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WEIGHTED LOCAL HARDY SPACES AND
THEIR APPLICATIONS

LIN TANG

Abstract. In this paper, we study weighted local Hardy spaces
hp
ω(R

n) associated with local weights which include the classical

Muckenhoupt weights. This setting includes the classical local

Hardy space theory of Goldberg, and the weighted Hardy spaces
of Bui.

1. Introduction

The theory of local Hardy space plays an important role in various fields of
analysis and partial differential equations; see [16], [17], [19], [22]. In partic-
ular, pseudo-differential operators are bounded on local Hardy spaces hp for
0< p ≤ 1, but they are not bounded on Hardy spaces Hp for 0 < p ≤ 1; see
[10].

On the other hand, Bui [3] studied the weighted version hp
w of the local

Hardy space hp considered by Goldberg [10], where the weight ω is assumed
to satisfy the condition (A∞) of Muckenhoupt. Recently, Rychkov [16] in-
troduced and studied some properties of the weighted Besov–Lipschitz and
Triebel–Lizorkin spaces with weights that are locally in Ap but may grow
or decrease exponentially, which includes Hardy spaces as its part. In fact,
Rychkov explicitly identifies weighted local Hardy space hp

ω with F 0
p,2(ω) in

Theorem 2.25 of [16]. In particular, Rychkov [16] extended a part of theory
of A∞-weighted local Hardy spaces developed in Bui [3] to the Aloc

∞ weights,
where Aloc

∞ weights denote local A∞-weights which are non-doubling weights,
and the Aloc

∞ weights include the A∞-weights.
The main purpose of this paper is twofold. The first goal is to estab-

lish weighted atomic decomposition characterizations of weighted local Hardy
space hp

ω with local weights. The second goal is to show that strong singular
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integrals and pseudodifferential operators and their commutators are bounded
on weighted local Hardy spaces.

The paper is organized as follows. In Section 2, we first recall some no-
tation and definitions concerning local weights and grand maximal function;
and we then obtain a basic approximation of the identity result and the grand
maximal function characterization for Lq

ω with q ∈ (qω,∞], where qω is the
critical of ω. In Section 3, we introduce weighted local Hardy spaces hp

ω,N via

grand maximal functions and weighted atomic local Hardy spaces hp,q,s
ω (Rn)

for any admissible triplet (p, q, s)ω , and study some properties of these spaces.
In Section 4, we establish the Calderón–Zygmund decomposition associated
with the grand maximal function. In Section 5, we prove that for any admissi-
ble triplet (p, q, s)ω , h

p
ω,N (Rn) = hp,q,s

ω (Rn) with equivalent norms. Moreover,

we prove that ‖ · ‖hp,q,s
ω,fin(R

n) and ‖ · ‖Hp
ω(Rn) are equivalent quasi-norms on

hp,q,s
ω,fin(R

n) with q <∞, and we obtain criterions for boundedness of sublinear
operators in hp

ω in Section 6. In Section 7, we show that strong singular in-
tegrals and pseudodifferential operators and their commutators are bounded
on weighted local Hardy spaces by using weighted atomic decompositions.
Finally, in Section 8, we will give a characterization of weighted local Hardy
spaces h1

ω .
It is worth pointing out that we can not adapt the methods in [3] and [10]

while ω is a local weight. In fact, adapting the same idea of (global) weighted
Hardy spaces ([1], [2], [7], [18], [20]) and subtle analysis (see the proof of
Lemma 5.4), we give a direct proof for weighted atomic decompositions of
weighted local Hardy spaces. In addition, it also should be pointed out that
Yang and Yang [23] extended our results to Orlicz–Hardy spaces very recently.

Throughout this paper, C denotes the constants that are independent of
the main parameters involved but whose value may differ from line to line.
Denote by N the set {1,2, . . .} and by N0 the set N∪{0}. By A∼B, we mean
that there exists a constant C > 1 such that 1/C ≤A/B ≤C.

2. Preliminaries

We first introduce weight classes Aloc
p from [16].

Let Q run through all cubes in R
n (here and below only cubes with sides

parallel to the coordinate axes are considered), and let |Q| denote the volume
of Q. We define the weight class Aloc

p (1< p<∞) to consists of all nonnegative
locally integral functions ω on R

n for which

Aloc
p (ω) = sup

|Q|≤1

1

|Q|p
∫
Q

ω(x)dx

(∫
Q

ω−p′/p(x)dx

)p/p′

(2.1)

<∞, 1/p+ 1/p′ = 1.
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The function ω is said to belong to the weight class of Aloc
1 on R

n for which

Aloc
1 (ω) = sup

|Q|≤1

1

|Q|

∫
Q

ω(x)dx
(
sup
y∈Q

[
ω(y)

]−1
)
<∞.(2.2)

Remark 2.1. For any C > 0, we could have replaced |Q| ≤ 1 by |Q| ≤ C
in (2.1) and (2.2).

In what follows, Q(x, t) denotes the cube centered at x and of the side-
length t. Similarly, given Q = Q(x, t) and λ > 0, we will write λQ for the
λ-dilate cube, which is the cube with the same center x and with sidelength
λt. Given a Lebesgue measurable set E and a weight ω, let ω(E) =

∫
E
ω dx.

For any ω ∈Aloc
∞ , Lp

ω with p ∈ (0,∞) denotes the set of all measurable func-
tions f such that

‖f‖Lp
ω
≡

(∫
Rn

∣∣f(x)∣∣pω(x)dx)1/p

<∞

and L∞
ω = L∞. We define the local Hardy–Littlewood maximal operator by

M locf(x) = sup
x∈Q:|Q|<1

1

|Q|

∫
Q

∣∣f(y)∣∣dy.
Similar to the classical Ap Muckenhoupt weights, we give some properties for
weights [5] ω ∈Aloc

∞ :=
⋃

1≤p<∞Aloc
p .

Lemma 2.1. Let 1≤ p <∞, ω ∈ Aloc
p , and Q be a unit cube, i.e. |Q|= 1.

Then there exists a ω̄ ∈Ap so that ω̄ = ω on Q and

(i) Ap(ω̄)≤CAloc
p (ω).

(ii) if ω ∈Aloc
p , then there exists ε > 0 such that ω ∈Aloc

p−ε for p > 1.

(iii) if 1≤ p1 < p2 <∞, then Aloc
p1

⊂Aloc
p2

.

(iv) ω ∈Aloc
p if and only if ω− 1

p−1 ∈Aloc
p′ .

(v) if ω ∈Aloc
p for 1≤ p <∞, then

ω(tQ)≤ exp(cωt)ω(Q)
(
t≥ 1, |Q|= 1

)
.

(vi) the local Hardy–Littlewood maximal operator M loc is bounded on Lp
ω if

ω ∈Aloc
p with p ∈ (1,∞).

(vii) M loc is bounded from L1
ω to L1,∞

ω if ω ∈Aloc
1 .

Proof. (i)–(vi) have been proved in [16]. (vii) can be proved by the standard
method. �

We remark that Lemma 2.1 is also true for |Q|> 1 with c depending now
on the size of Q. In addition, it is easy to see that Ap ⊂ Aloc

p for p≥ 1 and

ec|x|, (1 + |x| lnα(2 + |x|))β ∈Aloc
1 with α≥ 0, β ∈R and c ∈R.

As a consequent of Lemma 2.1, we have following result.
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Corollary 2.1. If ω ∈Aloc
∞ , then there exists a constant C > 0 such that

ω(2Q)≤Cω(Q)

if |Q|< 1, and
ω
(
Q(x0, r+ 1)

)
≤Cω

(
Q(x0, r)

)
if |Q(x0, r)| ≥ 1.

From Lemma 2.1, for any given ω ∈Aloc
p , define the critical index of ω by

qω ≡ inf
{
p ∈ [1,∞) : ω ∈Aloc

p

}
.(2.3)

Obviously, qω ∈ [1,∞). If qω ∈ (1,∞), then ω /∈Aloc
qω .

The symbols D(Rn) = C∞
0 (Rn),D′(Rn) is the dual space of D(Rn). The

multi-index notation is usual: for α = (α1, . . . , αn) and ∂α = (∂/∂x1)
α1 · · ·

(∂/∂xn)
αn .

Lemma 2.2. Let ω ∈Aloc
∞ , qω be as in (2.3), and p ∈ (qω,∞]. Then

(i) if 1/p+ 1/p′ = 1, then D(Rn)⊂ Lp′

ω−1/(p−1)(R
n);

(ii) Lp
ω(R

n)⊂D′(Rn) and the inclusion is continuous.

Proof. We only prove the case p < ∞. The proof for the case p = ∞ is
easier and we omit the details. Since p ∈ (qω,∞), then ω ∈ Aloc

p . Therefore,

by the definition of Aloc
p , for all ball B = B(0, r) with radius r and centered

at 0, we have∫
B

[
ω(x)

]−1/(p−1)
dx≤C

[
ω(B)

]−1/(p−1)|B|p′
<∞.

From this, for any ϕ ∈D(Rn) and suppϕ⊂B, we obtain

‖ϕ‖
Lp′

ω−1/(p−1) (R
n)

≤C

∫
B

[
ω(x)

]−1/(p−1)
dx <∞.(2.4)

For (ii), if f ∈ Lp
ω(R

n) and ϕ ∈ D(Rn), by Hölder inequality and (2.4), we
have∣∣〈f,ϕ〉∣∣ ≤ ‖f‖Lp

ω(Rn)

(∫
Rn

∣∣ϕ(x)∣∣p′[
ω(x)

]−1/(p−1)
dx

)1/p′

≤C‖f‖Lp
ω(Rn).

Thus, Lemma 2.2 is proved. �

For ϕ ∈D(Rn) and t > 0, set

ϕt(x) = t−nϕ

(
x

t

)
.

It is easy to see that we have the following results.

Proposition 2.1. Let ϕ ∈D(Rn) and
∫
Rn ϕ(x)dx= 1.

(i) For any Φ ∈ D(Rn) and f ∈ D′(Rn), Φ ∗ ϕt → Φ in D(Rn) as t→ 0 and
f ∗ϕt → f in D′(Rn) as t→ 0.
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(ii) Let ω ∈ Aloc
∞ and qω be as in (2.3). If q ∈ (qω,∞), then for any f ∈

Lq
ω(R

n), f ∗ϕt → f in Lq
ω(R

n) as t→ 0.

