) = (1 +¢)* with « > 0.

A weight will always mean a positive function which is locally integrable.
We say that a weight w belongs to the class A,(p) for 1 < p < oo, if there is a
constant C' such that for all cubes @Q = Q(z,r) with center z and sidelength r

(zaa Jy= ) (g [, o) et

We also say that a nonnegative function w satisfies the A;(yp) condition if
there exists a constant C' for all cubes @)

M,(w)(z) <Cw(x), ae zeR™

where
Mofiw) = sup o | @)y
’ zeQ ¥ |Q\ Q| )
Since ¢(|Q[) > 1, s0 A,(R™) C Ay(p) C AP°(R™) for 1 < p < oo, where A,(R™)
denote the classical Muckenhoupt weights; see [9].

REMARK 7.1. It is easy to see that if w € A,(p), then w(x)dx may be not
a doubling measure. In fact, let @ >0 and 0 <+ < «, it is easy to check that
w(z) = (1 + |z|log(1 + |z]))~ "+ ¢ A (R™) and w(x)dz is not a doubling
measure, but w(z) = (14 |z|log(1 + |z]))~(**t7) € A;(p) provided that ¢(r) =
(1 7t/m)e,

Similar to the classical Muckenhoupt weights, we give some properties for
weights w € Ax(p) = Up21 Ap(e).
LEMMA 7.3. For any cube Q C R", then
(i) If 1< p1 <p2 < oo, then Ay, (¢) C Ap, (¢).
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(i) we Ay(p) if and only if(,u_ﬁ € Ay (p), where 1/p+1/p =1.
(iii) If we A, for 1 <p < oo, then for any measurable set E C Q,
E| C(w(E) )”p
e(l@NIQI ~ " \w(@)/
LEMMA 7.4. Let T be the S?,o pseudodifferential operators, then

ITfll 2z ®ry < Cpwll fll L2 )
for1<p<oo and w e Ay(p).

Lemmas 7.3 and 7.4 can be founded in [21]. The following lemma was
proved in [10].

LEMMA 7.5. Let T be the 59,0 pseudodifferential operators, if ¢ € D then
Ty f = o * T f has a symbol oy which satisfies DﬁD?at(x,f) < Cop(1+€]) 1o
and a kernel Ky(z,z) = FTeoy(x,€) which satisfies |DPDYK,(x,2)| <
C’a75|z\*”*‘a|, where Cy g is independent of t if 0 <t < 1.

THEOREM 7.3. Let T be the S?,O pseudodifferential operators, then

”TthE,(]Rn) < Op,w
forwe Ax(p) and 0 <p<1.

| fll e ey

Proof. Since w € A (), so w € A,(p) for some ¢ > 1. By Theorem 6.2,
it suffices to show that for any atom (p,q,s). a supported @ = Q(xo,r) with
r <2 and [lal|pggny < [w(Q)]/P71/4, such that

(7.5) 1T allpp,&ry < Cop,
and if a is a single atom, then
(7.6) ITals e < C

w,p-
Obviously, (7.6) holds. Now we prove (7.5).
If @* =2Q), we then have

/ sup |y * Ta(x)’pw(a:) dx
Q

s 0<t<1
«\ (a—p)/q . q vl
<w(Q") sup |¢p * Ta(z)| w(z) de
Q* 0<t<1

< Cw(@r) e < /
< Cw(@) /e ( /

<C.

r/q
|Ta|%w(x) dz)

n

n

p/q
la]fw(x) da:)

To estimate f]R"\Q* sup,., |¢ * T'al?, we consider two cases.
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The first case is when r < 1. We expand Ky(z,x — z) in a Taylor series
about z = x( so that

prxTa(x) = Ki(x,x — 2)a(z) dx:/ Z D Ki(z,x —&)z%a(z) dz,
R B laj=N+1

where £ is in @), and hence by Lemma 7.5,
|01 % Ta(x)| < Cla — wo| "NV 1| QN D/,

Taking N is large enough and r < 1, by Lemma 7.3(iii), we then have

/ sup iy * Ta(a:)|pw(x) dz
R\ Q* 0<t<1

p
gC\Q|p(N+1)/" @] /]R\Q |x_xo|*P(n+N+1)w(x)dz

w(Q)
<C"Q|p(N+l)/n QP i(ri)—p(nJrNH)/ w(z)dz
N W(Q) b—1 |lz—zo|<2kr
ko
1 —p(n+N+1)
<C——= 2r) P / w(x)dx
W(Q) kZ:l( ) |lz—zo|<2Fr ( )
SR 7(n+N+1)/
+C—— ok w(z)dz
W(Q) k:zko( ) |z—z|<2Fr ( )
1 &
<C— 9kngg—kp(n+N+1) , Q
Q) 2 @
1 > —p(n+N+1)+an L
+C— 2kr) " 2k (Q
@ 2 @
<C,

where the integer kg satisfies 2ko—1 < 1/r < 2ko . To estimate with the case
when 1 <r <2, by Lemma 7.5, for all M >0, we have

|Ki(z, 2 — 2)| < Oz — 2.
So
|y * Ta(z)| < / |Ki(z,2 — 2)a(z)|dz < Carla — 20| ™M ||al| 11 @)
Q

Note that 1 <r <2, we then have

/ sup ’(pt * Ta(m)|1’w(m) dr < CM||aH’£1(Rn) / |z — xo\_Mpw(x) dx
R\ Q* 0<t<1 R\ Q*
QP

<C / x—xo| " Mw(z)dz
M@ RH\Q*| ol (z)
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o0

<C,
if M is large enough. The proof is complete. O

8. A characterization of weighted local Hardy spaces hl (R")

The main purpose of this section is to give a characterization of weighted
local Hardy spaces hl (R™) by using the truncated Reisz transforms. Let ® be
a nonnegative, radial and C*°-function on R™ with compact support B(0,2)
and ®=1 on B(0,1). Define the truncated Reisz transforms by

Zj .
ij(.’ﬂ) - ]R Kj(x - y)f(y) dy7 KJ(Z) = Wﬁq)(z)a] =1,...,n.
Now let us state the main result of this section.