Let N ∈N0 and

M0
Nf(x) = sup

{∣∣ϕt ∗ f(x)
∣∣ : 0< t < 1, ϕ ∈D

(
R

n
)
,

∫
ϕ �= 0,

suppϕ⊂B(0,1),
∥∥Dαϕ

∥∥
∞ ≤ 1 |α| ≤N + 1

}
,

M̄0
Nf(x) = sup

{∣∣ϕt ∗ f(x)
∣∣ : 0< t < 1, ϕ ∈D

(
R

n
)
,

∫
ϕ �= 0,

suppϕ⊂B
(
0,23(10+n)

)
,
∥∥Dαϕ

∥∥
∞ ≤ 1 |α| ≤N + 1

}
,

and

MNf(x) = sup

{∣∣ϕt ∗ f(z)
∣∣ : |z − x|< t < 1, ϕ ∈D

(
R

n
)
,

∫
ϕ �= 0,

suppϕ⊂B
(
0,23(10+n)

)
,
∥∥Dαϕ

∥∥
∞ ≤ 1 |α| ≤N + 1

}
.

For any N ∈N0 and x ∈R
n, obviously,

M0
Nf(x)≤ M̄0

Nf(x)≤MNf(x).

For convenience, we write

D0
N =

{
ϕ ∈D : suppϕ⊂B(0,1),

∫
ϕ �= 0,

∥∥Dαϕ
∥∥
∞ ≤ 1 |α| ≤N + 1

}
and

DN =

{
ϕ ∈D : suppϕ⊂B

(
0,23(10+n)

)
,

∫
ϕ �= 0,

∥∥Dαϕ
∥∥
∞ ≤ 1 |α| ≤N + 1

}
.

Proposition 2.2. Let N ≥ 2. Then:

(i) There exists a positive C such that for all f ∈ (L1
loc(R

n) ∩D′(Rn)) and
almost everywhere x ∈R

n, |f(x)| ≤M0
Nf(x)≤CM locf(x).

(ii) If ω ∈ Aloc
p with p ∈ (1,∞), then f ∈ Lp

ω(R
n) if and only if f ∈ D′(Rn)

and M0
Nf ∈ Lp

ω ; moreover, ‖f‖Lp
ω
∼ ‖M0

Nf‖Lp
ω
.

(iii) If ω ∈Aloc
1 , then M0

N is bounded from L1
ω(R

n) to L1,∞
ω (Rn).

The proof of (i) and (iii) is obvious, (ii) has been proved in [16], we omit
the details here.
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3. The grand maximal function definition of Hardy spaces

In this section, we introduce weighted local Hardy spaces via grand max-
imal functions and weighted local Hardy spaces. Moreover, we study some
properties of these spaces.

Let p ∈ (0,1], ω ∈Aloc
∞ , and qω be as in (2.3). Set

Np,ω =max

{
0,

[
n

(
qω
p

− 1

)]}
+ 2.

For each N ≥Np,ω , the weighted local Hardy space is defined by

hp
ω,N

(
R

n
)
≡

{
f ∈D′(

R
n
)
: M0

N (f) ∈ Lp
ω

(
R

n
)}

.

Moreover, we define ‖f‖hp
ω,N (Rn) ≡ ‖M0

N (f)‖Lp
ω(Rn). From Theorem 2.24 in

[16], we know that ‖M0
N (f)‖Lp

ω(Rn) ∼ ‖M̄0
N (f)‖Lp

ω(Rn) ∼ ‖MN (f)‖Lp
ω(Rn).

For any integer N,N̄ with Np,ω ≤N ≤ N̄ , we have

hp
ω,Np,ω

(
R

n
)
⊂ hp

ω,N

(
R

n
)
⊂ hp

ω,N̄

(
R

n
)

and the inclusions are continuous.
Notice that if p ∈ (qω,∞] and N ≥Np,ω = 2, then by Proposition 2.2(ii), we

have hp
ω,N (Rn) = Lp

ω(R
n) with equivalent norms. However, if p ∈ (1, qω), the

element of hp
ω,N (Rn) may be a distribution, and hence, hp

ω,N (Rn) �= Lp
ω(R

n).

But, (hp
ω,N (Rn)) ∩ L1

loc(R
n) ⊂ Lp

ω(R
n). For applications considered in this

paper, we concentrate only on hp
ω,N (Rn) with p ∈ (0,1].

We introduce the following weighted atoms.
Let ω ∈ Aloc

∞ and qω be as in (2.3). A triplet (p, q, s)ω is called to be
admissible, if p ∈ (0,1], q ∈ (qω,∞] and s ∈N with s≥ [n( qωp − 1)]. A function

a on R
n is said to be a (p, q, s)ω-atom if

(i) suppa⊂Q,
(ii) ‖a‖Lq

ω(Rn) ≤ [ω(Q)]1/q−1/p,

(iii)
∫
Rn a(x)x

α dx= 0 for α ∈ (N0)
n with |α| ≤ s, if |Q|< 1.

Moreover, we call a is a (p, q)ω single atom if ‖a‖Lq
ω(Rn) ≤ [ω(Rn)]1/q−1/p.

Let ω ∈ Aloc
∞ and (p, q, s)ω be an admissible triplet. The weighted atomic

local Hardy space hp,q,s
ω (Rn) is defined to be the set of all f ∈ D′(Rn) satis-

fying that f =
∑∞

i=0 λiai in D′(Rn), where {λi}i∈N0 ⊂C,
∑∞

i=0 |λi|p <∞ and
{ai}i∈N are (p, q, s)ω-atom and a0 is a (p, q)ω single atom. Moreover, the
quasi-norm of f ∈ hp,q,s

ω (Rn) is defined by

‖f‖hp,q,s
ω (Rn) ≡ inf

{[ ∞∑
i=0

|λi|p
]1/p}

,

where the infimum is taken over all the decompositions of f as above.
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It is easy to see that if the triplets (p, q, s)ω and (p, q̄, s̄)ω are admissible
and satisfy q̄ ≤ q and s̄ ≤ s, then (p, q, s)ω-atoms are (p, q̄, s̄)ω-atoms, which
further implies that hp,q,s

ω (Rn)⊂ hp,q̄,s̄
ω (Rn) and the inclusion is continuous.

Next, we give some basic properties of hp
ω,N (Rn) and hp,q,s

ω (Rn).

Proposition 3.1. Let ω ∈Aloc
∞ . If p ∈ (0,1] and N ≥Np,ω , then the inclu-

sion hp
ω,N (Rn) ↪→S ′(Rn) is continuous.

Proof. Let f ∈ hp
ω,N (Rn). For any ϕ ∈D0

N (Rn), and suppϕ⊂B0 =B(0,1),
we have ∣∣〈f,ϕ〉∣∣ = ∣∣f ∗ ϕ̄(0)

∣∣ ≤ ‖ϕ̄‖DN
inf

x∈B0

M0
N (f)(x)

≤
[
ω(B0)

]−1/p‖ϕ‖D0
N (Rn)‖f‖hp

ω,N (Rn),

where ϕ̄(x) = ϕ(−x). This implies f ∈D′(Rn) and the inclusion is continuous.
The proof is finished. �

Proposition 3.2. Let ω ∈ Aloc
∞ . If p ∈ (0,1] and N ≥ [(n(qω/p− 1)] + 2,

the space hp
ω(R

n) is complete.

Proof. For every ϕ ∈ D0
N (Rn) and every sequence {fi}i∈N in D′(Rn) such

that
∑

i fi converges in D′ to the distribution f , the series
∑

i fi ∗ ϕ(x) con-
verges pointwise to f ∗ϕ(x) for each x ∈Rn. Thus,

M0
Nf(x)p ≤

(∑
i

M0
Nfi(x)

)p

≤
∑
i

(
M0

Nfi(x)
)p

for all x ∈R
n,

and hence ‖f‖hp
ω,N (Rn) ≤

∑
i ‖fi‖hp

ω,N (Rn).

To prove that hp
ω,N (Rn) is complete, it suffices to show that for every se-

quence {fj}j∈N with ‖fj‖hp
ω,N (Rn) < 2−j for any j ∈N, the series

∑
j∈N

fj con-

vergence in hp
ω,N (Rn). Since {

∑j
i=1 fi}j∈N are Cauchy sequences in hp

ω,N (Rn),

by Proposition 3.1 and the completeness of D′(Rn), {
∑j

i=1 fi}j∈N are also
Cauchy sequences in D′(Rn) and thus converge to some f ∈ D′(Rn). There-
fore, ∥∥∥∥∥f −

j∑
i=1

fi

∥∥∥∥∥
p

hp
ω,N (Rn)

=

∥∥∥∥∥
∞∑

i=j+1

fi

∥∥∥∥∥
p

hp
ω,N (Rn)

≤
∞∑

i=j+1

2−ip → 0

as j →∞. This finishes the proof. �

Theorem 3.1. Let ω ∈Aloc
∞ . If (p, q, s)ω is an admissible triplet and N ≥

Np,ω , then hp,q,s
ω (Rn)⊂ hp,q,s

ω,Np,ω
(Rn)⊂ hp

ω,N (Rn), and moreover, there exists a

positive constant C such that for all f ∈ hp,q,s
ω (Rn),

‖f‖hp
ω,N (Rn) ≤ ‖f‖hp

ω,Np,ω
(Rn) ≤C‖f‖hp,q,s

ω (Rn).
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Proof. Obviously, we only need to prove hp,q,s
ω ⊂ hp

ω,Np,ω
(Rn) for all f ∈

hp,q,s
ω (Rn), ‖f‖hp

ω,Np,ω
(Rn) ≤ ‖f‖hp,q,s

ω (Rn). To this end, it suffice to prove that

there exists a positive constant C such that∥∥M0
Np,ω

(a)
∥∥
Lp

ω(Rn)
≤C for all (p, q, s)ω-atoms a,(3.1)

and ∥∥M0
Np,ω

(a)
∥∥
Lp

ω(Rn)
≤C for a (p, q)ω single atoms a.(3.2)

Since q ∈ (qω,∞], so ω ∈ Aloc
q . We first prove (3.2). Let a is a (p, q)ω single

atom. Using the Hölder inequality, the Lq
ω(R

n)-boundedness of M0
Np,ω

and

ω ∈Aloc
q together with Proposition 2.2(i), we have∥∥M0

Np,ω
(a)

∥∥p

Lp
ω(Rn)

≤C‖a‖p
Lq

ω(Rn)

[
ω
(
R

n
)]1−p/q ≤C.

It remains to prove (3.1). Let a be a (p, q, s)ω-atom supported in Q=Q(x0, r).
The first case is when |Q|< 1. Then if Q̄ is the double of Q,∫

Rn

[
M0

Np,ω(a)(x)
]p
ω(x)dx

=

∫
Q̄

[
M0

Np,ω(a)(x)
]p
ω(x)dx+

∫
Q̄c

[
M0

Np,ω(a)(x)
]p
ω(x)dx

:= I1 + I2.

For I1, by the properties of Aloc
q (see Lemma 2.1), we have

I1 ≤C‖a‖p
Lq

ω(Rn)

[
ω(Q̄)

]1−p/q ≤C.

To estimate I2, we claim that for x ∈ Q̄c

M0
Np,ω(a)(x) ≤ C|x− x0|−(s0+1+n)|Q|(s0+1+n)/n(3.3)

×
[
ω(Q)

]−1/p
χ{|x−x0|<4n}(x),

where s0 = [n(qω/p− 1)]. Indeed, let P be the Taylor expansion of ϕ at the
point (x− x0)/t of order s0. Thus, by the Taylor remainder theorem, note
that 0< t < 1, we then have∣∣(a ∗ϕt)(x)

∣∣ = ∣∣∣∣t−n

∫
Rn

a(y)

(
ϕ

(
x− y

t

)
− P

(
x− x0

t

))
dy

∣∣∣∣
≤ Cχ{|x−x0|<4n}(x)|x− x0|−(s0+n+1)

∫
Q

∣∣a(y)∣∣|y− x0|s0+1 dy

≤ C|x− x0|−(s0+1+n)|Q|(s0+1+n)/n
[
ω(Q)

]−1/p
χ{|x−x0|<4n}(x).
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Hence, (3.3) holds. Choose η > 0 such that, then by ω ∈Aloc
qω+η and Proposi-

tion 2.2(i), we have

I2 ≤C|Q|p((1+s0+n)/n)
[
ω(Q)

]−1
∫
2r<|x−x0|<4n

|x− x0|−p(s0+1+n)ω(x)dx≤C.

To deal with the case when |Q| ≥ 1, the proof is simple. In fact, let Q∗ =
Q(x0, r+ n), by Corollary 2.1, we get∫

Rn

[
M0

Np,ω(a)(x)
]p
ω(x)dx =

∫
Q∗

[
M0

Np,ω(a)(x)
]p
ω(x)dx

≤ C‖a‖p
Lq

ω(Rn)

[
ω
(
Q∗)]1−p/q

≤ C‖a‖p
Lq

ω(Rn)

[
ω(Q)

]1−p/q

≤ C.

Thus, Theorem 3.1 is proved. �

4. Calderón–Zygmund decompositions

In this section, we establish the Calderón–Zygmund decompositions associ-
ated with grand maximal functions on weighted R

n. We follow the construc-
tions in [18], [1] and [2].

Throughout this section, we consider a distribution f so that for all λ > 0,

ω
({

x ∈R
n : MN (f)> λ

})
<∞,

where N ≥ 2 is some fixed integer. Later with regard to the weighted local
Hardy space hp

ω,N (Rn) with p ∈ (0,1], we restrict to

N > [nqω/p].

For a given λ > infx∈Rn MNf(x), we set

Ω≡
{
x ∈R

n : MN (f)(x)> λ
}
,

which implies Ω is a proper subset of Rn. As in [19], we give the usual Whit-
ney decomposition of Ω. Thus, we can find closed cubes Qk whose interiors
distance from Ωc, with Ω =

⋃
kQk and

diam(Qk)≤ 2−(6+n) dist
(
Qk,Ω

c
)
≤ 4diam(Qk).

Next, fix a= 1+ 2−(11+n) and b= 1+ 2−(10+n); if Q̄k = aQk,Q
∗
k = bQk, then

Qk ⊂ Q̄k ⊂ Q∗
k. Also,

⋃
Q∗

k = Ω, and the {Q∗
k} have the bounded interior

property: every point is contained in at most a fixed number of the {Q∗
k}.

Fix a positive smooth function ξ that equal 1 in the cube of side length 1
centered at the origin and vanishes outside the concentric cube of side length a.
We set ξk(x) = ξ([x− xk]/lk), where xk is the center of the cube Qk and lk
is its side length. Obviously, for any x ∈Ω, we have 1≤

∑
k ξk(x)≤ L. Write

ηk = ξk/(
∑

j ξj). The ηk form a partition of unity for the set Ω subordinate



462 L. TANG

to the locally finite cover {Q̄k} of Ω; that is to say, χΩ =
∑

ηk with each ηk
supported in the cube Qk.

Let s ∈ N0 be some fixed integers and Ps(R
n) denote the linear space of

polynomials in n variables of degrees no more than s. For each i and P ∈
Ps(R

n), set

‖P‖i ≡
[

1∫
Rn ηi(x)dx

∫
Rn

∣∣P (x)
∣∣2ηi(x)dx]1/2

.(4.1)

Then (Ps(R
n),‖ · ‖i) is a finite dimensional Hilbert space. Let f ∈ D′(Rn).

Since f induces a linear functional on Ps(R
n) via Q| → 1/

∫
Rn ηi(x)dx〈f,Qηi〉,

by the Riesz lemma, there exists a unique polynomial Pi ∈ Ps(R
n) for each i

such that for all Q ∈ Ps(R
n),

1∫
Rn ηi(x)dx

〈f,Qηi〉 =
1∫

Rn ηi(x)dx
〈Pi,Qηi〉

=
1∫

Rn ηi(x)dx

∫
Rn

Pi(x)Q(x)ηi(x)dx.

For every i, define distribution bi = (f−Pi)ηi if li < 1, we set bi = fηi if li ≥ 1.
We will show that for suitable choices of s and N , the series

∑
i bi converges

in D′(Rn), and in this case, we define g = f −
∑

i bi in D′(Rn).
The representation f = g+

∑
i bi, where g and bi are as above, is said to be

a Calderón–Zygmund decomposition of degree s and the height λ associated
with MN (f).

The rest of this section consists of series of lemmas. In Lemmas 4.1 and 4.2,
we give some properties of the smooth partition of unity {ηi}i. In Lemmas 4.3–
4.6, we derive some estimates for the bad parts {bi}i. Lemmas 4.7 and 4.8
give controls over the good part g. Finally, Corollary 4.1 shows the density of
Lq
ω(R

n)∩ hp
ω,N (Rn) in hp

ω,N (Rn), where q ∈ (qω,∞).

Lemma 4.1. There exists a positive constant C1, depending only on N ,
such that for all i and l≤ li,

sup
|α|≤N

sup
x∈Rn

∣∣∂αηi(lx)
∣∣ ≤C1.

Lemma 4.1 is essentially Lemma 5.2 in [1].

Lemma 4.2. If li < 1, then there exists a constant a constant C2 > 0 inde-
pendent of f ∈D′(Rn), li and λ > 0 so that

sup
y∈Rn

∣∣Pi(y)ηi(y)
∣∣ ≤C2λ.
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Proof. As in the proof of Lemma 5.3 in [1]. Let πl, . . . , πm (m = dimPs)
be an orthonormal basis of Ps with respect to the norm (4.1). We have

Pi =

m∑
k=1

(
1∫
ηi

∫
f(x)πk(x)ηi(x)dx

)
π̄k,(4.2)

where the integral is understood as 〈f,πkηi〉. Hence,

1 =
1∫
ηi

∫ ∣∣πk(x)
∣∣2ηi(x)dx≥ 2−n

|Qk|

∫
Qi

∣∣πk(x)
∣∣2ηi(x)dx(4.3)

≥ 2−n

|Qi|

∫
Qi

∣∣πk(x)
∣∣2 dx= 2−n

∫
Q0

∣∣π̃k(x)
∣∣2 dx,

where π̃k(x) = πk(xi + lix) and Q0 denotes the cube of side length 1 centered
at the origin.

Since Ps is finite dimensional all norms on Ps are equivalent, there exists
A1 > 0 such that for all P ∈ Ps

sup
|α|≤s

sup
z∈bQ0

∣∣∂αP (z)
∣∣ ≤A1

(∫
Q0

∣∣P (z)
∣∣2 dz)1/2

.

From this and (4.3), for k = 1, . . . ,m, we have

sup
|α|≤s

sup
z∈bQ0

∣∣∂απ̃k(z)
∣∣ ≤A12

n/2.(4.4)

For k = 1, . . . ,m define

Φk(y) =
lni∫
ηi
πk(z − liy)ηi(z − liy),

where z is some point in 29+nnQk ∩Ωc.
It is easy to see that suppΦk ⊂Bn :=B(0,23(10+n)) and ‖Φk‖DN

≤A2 by
Lemma 4.1.

Note that
1∫
ηi

∫
f(x)πk(x)ηi(x)dx=

(
f ∗ (Φk)li

)
(z),

since li < 1, we then have∣∣∣∣ 1∫
ηi

∫
f(x)πk(x)ηi(x)dx

∣∣∣∣ ≤MNf(z)‖Φk‖DN
≤A2λ.

By (4.2), (4.4) and above estimate

sup
z∈Q∗

i

∣∣Pi(z)
∣∣ ≤mA1A2λ.

Thus,

sup
z∈Rn

∣∣Pi(z)ηi(z)
∣∣ ≤C2λ.

The proof is complete. �
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Lemma 4.3. There exists a constant C3 > 0 such that

M0
Nbi(x)≤C3MNf(x) for x ∈Q∗

i .(4.5)

Proof. Take ϕ ∈D0
N , and x ∈Q∗

i .
Case I. For t≤ li, we write

(bi ∗ϕt)(x) = (f ∗Φt)(x)−
(
(Piηi) ∗ϕt

)
(x),

where Φ(z) := ϕ(z)ηi(x− tz). Define η̄i(z) = ηi(x− tz). Obviously, suppΦ⊂
Bn. By Lemma 4.1, there exists a positive constant C such that

‖Φ‖DN
≤C1.

Note that for N ≥ 2 there is a constant C > 0 so that ‖ϕ‖L1(Rn) ≤ C for all

ϕ ∈D0
N . Therefore, by Lemma 4.2 and (4.5), we have∣∣bi ∗ϕl(x)

∣∣ ≤ ‖Φ‖DN
MNf(x) +C2λ‖ϕ‖L1(Rn) ≤C3MNf(x),

since MNf(x)> λ for x ∈Ω.
Case II. For li < t < 1 by a simple calculation we can write

(bi ∗ϕt)(x) =
lni
tn

(f ∗Φli)(x)−
(
(Piηi) ∗ϕt

)
(x),

where Φ(z) = ϕ(liz/t)ηi(x− liz). Define ϕ̄(z) := ϕ(liz/t) and η̄i(z) = ηi(x−
liz). It is easy to see that suppΦ⊂Bn. By Lemma 4.1, we can find a positive
constant C independent of 1> t > li so that

sup
|α|≤N

sup
z∈Rn

∣∣∂αϕ̄(z)
∣∣ ≤C, sup

|α|≤N

sup
z∈Rn

∣∣∂αη̄i(z)
∣∣ ≤C1.