THEOREM 8.1. Let w € A°°. Then a function f is in hL,(R™) if and only

if f€LLR™) and R;f € LL(R™), j=1,...,n. More precisely,

£l @ny ~ 1o @y + D IR Fllzy @y

j=1
We remark that if w € Ay, Theorem 8.1 was proved essentially by Bui in
[3], that is, in the following.

THEOREM A. Let w € Ay. Then a function f is in hl,(R™) if and only if
f€LLR™) and Rjf € LL(R™), j=1,...,n. More precisely,

n
1Al @my ~ Il o @y + D IR fllzy @y

j=1
In order to prove Theorem 8.1, we need the following lemmas.

LEMMA 8.1. Let w € AYC. Then

(8.1) I fllny @ny < C<||f||L;(Rn) + Z ij”L}d(R")>~

j=1
Proof. We will borrow some idea from [14]. Let @ is an unit cube, x34 is a

C§° nonnegative function supported in 4Q) and Xé@ =1on3Q. By Lemma 2.1,
we can set @ € A,, so that @ =w on 14Q. Fix ¢ € N, by Theorem A, we have

(8:2) Hoilz-gllspt*fl’

_ /
L@ HOS<lt1]E<)1‘<pt i UXSQ)” LL(R™)

< Ol ol ey

< c(ufxaqnmn) +Z||Rj<fng>uL;<Rn)).
j=1
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On the other hand, by the properties of A, we obtain
(83)  [1B;(£x3) = X3 B (H)| 1y oy

< H/|Rj(z ) e (®) — x50 ()] F (W) |Xi20(v) dy

1L (Bn)
<cf w<z>/R IRy (2 — )12 — 91| F @) [ Xoa ) dyd=

<Clfllzya0)-
Combining (8.2) and (8.3), we obtain

< 0<||f||L;<14Q> +Z!|Rj<f>um@>.
j=1

sup * <
H0<t<1|% d LL(Q)

Summing on @, we obtain (8.1). O

LEMMA 8.2. Let R; be as above, then
1) IR fllr@ry < CpwllfllLe @ny for 1<p<oo and w € A;)OC.
(i) 175 fl s (ny < Coll flly gny for w e AP©.

The proof of Lemma 8.2 is similar to that of Theorem 7.1, we omit the
details here.

LEMMA 8.3. Let w € AYC. Then
(8.4) 1R flln ny < Cll flIny @ny-

Proof. We first fix a function ¢ € . Let a(x) be a (1,2) atom in AL (R"),
supported in a cube @ centered at yo and sidelength r <2, or a(z) is a (1,2)
single atom. To prove the (iii), by Theorem A and Theorem 6.2, it is enough
to show that

(8.5) | M(R;a <C,

)HL}J(R") =

where C is independent of a.
If a is a single atom, by L2 (R™) boundedness of M and R;, then

| M(R;a ) < ClIRjal|z @y (R) ' < C.

Mosor

Next we always assume that a is an atom in hl (R™), supported in a cube
Q@ centered at yg and sidelength r < 2.

We first consider the atom a with sidelength 1 <r <2. Then by L2(R")
of the operators M and R;(see Lemma 8.2), we have

M) 0y = [ MU ot

< Cw(8Q)"?|all L2 @) < C.
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If r <1, we write

[M(Ba)|| 1 gy = / M(Rja)(w)w(y) dy +/ M(Rja)(w)w(y) dy
w 2Q R™\2Q
=T1+1I.
For I, by L2 (R") boundedness of the operators M and R;, we have
I <w(2Q)?(|al| 2 &ny < C.

We now estimate II. Let = ¢ 2Q). For t > 0 we define the smooth functions

and we observe that they satisfy
(86) sup [P K ()] < Ol = ol ™~ PIx(1oyol<sm) ()

for all |B] < 1; see their proof in p. 507 of [11].
Now note that if = ¢ 2Q and y € Q, then |x — yo| > 2|y — yo| stays away
from yo and K;(z —y) is well defined. We have
Rjaxp(x) = (ax K})( /Ktx— (y) dy.
Using the cancellation of atoms, we deduce

Rja+ gi(x) = /Q Kz — y)aly) dy

/Q[K;(g:y>K;(zyo>]a(y)dy

gAb2

1Bl=1
for some 0 <6, <1. Using that |z — yo| > 2|y — yo| and (8.6) we get

(0P Kl (z—yo — Oy (y — yo))yﬁ] a(y)dy

(8.7) Rja*sot(x)<Clx—yo|_"_1><{|z_yogSn}(w)/Q!a(y)flyldy

Tn-l—l

-1
< CWW(Q) X{|z—yo|<sn} (T)-

y (8.7) and using properties of Al°°, we obtain

II< C/ Lw(@)flw(x) dx
2

r<|z—yo|<8n |LL’ - y0|n+1

Q] <~ _,w(2"Q)
<Coo X

k=1

<C,
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where kg is an integer such that 8n < 2% <16n. Thus, (8.5) holds. Hence,
the proof is complete. O

Obviously, Theorem 8.1 can be deduced by the above lemmas.
In addition, Theorem 8.1, Lemma 8.3 and (iii) in Theorem 7.1 imply im-
mediately the following corollary.

COROLLARY 8.1. Let T be strongly singular integral operators defined in

Section 7, then

1T fllny @y < Coll fllng @)

for w e Ale.
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