Hence, there exists a positive constant C such that ‖Φ‖DN
≤ C, and

‖ϕ‖L1(Rn) ≤C for ϕ ∈DN for N ≥ 2. As in Case I∣∣(bi ∗ϕt)(x)
∣∣ ≤ ‖Φ‖DN

MNf(x) +C2λ‖ϕ‖L1(Rn) ≤CMNf(x).

By combining both cases, we can obtain the desired result. �

Lemma 4.4. Suppose Q ⊂ R
n is bounded, convex, and 0 ∈Q, and N is a

positive integer. Then there is a constant C depending only on Q and N such
that for every φ ∈D(Rn) and every integer s,0≤ s <N we have

sup
x∈Q

sup
|α|≤N

∣∣∂αRy(z)
∣∣ ≤C sup

x∈Q
sup

s+1≤|α|≤N

∣∣∂αφ(z)
∣∣,

where Ry is the remainder of the Taylor expansion of φ of order s at the point
y ∈R

n.

Lemma 4.4 is Lemma 5.5 in [1].

Lemma 4.5. Suppose 0≤ s <N . Then there exist positive constants C3,C4

so that for i ∈N,

M0
N (bi)(x)≤C

λln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C3}(x) if x /∈Q∗

i .(4.6)
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Moreover,
M0

N (bi)(x) = 0, if x /∈Q∗
i and li ≥C4.

Proof. Take ϕ ∈D(Rn). Recall that ηi is supported in the cube Q̄i, and we
have taken Q̄i to be strictly contained in Q∗

i . Thus if x /∈Q∗
i and ηi(y) �= 0,

then there exists a positive constant C3 such that |x−y| ≤ |x−xi| ≤C3|x−y|,
and the support property of ϕ requires that 1> t≥ |x−y| ≥ 2−11−nli. Hence,
|x− xi| ≤C3t and li < 211+n :=C4 and li <C4t . Pick some w ∈ (28+nnQi)∩
Ωc.

Case I. If 1 ≤ li < C4 and ϕ ∈ D0
N , where define φ(z) = ϕ(l̄iz/t) and l̄i =

li/C4 < 1. We have

(bi ∗ϕt)(x) = t−n

∫
bi(z)ϕ

(
(x− z)/t

)
dz

= t−n

∫
bi(z)φ

(
(x− z)/l̄i

)
dz

= t−n

∫
bi(z)φ(x−w)/l̄i

(
(w− z)/l̄i

)
dz

=
l̄ni
tn

(f ∗Φl̄i)(w),

where

Φ(z) := φ(x−w)/l̄i(z)ηi(w− l̄iz), φ(x−w)/l̄i(z) = φ
(
z + (x−w)/l̄i

)
.

Obviously, suppΦ⊂Bn. Note that li < tC4 and |x− xi| ≤C3t, we obtain∣∣(b ∗ϕt)(x)
∣∣ ≤C

l̄ni
tn

MNf(w)≤Cλ
l̄ni
tn

≤Cλ
ln+s+1
i

(li + |x− xi|)n+s+1
.(4.7)

Case II. If li < 1 and ϕ ∈ D0
N define φ(z) = ϕ(liz/t). Consider the Taylor

expansion of φ of order s at the point y := (x−w)/li,

φ(y+ z) =
∑
|α|≤s

∂αφ(y)

α!
zα +Ry(z),

where Ry denotes the remainder.
Thus,

(b ∗ϕt)(x) = t−n

∫
biϕ

(
(x− z)/t

)
dz(4.8)

= t−n

∫
biφ

(
(x− z)/li

)
dz

= t−n

∫
biR(x−w)/li

(
(w− z)/li

)
dz

=
lni
tn

(f ∗Φli)(w)

− t−n

∫
Pi(z)ηi(z)R(x−w)/li

(
(w− z)/li

)
dz,
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where

Φ(z) :=R(x−w)/li(z)ηi(w− liz).

Obviously, suppΦ⊂Bn. Apply Lemma 4.4 to φ(z) = ϕ(liz/t), y = (x−w)/li
and Q=Bn. We have

sup
z∈Bn

sup
|α|≤N

∣∣∂αRy(z)
∣∣ ≤ C sup

z∈y+Bn

sup
s+1≤|α|≤N

∣∣∂αφ(z)
∣∣

≤ C sup
z∈y+Bn

(
li
t

)(s+1)

sup
s+1≤|α|≤N

∣∣∂αϕ(liz/t)
∣∣

≤ C

(
li
t

)(s+1)

.

Note that li < tC4 and |x− xi| ≤C3t, therefore by (4.8), we have

(b ∗ϕt)(x) ≤
lni
tn

∣∣(f ∗Φli)(w)
∣∣(4.9)

+ t−n

∫ ∣∣Pi(z)ηi(z)R(x−w)/li

(
(w− z)/li

)∣∣dz
≤ C

lni
tn

(
MNf(w)‖Φ‖DN

+ λ sup
z∈Bn

sup
|α|≤N

∣∣∂αRy(z)
∣∣)

≤ Cλ
ln+s+1
i

(li + |x− xi|)n+s+1
.

Combining (4.7) and (4.9), we obtain (4.6). �

Lemma 4.6. Let ω ∈ Aloc
∞ and qω be as in (2.3). If p ∈ (0,1], s ≥ [nqω/p]

and N > s, there exists a positive constant C5 such that for all f ∈ hp
ω,N (Rn),

λ > infx∈Rn MNf(x) and i,∫
Rn

[
M0

N (bi)(x)
]p
ω(x)dx≤C5

∫
Q∗

i

[
MN (f)(x)

]p
ω(x)dx.(4.10)

Moreover, the series
∑

i bi converges in hp
ω,N (Rn) and∫

Rn

[
M0

N

(∑
i

bi

)
(x)

]p

ω(x)dx≤C5

∫
Ω

[
MN (f)(x)

]p
ω(x)dx.(4.11)

Proof. By Lemma 4.4, we have∫
Rn

[
M0

N (bi)(x)
]p
ω(x)dx ≤

∫
Q∗

i

[
M0

N (bi)(x)
]p
ω(x)dx(4.12)

+

∫
C3Q0

i \Q∗
i

[
M0

N (bi)(x)
]p
ω(x)dx,
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where Q0
i = Q(xi,1). Note that s ≥ [nqω/p] implies 2−n(qω+η)2(s+n+1)p > 1

for sufficient small η > 0. Using Lemma 2.1(ii) with ω ∈ Aloc
qω+η , Lemma 4.5

and the fact that MN (f)(x)> λ for all x ∈Q∗
i , we have∫

C3Q0
i \Q∗

i

[
M0

N (bi)(x)
]p
ω(x)dx(4.13)

≤
k0∑
k=0

∫
2kQ∗

i \2k−1Q∗
i

[
M0

N (bi)(x)
]p
ω(x)dx

≤ λpω
(
Q∗

i

) k0∑
k=0

[
2−n(qω+η)+(s+n+1)p

]−k

≤C

∫
Q∗

i

[
MNf(x)

]p
ω(x)dx,

where k0 ∈ Z such that 2k0−1 ≤C3 < 2k0 .
Combining (4.12) and (4.13), then (4.10) holds. By (4.10), we have∫

Rn

[
M0

N (bi)(x)
]p
ω(x)dx ≤ C

∑
i

∫
Q∗

i

[
MNf(x)

]p
ω(x)dx

≤ C

∫
Ω

[
MN (f)(x)

]p
ω(x)dx,

which together with complete of hp
ω,N (see Proposition 3.2) implies that

∑
i bi

converges in hp
ω,N . So by Proposition 3.1, the series

∑
i bi converges in

D′(Rn), and therefore M0
N (

∑
i bi)(x) ≤

∑
iM0

N (bi)(x), which gives (4.11).
Thus, Lemma 4.6 is proved. �

Lemma 4.7. Let ω ∈ Aloc
∞ and qω be as in (2.3), s ∈ N0,a nd N ≥ 2.

If q ∈ (qω,∞] and f ∈ Lq
ω(R

n), then the series
∑

i bi converges in Lq
ω(R

n)
and there exists a positive constant C6, independent of f and λ, such that
‖
∑

i |bi|‖Lq
ω(Rn) ≤C6‖f‖Lq

ω(Rn).

Proof. The proof for q =∞ is similar to that for q ∈ (qω,∞). So we only
give the proof for q ∈ (qω,∞). Set F1 = {i ∈ N : |Qi| ≥ 1} and F2 = {i ∈
N : |Qi|< 1}. By Lemma 4.3, for i ∈ F2, we have∫

Rn

∣∣bi(x)∣∣qω(x)dx ≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+

∫
Q∗

i

∣∣Pi(x)ηi(x)
∣∣qω(x)dx

≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+ λqω
(
Q∗

i

)
.

For i ∈ F1, we have∫
Rn

∣∣bi(x)∣∣qω(x)dx≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx.
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From these, we obtain∑
i

∫
Rn

∣∣bi(x)∣∣ω(x)dx =
∑
i∈F1

∫
Rn

∣∣bi(x)∣∣ω(x)dx+
∑
i∈F2

∫
Rn

∣∣bi(x)∣∣ω(x)dx
≤

∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+

∫
Q∗

i

∣∣Pi(x)ηi(x)
∣∣qω(x)dx

≤
∑
i

∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+C
∑
i∈F2

λqω
(
Q∗

i

)
≤

∑
i

∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+Cλqω(Ω)

≤ C6

∫
Rn

∣∣f(x)∣∣qω(x)dx.
From this and applying bi have finite covers, we have∥∥∥∥∑

i

|bi|
∥∥∥∥
Lq

ω(Rn)

≤C6‖f‖Lq
ω(Rn).

The proof is finished. �

Lemma 4.8. If N > s≥ 0 and
∑

i bi converges in D′(Rn), then there exists
a positive constant C7, independent of f and λ, such that for all x ∈R

n,

M0
N (g)(x)≤M0

N (f)(x)χΩc(x)+C7λ
∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C3}(x).

Proof. If x /∈ Ω, since M0
N (g)(x) ≤ M0

N (f)(x) +
∑

iM0
N (bi)(x), by Lem

ma 4.5, we obtain

M0
N (g)(x)≤M0

N (f)(x)χΩc(x) +Cλ
∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C3}(x).

If x ∈Ω, choose k ∈N such that x ∈Q∗
k. Let J := {i ∈N : Q∗

i ∩Q∗
k �= ∅}. Then

the cardinality of J is bounded by L. By Lemma 4.5, we have∑
i/∈J

M0
N (bi)(x)≤Cλ

∑
i/∈J

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C3}(x).

It suffices to estimate the grand maximal function of g+
∑

i/∈J bi = f−
∑

i∈J bi.

Take ϕ ∈D0
N and 0< t < 1. We write(

f −
∑
i∈J

bi

)
∗ϕt(x) = (fξ) ∗ϕt +

(∑
i∈J

Piηi

)
∗ϕt

= f ∗Φt(w) +

(∑
i∈J

Piηi

)
∗ϕt,
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where w ∈ (28+nnQk)∩Ωc, ξ = 1−
∑

i∈J ηi and

Φ(z) := ϕ
(
z + (x−w)/t

)
ξ(w− tz).

Since for N ≥ 2 there is a constant C > 0 so that ‖ϕ‖L1(Rn) ≤C for all ϕ ∈D0
N

and Lemma 4.2, we have ∣∣∣∣(∑
i∈J

Piηi

)
∗ϕt(x)

∣∣∣∣ ≤Cλ.

Finally, we estimate f ∗ Φt(w). There are two cases: If t≤ 2−(11+n)lk, then
f ∗ Φt(w) = 0, because ξ vanishes in Q∗

k and ϕt is supported in B(0, t). On

the other hand, if t≥ 2−(11+n)lk, then there exists a positive constant C such
that suppΦ⊂Bn and ‖Φ‖DN

≤C. Hence,∣∣(f ∗Φt)
∣∣ ≤MNf(w)‖Φ‖DN

≤Cλ.

By the above estimates, we have∣∣∣∣(f −
∑
i∈J

bi

)
∗ϕt

∣∣∣∣≤Cλ.

That is

M0
N

(
f −

∑
i∈J

bi

)
(x)≤Cλ.

Thus, Lemma 4.8 is proved. �

Lemma 4.9. Let ω ∈Aloc
∞ , qω be as in (2.3) and p ∈ (0,1].

(i) If N > s ≥ [nqω/p] and MN (f) ∈ Lp
ω(R

n), then MN (g) ∈ L1
ω(R

n) and
there exists a positive constant C8, independent of f and λ, such that∫

Rn

[
M0

N (g)(x)
]q
ω(x)dx≤C8λ

1−p

∫
Rn

[
MN (f)(x)

]p
ω(x)dx.

(ii) If N ≥ 2 and f ∈ L1
ω(R

n), then g ∈ L∞
ω (Rn) and there exists a positive

constant C9, independent of f and λ, such that ‖g‖L∞
ω
≤C9λ.

Proof. Since f ∈ hp
ω,N (Rn), by Lemma 4.6,

∑
i bi converges in hp

ω,N (Rn)

and there in D′(Rn) by Proposition 3.1. Observe that s ≥ [nqω/p], by Lem
ma 4.8, we obtain∫

Rn

[
M0

N (g)(x)
]
ω(x)dx

≤Cλ
∑
i

∫
Rn

l
(n+s+1)
i

(li + |x− xi|)(n+s+1)
χ{|x−xi|<C3}(x)ω(x)dx

+

∫
Ωc

[
MN (f)(x)

]
ω(x)dx
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≤Cλq
∑
i

ω
(
Q∗

i

)
+

∫
Ωc

[
MN (f)(x)

]
ω(x)dx

≤Cλω(Ω) +Cλ1−p

∫
Ωc

[
MN (f)(x)

]p
ω(x)dx

≤Cλ1−p

∫
Ωc

[
MN (f)(x)

]p
ω(x)dx.

Thus, (i) holds.
Moreover, if f ∈ L1

ω(R
n), then g and {bi} are functions, and Lemma 4.7,∑

i bi converges in Lq
ω(R

n) and thus in D′(Rn) by Lemma 2.2. Write

g = f −
∑
i

bi = f

(
1−

∑
i

ηi

)
+

∑
i∈F2

Piηi = fχΩc +
∑
i∈F2

Piηi.

By Lemma 4.3, we have |g(x)| ≤ Cλ for all x ∈ Ω, and by Proposition 2.2,
|g(x)| = |f(x)| ≤MNf(x) ≤ λ for almost everywhere x ∈ Ωc, which leads to
that ‖g‖L∞

ω (Rn) ≤Cλ and thus yields (ii). The proof is finished. �

Corollary 4.1. Let ω ∈ Aloc
∞ and qω be as in (2.3). If q ∈ (qω,∞), N >

[nqω/p] and p ∈ (0,1], then hp
ω,N (Rn)∩L1

ω(R
n) is dense in hp

ω,N (Rn).

Proof. Let f ∈ hp
ω,N (Rn). For any λ > infx∈Rn MNf(x), let f = gλ+

∑
i b

λ
i

be the Calderón–Zygmund decomposition of f of degree s with [nqω/p]≤ s <
N and height λ associated to MNf . By Lemma 4.6,∥∥∥∥∑

i

bλi

∥∥∥∥
hp
ω,N (Rn)

≤C

∫
{x∈Rn:MNf(x)>λ}

[
MNf(x)

]p
ω(x)dx.

Therefore, gλ → f in hp
ω,N (Rn) as λ →∞. But by Lemma 4.9, MN (gλ) ∈

L1
ω(R

n), so by Proposition 2.2(i), gλ ∈ L1
ω(R

n). Thus, Corollary 4.1 is proved.
�

5. Weighted atomic decompositions of hp
ω,N (Rn)

We will follow the proof of atomic decomposition as presented by Stein in
[18].

In this section, we take k0 ∈ Z such that 2k0−1 ≤ infx∈Rn MNf(x)< 2k0 , if
infx∈Rn MNf(x) = 0, write k0 =−∞. Let ω ∈Aloc

∞ , qω be as in (2.3), p ∈ (0,1]
and N > s ≡ [nqω/p]. Let f ∈ hp

ω,N (Rn). For each integer k ≥ k0 consider

the Calderón–Zygmund decomposition of f of degree s and height λ = 2k

associated to MNf ,

f = gk +
∑
i∈N

bki ,

where

Ωk :=
{
x ∈R

n : MNf(x)> 2k
}
, Qk

i :=Qlki
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and bki := (f − P k
i )η

k
i if lki < 1 and bki := fηki if lki ≥ 1.

Recall that for fixed k ≥ k0, (xi = xk
i )i∈N is a sequence in Ωk and (li = lki )i∈N

for Ω = Ωk, ηi = ηki given in Section 4 and Pi = P k
i is the projection of f onto

Ps with respect to the norm given in Section 4.
Define a polynomial P k+1

ij as an orthogonal projection of (f − P k+1
j )ηji on

Ps with respect to the norm

‖P‖2 = 1∫
Rn η

k+1
j

∫
Rn

∣∣P (x)
∣∣2ηk+1

j (x)dx,

that is P k+1
ij is the unique element of Ps such that∫

Rn

(
f(x)− P k+1

j (x)
)
ηki (x)Q(x)ηk+1

j (x)dx=

∫
Rn

P k+1
ij (x)Q(x)ηk+1

j (x)dx.

For convenience, we denote Qk∗
i = (1 + 2−(9+n))Qk

i , Ek
1 = {i ∈ N : |Qk

i | ≥
1/(24n)} and Ek

2 = {i ∈ N : |Qk
i | < 1/(24n)}, F k

1 = {i ∈ N : |Qk
i | ≥ 1} and

F k
2 = {i ∈N : |Qk

i |< 1}.
There are two things we need to know about the polynomials P k+1

ij . First,

P k+1
ij �= 0 only if Qk∗

i ∩Qk+1∗
j �= ∅; this follows directly from the definition of

P k+1
ij (since it involves ηk+1

i , which is supported in Qj+1∗
i ). More precisely,

we have the following results.

Lemma 5.1. Note that Ωk+1 ⊂Ωk, then

(i) If Qk∗
i ∩Qk+1∗

j �= ∅, then lk+1
j ≤ 24

√
nlki and Qk+1∗

j ⊂ 26nQk∗
i ⊂Ωk.

(ii) There exists a positive L such that for each j ∈ N the cardinality of {i ∈
N : Qk∗

i ∩Qk+1∗
j �= ∅ is bounded by L.

Lemma 5.2. If lk+1
j < 1,

sup
y∈Rn

∣∣P k+1
ij (y)ηk+1

j (y)
∣∣ ≤C2k+1.(5.1)

Lemma 5.3. For every k ∈ Z with k ≥ k0,
∑

i∈N
(
∑

j∈Fk+1
2

P k+1
ij ηk+1

j ) = 0,

where the series converges pointwise and in D′(Rn).

Lemmas 5.1–5.3 can be proved by the methods in Lemmas 6.1–6.3 in [1].
The following lemma establishes the weighted atomic decompositions for a

dense subspace of hp
ω,N (Rn).

Lemma 5.4. Let ω ∈ Aloc
∞ and qω be as in (2.3). If p ∈ (0,1], s ≥ [nqω/p]

and N > s, then for any f ∈ (L1
ω(R

n) ∩ hp
ω,N (Rn)), there exists numbers λ0

and {λk
i }k∈Z,i ⊂C, (p,∞, s)ω-atoms {aki }k∈Z,i and single atom a0 such that

f =
∑
k∈Z

∑
i

λk
i a

k
i + λ0a0,
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where the series converges almost everywhere and in D′(Rn), moreover, there
exists a positive C, independent of f , such that

∑
k∈Z,i |λk

i |p + |λ0|p ≤
C‖f‖hp

ω,N (Rn).

Proof. Let f ∈ (L1
ω(R

n)∩ hp
ω,N (Rn)). We first consider the case k0 =−∞.

For each k ∈ Z, f has a Calderón–Zygmund decomposition of degree s ≥
[nqω/p] and height 2k associated to MN (f), f = gk +

∑
i b

k
i as above. By

Corollary 4.1 and Proposition 3.1, gk → f in both hp
ω,N (Rn) and D′(Rn) as

k → ∞. By Lemma 4.9(i), ‖gk‖Lq
ω(Rn) → 0 as k → −∞, and moreover, by

Lemma 2.2(ii), gk → 0 in D′(Rn) as k→−∞. Therefore,

f =
∞∑

k=−∞

(
gk+1 − gk

)
(5.2)

in D′(Rn). Moreover, since supp(
∑

i b
k
i ) ⊂ Ωk and ω(Ωk) → 0 as k → ∞,

then gk → f almost everywhere as k → ∞. Thus, (5.2) also holds almost
everywhere.

By Lemma 5.1 and
∑

i η
k
i b

k+1
j = χΩk

bk+1
j = bk+1

j for all j, then
∑

i η
k
i b

k+1
j =

χΩk
bk+1
j = bk+1

j for all j,

gk+1 − gk =

(
f −

∑
j

bk+1
j

)
−

(
f −

∑
i

bki

)
=

∑
i

bki −
∑
j

bk+1
j

=
∑
i

[
bki −

∑
j∈Fk

1

bk+1
j ηki −

∑
j∈Fk

2

bk+1
j ηki

]
≡

∑
i

hk
i .

It is easy to see that the series above converges in D′(Rn) and almost every-
where. Furthermore, we rewrite hk

i into

hk
i = fχ(Ωk+1)cη

k
i − P k

i η
k
i +

∑
j∈Fk+1

1

P k+1
j ηki η

k+1
j +

∑
j∈Fk+1

2

P k+1
j ηk+1

j .

By Proposition 2.2, |f(x)| ≤ MNf(x) ≤ 2k+1 for almost everywhere x ∈
(Ωk+1)

c, and by Lemma 4.2 and (5.1),∥∥hk
i

∥∥
L∞

ω (Rn)
≤C2k for i ∈N.(5.3)

Next, we consider three cases about i.
Case I. When i ∈ F k

1 , we have

hk
i = fηki −

∑
j∈Fk+1

1

fηk+1
j ηki −

∑
j∈Fk+1

2

(
f − P k+1

j

)
ηk+1
j ηki −

∑
j∈Fk+1

2

P k+1
ij ηk+1

i .
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Case II. When i ∈Ek
1 ∩ F k

2 , we have

hk
i =

(
f − P k

i

)
ηki −

∑
j∈Fk+1

1

fηk+1
j ηki

−
∑

j∈Fk+1
2

(
f − P k+1

j

)
ηk+1
j ηki +

∑
j∈Fk+1

2

P k+1
ij ηk+1

i .

Case III. When i ∈Ek
2 , if j ∈ F k+1

1 , then lki < lk+1
j /(24n), so Qj∗

i ∩Qk+1∗
j =

∅ by Lemma 5.1(i). Thus, we have

hk
i =

(
f − P k

i

)
ηki −

∑
j∈Fk+1

1

fηk+1
j ηki

−
∑
j∈F2

(
f − P k+1

j

)
ηk+1
j ηki +

∑
j∈Fk+1

2

P k+1
ij ηk+1

i

=
(
f − P k

i

)
ηki −

∑
j∈Fk+1

2

(
f − P k+1

j

)
ηk+1
j ηki +

∑
j∈Fk+1

2

P k+1
ij ηk+1

i ,

We next let γ = 1+ 2−12−n.

For Cases I and II. Obviously, hk
i is supported in a cube Q̃k

i that contains

Qk∗
i as well as all the Qk+1∗

j that intersect Qk∗
i . In fact, observe that if

Qk∗
i ∩Qk+1∗

j �= ∅, by Lemma 5.1, we have

Qk+1∗
j ⊂ 26nQk∗

j ⊂Ωk.

So, if lki <Ln/(γ − 1), we set

Q̃k
i := 26nQk∗

j .

On the other hand, note that lk+1
j < 1 and lki ≥ 1/(24n), then Qk+1∗

j ⊂
Q(xk

i , l
k
i +Ln). So, if lki ≥ Ln/(γ − 1), we set Q̃k

i = γQk
j . Hence,

Qk+1∗
j ⊂Q

(
xk
i , l

k
i +Ln

)
⊂ Q̃k

i = γQk
i =Qk∗

i ⊂Ωk,

if lki ≥ Ln/(γ − 1).
From these, for Cases I and II, there exists a positive constant C10 such

that

Q̃k
i ⊂Ωk and ω

(
Q̃k

i

)
≤C10ω

(
Qk∗

i

)
.

But, hk
i does not satisfy the moment conditions.

For Case III. We claim that hk
i is supported in a cube Q̃k

i that contains

Qk∗
i as well as all the Qk+1∗

j that intersect Qk∗
i . In fact, observe that if

Qk∗
i ∩Qk+1∗

j �= ∅, by Lemma 5.1, we have

Qk+1∗
j ⊂ 26nQk∗

j ⊂Ωk.



474 L. TANG

So, we set Q̃k
i := 26nQk∗

j . Note that lk+1
j < 1 and lkj < 1, then

Q̃k
i ⊂Ωk and ω

(
Q̃k

i

)
≤C10ω

(
Qk∗

i

)
.

Moreover, hk
i satisfies the moment conditions. This is clear for (f − P k

i )η
k
i

and (f − P k+1
j )ηk+1

j ηki + P k+1
ij ηk+1

i .

Let λk
i = C102

k[ω(Q̃k
i )]

1/p and aki = (λk
i )

−1hk
i . Moreover, by (5.3) and

above Cases I, II and III, we know that aki is a (p,∞, s)γω-atom. By ω ∈Aloc
q ,

we have∑
k∈Z

∑
i∈N

∣∣λk
i

∣∣p ≤ C
∑
k∈Z

∑
i∈N

2kpω
(
Q̃k

i

)
≤C

∑
k∈Z

∑
i∈N

2kpω
(
Qk∗

i

)
≤ C

∑
k∈Z

2kpω(Ωk)≤C
∥∥MN (f)

∥∥p

Lp
ω(Rn)

≤C‖f‖p
hp
ω,N (Rn)

.

We now consider the case k0 >−∞, which together with f ∈ hp
ω,N (Rn) implies

ω(Rn)<∞. Adapting the previous arguments, we have

f =
∞∑

k=k0

(
gk+1 − gk

)
+ gk0 := f̃ + gk0 .

For the function f̃ , we have the same (p,∞, s)ω atomic decomposition as
above and ∑

k≥k0

∑
i∈N

∣∣λk
i

∣∣p ≤C‖f‖p
hp
ω,N (Rn)

.

For the function gk0 , it is easy to see that there exists a positive constant C11

such that ∥∥gk0
∥∥
L∞

ω (Rn)
≤C112

k0 ≤ 2C11 inf
x∈Rn

MNf(x).

Let

a0(x) = gk0(x)2−k0C−1
11

[
ω
(
R

n
)]−1/p

, λ0 =C112
k0

[
ω
(
R

n
)]1/p

.

Hence,

|λ0|p ≤ (2C11)
p‖f‖p

hp
ω,N (Rn)

and ‖a0‖L∞
ω (Rn) ≤

[
ω
(
R

n
)]−1/p

.

Then, ∑
k≥k0

∑
i∈N

∣∣λk
i

∣∣p + |λ0|p ≤C‖f‖p
hp
ω,N (Rn)

.

The proof of Lemma 5.4 is complete. �

Remark 5.1. In fact, from the proof of Lemma 5.4, we can take all
(p,∞, s)ω atoms with sidelengths ≤ 2 in Lemma 5.4.
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The following is one of the main results in this paper.

Theorem 5.1. Let ω ∈Aloc
∞ and qω be as in (2.3). If q ∈ (qω,∞], p ∈ (0,1],

N ≥ Np,ω , and s ≥ [n(qω/p − 1], then hp,q,s
ω (Rn) = hp

ω,N (Rn) = hp
ω,Np,ω

(Rn)

with equivalent norms.

Proof. It is easy to see that

hp,∞,s̄
ω

(
R

n
)
⊂ hp,q,s

ω

(
R

n
)
⊂ hp

ω,Np,ω

(
R

n
)
⊂ hp

ω,N

(
R

n
)
⊂ hp

ω,N̄

(
R

n
)
,

where s̄ is an integer no less than s and N̄ is an integer larger than N ,
and the inclusions are continuous. Thus, to prove Theorem 5.1, it suffices to
prove that for any N > s≥ [n(qω/p− 1], hp

ω,N (Rn)⊂ hp,∞,s
ω (Rn), and for all

f ∈ hp
ω,N (Rn), ‖f‖hp,∞,s

ω (Rn) ≤C‖f‖hp
ω,N (Rn).

To this end, let f ∈ hp
ω,N (Rn). By Corollary 4.1, there exists a sequence

of functions, {fm}m∈N ⊂ (hp
ω,N (Rn) ∩ L1

ω(R
n)), such that ‖fm‖hp

ω,N (Rn) ≤
2−m‖f‖hp

ω,N (Rn) and f =
∑

m∈N
fm in hp

ω,N (Rn). By Lemma 5.4, for each

m ∈N, fm has an atomic decomposition fm =
∑

i∈N0
λm
i ami in D′(Rn), where∑

i∈N0
|λm

i |p ≤C‖fm‖p
hp
ω,N (Rn)

and {ami }i∈N0 are (p,∞, s)ω-atoms. Since

∑
m∈N0

∑
i∈N0

∣∣λm
i

∣∣p ≤C
∑

m∈N0

‖fm‖p
hp
ω,N (Rn)

≤C‖f‖p
hp
ω,N (Rn)

,

then f =
∑

m∈N0

∑
i∈N0

λm
i ami ∈ hp,∞,s

ω (Rn) and ‖f‖hp,∞,s
ω (Rn) ≤ C ×

‖f‖hp
ω,N (Rn). Thus, Theorem 5.1 is proved. �

For simplicity, from now on, we denote by hp
ω(R

n) the weighted local Hardy
space hp

ω,N (Rn) associated with ω, where N ≥Np,ω . Moreover, it is easy to see

that h1
ω ⊂ L1

ω(R
n) via weighted atomic decomposition. However, the elements

in hp
ω(R

n) with p(0,1) are not necessary functions thus hp
ω(R

n) �= Lp
ω(R

n).
But, for any q ∈ (qω,∞), by Lemma 5.4 and pointwise convergence of weighted
atomic decompositions, we have (hp

ω(R
n) ∩ L1

ω(R
n)) ⊂ Lp

ω(R
n), and for all

f ∈ (hp
ω(R

n)∩L1
ω(R

n)), ‖f‖Lp
ω(Rn) ≤ ‖f‖hp

ω(Rn).

6. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of
weighted atoms when q <∞, its norm in hp

ω(R
n) can be achieved via all its

finite weighted atomic decompositions. This extends the main results in [15]
to the setting of weighted local Hardy spaces.

Let ω ∈Aloc
∞ and (p, q, s)ω be an admissible triplet. Denote by hp,q,s

ω,fin(R
n)

the vector space of all finite linear combination of (p, q, s)ω-atoms and single
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atom, and the norm of f in hp,q,s
ω,fin(R

n) is defined by

‖f‖hp,q,s
ω,fin(R

n) = inf

{[
k∑

j=0

|λj |p
]1/p

: f =

k∑
j=0

λjaj , k ∈N0,{ai}ki=1 are

(p, q, s)ω-atoms with sidelengths ≤ 2, and

a0 is a (p, q)ω single atom

}
.

Obviously, for any admissible triplet (p, q, s)ω atom and (p, q)ω single atom,
the set hp,q,s

ω,fin(R
n) is dense in hp,q,s

ω (Rn) with respect to the quasi-norm

‖ · ‖hp,q,s
ω,fin(R

n).

Theorem 6.1. Let ω ∈Aloc
∞ , qω be as in (2.3), and (p, q, s)ω be an admissi-

ble triplet with sidelength ≤ 2. If q ∈ (qω,∞), then ‖·‖hp,q,s
ω,fin(R

n) and ‖·‖hp
ω(Rn)

are equivalent quasi-norms on hp,q,s
ω,fin(R

n).

Proof. Clearly, ‖f‖hp
ω(Rn) ≤ ‖f‖hp,q,s

ω,fin(R
n) for f ∈ hp,q,s

ω,fin(R
n) and for q ∈

(qω,∞). Thus,we have to show that for every q in (qω,∞) there exists a
constant C such that for all f ∈ hp,q,s

ω,fin(R
n)

‖f‖hp,q,s
ω,fin(R

n) ≤C‖f‖hp
ω(Rn).(6.1)

Suppose that q ∈ (qω,∞) and that f is in hp,q,s
ω,fin(R

n) with ‖f‖hp
ω(Rn) = 1.

In this section, we take k0 ∈ Z such that 2k0−1 ≤ infx∈Rn MNf(x) < 2k0 , if
infx∈Rn MNf(x) = 0, write k0 =−∞. For each integer k ≥ k0, set

Ωk ≡
{
x ∈R

n : MNf(x)> 2k
}
,

where and in what follows N =Np,ω . We use the same notation as in Lem-
ma 5.4. We first consider the case k0 = −∞. Since f ∈ (hp

ω(R
n) ∩ Lq

ω(R
n)),

by Lemma 5.4, there exists numbers {λk
i }k∈Z,i∈N ⊂ C and (p,∞, s)ω-atoms

{aki }k,i∈N, λ0 ⊂C such that

f =
∑
k

∑
i∈N

λk
i a

k
i

holds almost everywhere and in D′(Rn), and (i) and (ii) in Lemma 5.4 hold.
Obviously, f has compact support. Suppose that suppf ⊂Q(x0, r0). We

write Q̄=Q(x0,2
3(10+n)r0 + 2n). For ϕ in DN and x ∈R

n \ Q̄, for 0< t < 1,
we have

ϕt ∗ f(x) = 0.

Hence, supp
∑

k

∑
i∈N

λk
i a

k
i ⊂ Q̄.

We claim that the series
∑

k

∑
i∈N

λk
i a

k
i converges to f in Lq

ω(R
n). For

any x ∈ R
n, since R

n =
⋃

k∈Z
(Ωk \ Ωk+1), there exists j ∈ Z such that x ∈



WEIGHTED LOCAL HARDY SPACES 477

(Ωj \Ωj+1). Since suppa
k
i ⊂Qk

i ⊂Ωk ⊂Ωj+1 for k > j, then applying Lemmas
5.1, 5.2 and 5.4, we have∣∣∣∣∑

k

∑
i∈N

λk
i a

k
i

∣∣∣∣ ≤C
∑
k≤j

2k ≤C2j ≤CMNf(x).

Since f ∈ Lq
ω(R

n), we have MNf ∈ Lq
ω(R

n). The Lebesgue dominated con-
vergence theorem now implies that

∑
k

∑
i∈N

λk
i a

k
i converges to f in Lq

ω(R
n),

and the claim is proved.
For each positive integer K, we denote by FK = {(i, k) : k, |i| + |k| ≤K}

and fK =
∑

(i,k)∈FK
λk
i a

k
i . Observing that for any ε ∈ (0,1), if K is large

enough, by f ∈ Lq
ω , we have (f−fK)/ε is a (p, q, s)ω-atom. Since (f−fK)/ε ∈

Q̄ = Q(x0,2
3(10+n)r0 + 2n), so we can divide Q̄ into N0 (depending only

on r0 and n) disjoint cubes {Qi}N0
i=1 with sidelengths 1 ≤ li ≤ 2. Then,

(f −fK)χQi/ε is a (p, q, s)ω-atom for i= 1, . . . ,N0. Thus, f = fK +
∑N0

i=1(f −
fK)χQi is a linear weighted atom combination of f . Taking ε=N

−1/p
0 and

by Lemma 5.4, we have

‖f‖p
hp,q,s
ω,fin(R

n)
≤

∑
(i,k)∈FK

∣∣λk
i

∣∣p +N0ε
p ≤C.

We now consider the case k0 > −∞. Since f ∈ (hp
ω(R

n) ∩ Lq
ω(R

n)), by
Lemma 5.4, there exists numbers {λk

i }k∈Z,i∈N ⊂ C and (p,∞, s)ω-atoms
{aki }k≥k0,i∈N, λ0 ⊂C and the (p,∞)ω singe atom a0 such that

f =
∑
k≥k0

∑
i∈N

λk
i a

k
i + λ0a0

holds almost everywhere and in D′(Rn), and (i) and (ii) in Lemma 5.4 hold.
As the case k0 =−∞, we can prove that the series

∑
k≥k0

∑
i∈N

λk
i a

k
i + λ0a0

converges to f in Lq
ω(R

n).
Finally, for each positive integer K we denote by FK = {(i, k) : k ≥ k0, |i|+

|k| ≤K} and fK =
∑

(i,k)∈FK
λk
i a

k
i + λ0a0. If K is large enough, then ‖f −

fK‖Lq(ω) ≤ [ω(Rn)]1/q−1/p. So, (f − fK) is a (p, q)ω single atom. By Lem-
ma 5.4, we have

‖f‖p
hp,q,s
ω,fin(R

n)
≤

∑
(i,k)∈FK

∣∣λk
i

∣∣p + λp
0 ≤C.

Thus, (6.1) holds. The proof is finished. �

As an application of finite atomic decompositions, we establish bounded-
ness in hp

ω(R
n) of quasi-Banach-valued sublinear operators.

As in [2], we recall that a quasi-Banach space B is a vector space endowed
with a quasi-norm ‖ · ‖B which is nonnegative, non-degenerate (i.e., ‖f‖B = 0
if and only if f = 0), homogeneous, and obeys the quasi-triangle inequality,
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that is, there exists a positive constant K no less than 1 such that for all
f, g ∈ B, ‖f + g‖B ≤K(‖f‖B + ‖g‖B).

Let β ∈ (0,1]. A quasi-Banach space Bβ with the quasi-norm ‖ · ‖Bβ
is said

to be a β-quasi-Banach space if ‖f + g‖βBβ
≤ ‖f‖βBβ

+ ‖g‖βBβ
for all f, g ∈ Bβ .

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-
Banach space lβ ,Lβ

ω(R
n) and hβ

ω(R
n) with β ∈ (0,1) are typical β-quasi-

Banach spaces.
For any given β-quasi-Banach space Bβ with β ∈ (0,1] and a linear space

Y , an operator T from Y to Bβ is said to be Bβ-sublinear if for any f, g ∈ Bβ

and λ, ν ∈C, we have∥∥T (λf + νg)
∥∥
Bβ

≤
(
|λ|β

∥∥T (f)∥∥β

Bβ
+ |ν|β

∥∥T (g)∥∥β

Bβ

)1/β
and ‖T (f)− T (g)‖Bβ

≤ ‖T (f − g)‖Bβ
.

We remark that if T is linear, then T is Bβ-sublinear. Moreover, if Bβ =
Lq
ω(R

n), and T is nonnegative and sublinear in the classical sense, then T is
also Bβ-sublinear.

Theorem 6.2. Let ω ∈ Aloc
∞ ,0 < p ≤ β ≤ 1, and Bβ be a β-quasi-Banach

space. Suppose q ∈ (qω,∞) and T : hp,q,s
ω,fin(R

n)→Bβ is a Bβ-sublinear opera-
tor such that

S ≡
{∥∥T (a)∥∥Bβ

: a is any (p, q, s)ω-atom with sidelength ≤ 2

or (p, q)ω single atom
}
<∞.

Then there exists a unique bounded Bβ-sublinear operator T̃ from hp
ω(R

n) to
Bβ which extends T .

Proof. For any f ∈ hp,q,s
ω,fin(R

n), using Theorem 6.1, there exist numbers

{λj}lj=0 ⊂C and (p, q, s)ω-atoms {aj}lj=1 and the (p, q)ω single atom a0 such

that f =
∑l

j=0 λjaj pointwise and
∑l

j=0 |λj |p ≤ C‖f‖p
hp
ω(Rn)

. Then by the

assumption, we have

∥∥T (f)∥∥Bβ
≤C

[
l∑

j=0

|λj |p
]1/p

≤C‖f‖hp
ω(Rn).

Since hp,q,s
ω,fin(R

n) is dense in hp
ω(R

n), a density argument gives the desired
results. �

7. Applications

In this section, we study weighted Lp inequalities for strongly singular
integrals and pseudodifferential operators and their commutators.
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Given a real number θ > 0 and a smooth radial cut-off function v(x) sup-
ported in the ball {x ∈R

n : |x| ≤ 2}, we consider the strongly singular kernel

k(x) =
ei|x|

−θ

|x|n v(x).

Let us denote by Tf the corresponding strongly singular integral operator:

Tf(x) = p.v

∫
Rn

k(x− y)f(y)dy.

This operator has been studied by several authors, see [4], [6], [8], [12] and [24].
In particular, S. Chanillo [4] established the weighted Lp

ω(R
n) boundedness for

strongly singular integrals provided that ω ∈Ap(R
n) (Muckenhoupt weights)

for 1< p<∞. J. Garćıa-Cuerva et al. [8] obtained weighted Lp estimates with
pairs of weights for commutators generated by the strongly singular integrals
and the classical BMO(Rn) functions. We have the following results for the
strongly singular integrals.

Theorem 7.1. Let T be strongly singular integral operators, then

(i) ‖Tf‖Lp
ω(Rn) ≤Cp,ω‖f‖Lp

ω(Rn) for 1< p<∞ and ω ∈Aloc
p .

(ii) ‖Tf‖L1,∞
ω (Rn) ≤Cω‖f‖L1

ω(Rn) for ω ∈Aloc
1 .

(iii) ‖Tf‖L1
ω(Rn) ≤Cω‖f‖h1

ω(Rn) for ω ∈Aloc
1 .

Proof. We first note that for ω ∈Ap the inequality (i) is known to be true,
see [4]. For ω ∈Aloc

p , by Lemma 2.1(i) for any unit cube Q there is a ω̄ ∈Ap

so that ω̄ = ω on 6Q. Then

‖Tf‖Lp
ω(Q) =

∥∥T (χ6Qf)
∥∥
Lp

ω(Q)

≤
∥∥T (χ6Qf)

∥∥
Lp

ω̄(Q)

≤ C
∥∥(χ6Qf)

∥∥
Lp

ω̄(Rn)

≤ C‖f‖Lp
ω̄(6Q).

Summing over all dyadic unit I gives (i).
For (ii), similar to (i), note that for ω ∈A1 the inequality (ii) is known to

be true, see [4]. Since ω ∈Aloc
p , by Lemma 2.1(i) for any unit cube I there is

a ω̄ ∈A1 so that ω̄ = ω on 6Q. Then for any λ > 0

ω
({

x ∈Q :
∣∣Tf(x)∣∣ > λ

})
≤ ω

({
x ∈Q :

∣∣T (χ6Qf)(x)
∣∣ > λ

})
= ω̄

({
x ∈Q :

∣∣T (χ6Qf)(x)
∣∣ > λ

})
≤ Cλ−1

∥∥(χ6Qf)
∥∥
L1

ω̄(Rn)

= Cλ−1‖f‖L1
ω(6Q).

Summing over all dyadic unit Q gives (ii).
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Finally, to consider (iii). Let a(x) be an atom in h1
ω(R

n), supported in a
cube Q centered at x0 and sidelength δ ≤ 2 by Remark 5.1, or a(x) is a single
atom. To prove the (iii), by Theorem 6.2, it is enough to show that

‖Ta‖L1
ω(Rn) ≤C,(7.1)

where C is independent of a.
It is easy to see that (7.1) holds while a(x) is a single atom. It remains

to consider this kind of atom supported in a cube Q centered at x0 and

sidelength δ. In deed, let δ0 be a number satisfying 4δ0 = δ
1/(1+θ)
0 . Obviously,

δ0 < 1.
Case 1. 2≥ δ ≥ δ0. This is the trivial case. Let Q∗ = (10n/δ0)Q. Now∫
Rn

|Ta|ω(x)dx=

∫
Q∗

|Ta|ω(x)dx+

∫
Rn\Q∗

|Ta|ω(x)dx=

∫
Q∗

|Ta|ω(x)dx.

Obviously,∫
Q∗

|Ta|ω(x)dx ≤ C

(∫
Rn

|Ta|pω(x)dx
)1/p(∫

Q∗
ω(x)dx

)1/p′

(7.2)

≤ C

(∫
Rn

|a|pω(x)dx
)1/p(∫

Q∗
ω(x)dx

)1/p′

≤ Cω(Q)−1/p′
(∫

Q∗
ω(x)dx

)1/p′

≤C.

Case 2. δ < δ0. We let Q∗ = 4Q and Q̄=Q(x0, δ
1/(1+θ)). Then∫

Rn

|Ta|ω(x)dx ≤
∫
Q∗

|Ta|ω(x)dx+

∫
Q̄\Q∗

|Ta|ω(x)dx+

∫
Rn\Q̄

|Ta|ω(x)dx

:= I + II + III .

For I , similar to (7.2), we have

I ≤C

(∫
Rn

|Ta|pω(x)dx
)1/p(∫

Q∗
ω(x)dx

)1/p′

≤C.

We now estimate the term III . Clearly, by the mean value theorem,∣∣Ta(x)∣∣ ≤ Cδ

|x− x0|θ+n+1
χ{|x−x0|<4n}(x)

∫
Q

∣∣a(y)∣∣dy
≤ Cδ

|x− x0|θ+n+1
χ{|x−x0|<4n}(x)

×
(∫

Q

∣∣a(x)∣∣pω(x)dx)1/p(∫
Q

[
ω(x)

]−p′/p
dx

)1/p′

≤ Cδ

|x− x0|θ+n+1
χ{|x−x0|<4n}(x)

|Q|
ω(Q)

.
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Hence, by the properties of Aloc
1 (see Lemma 2.1), we have

III ≤ Cδ|Q|
ω(Q)

∫
δ1/(1+θ)≤|x−x0|≤4n

ω(x)

|x− x0|θ+n+1
dx

≤ Cδ|Q|
ω(Q)

k1∑
k=k0

1

(2kδ)1+θ

(
1

(2kδ)n

∫
|x−x0|≤2kδ

ω(x)dx

)
≤ C,

where k0 and k1 are positive integers such that 2k0δ ≤ δ1/(1+θ) ≤ 2k0+1δ and
2k1−1 ≤ 4n≤ 2k1 . We now estimate the term II . For x ∈ Q̄ \Q∗

Ta(x) =

∫
Rn

ei|x−y|−θ

v(x− y)

|x− y|n(2+θ)/r′

×
(

1

|x− y|n(1−(2+θ)/r′)
− 1

|x0 − x|n(1−(2+θ)/r′)

)
a(y)dy

+

∫
Rn

ei|x−y|−θ

v(x− y)

|x− y|n(2+θ)/r′
a(y)

|x0 − x|n(1−(2+θ)/r′)
dy

= A(x) +B(x),

where r′ is taken so close to 1 to guarantee that 2+ θ < r. Applying the mean
value theorem to the term in brackets in the integrand of A, and noting that
for y ∈Q, and x ∈ Q̄ \Q∗, |x− y| ≥ c|x− x0|, we have∣∣A(x)∣∣ ≤ Cδ

|x− x0|n+1
χ{|x−x0|<4n}(x)

∫
Q

∣∣a(y)∣∣dy
≤ C|Q|

|x− x0|n+1
χ{|x−x0|<4n}(x)

|Q|
ω(Q)

.

Therefore,

II ≤ Cδ|Q|
ω(Q)

∫
δ≤|x−x0|≤4n

ω(x)

|x− x0|n+1
dx

+C

∫
δ≤|x−x0|<δ1/(1+θ)

|Kθ,r ∗ a|
ω(x)

|x0 − x|n(1−(2+θ)/r′)
dx

≤ C +C

(∫
Rn

|Kθ,r ∗ a|r dx
)1/r

×
(∫

δ<|x−x0|<δ1/(1+θ)

ω(y)r
′

|x0 − x|n(1−(2+θ)/r′)
dx

)1/r′

≤ C +C‖a‖Lr′ (Rn)

(
k0∑
k=0

(
2kδ

)(r′−1)(θ+1) 1(
2kδ

)n ∫
|x−x0|≤2kδ

ω(x)r
′
dx

)1/r′

≤ C,
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where 2k0−1δ < δ1/(1+θ) ≤ 2k0δ, Kθ,r(x) :=
ei|x|−θ

|x|(θ+2)/r , and we used the follow-

ing fact (see [4])

‖Kθ,r ∗ f‖Lr(Rn) ≤Cr‖f‖Lr′ (Rn), r > 2 + θ.

Thus, Theorem 7.1 is proved. �
As in [13] we now introduce BMOloc of locally integrable functions with

bounded mean oscillation which has a intimate relationship between the Aloc
p

weights. Namely,

‖b‖BMOloc := sup
|Q|≤1

1

|Q|

∫
Q

|b− bQ|dx <∞,

where bQ = 1
|Q|

∫
Q
f(x)dx.

It is easy to see that, we have the following result.

Lemma 7.1. Fix p > 1 and let b ∈ BMOloc. Then there exists ε > 0, de-
pending upon the BMOloc constant of b, such that exb ∈Aloc

p for |x|< ε.

Lemma 7.2. Let b ∈ BMOloc, then there exist positive constants c1 and c2
such that for every cube Q with |Q| ≤ 1 and every λ > 0, we have∣∣{x ∈Q :

∣∣b(x)− bQ
∣∣ > λ

}∣∣ ≤ c1|Q| exp
{
− c2λ

‖b‖BMOloc(Rn)

}
.

As a consequence of Lemmas 7.2 and 2.1, we have the following result.

Corollary 7.1. Let b ∈ BMOloc and ω ∈ Aloc
∞ , then there exist positive

constants C3 and C4 such that for every cube Q with |Q| ≤ 1 and every λ > 0,
we have

ω
({

x ∈Q :
∣∣b(x)− bQ

∣∣ > λ
})

≤ c3ω(Q) exp

{
− c4λ

‖b‖BMOloc(Rn)

}
.

As an application of Corollary 7.1, we have the following proposition.

Proposition 7.1. Let b ∈ BMOloc, 1 ≤ p < ∞, and ω ∈ Aloc
∞ , then there

exists a positive constant C such that for every cube Q with |Q| ≤ 1

1

ω(Q)

∫
Q

∣∣b(x)− bQ
∣∣pω(x)dx≤C‖b‖p

BMOloc .

We now consider commutator of Coifman–Rochberg–Weiss [b,T ] defined
by the formula

[b,T ]f(x) = b(x)Tf(x)− T (bf)(x) =

∫
Rn

(
b(x)− b(y)

)
k(x− y)f(y)dy.

As in the case of strongly singular integrals, we have the following theorem.

Theorem 7.2. Let b ∈BMOloc(R
n) and T be the strongly singular integral

operators, then
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(i) ‖[b,T ]f‖Lp
ω(Rn) ≤ Cp,ω‖b‖BMOloc(Rn)‖f‖Lp

ω(Rn) for 1 < p < ∞ and ω ∈
Aloc

p .

(ii) ‖[b,T ]f‖L1,∞
ω (Rn) ≤Cω‖b‖BMOloc(Rn)‖f‖h1

ω(Rn) for ω ∈Aloc
1 .

Proof. By Lemma 7.1, there is η > 0 such that ω(1+η) ∈ Aloc
p . Then, we

choose δ > 0 such that exp(sδb(1 + η)/η) ∈ Aloc
p if 0 ≤ s(1 + η)/η < δ with

uniform constant. For z ∈ C, we define the operator

Tzf = ezbT
(
e−zbf

)
.

We claim that

‖Tzf‖Lp
ω(Rn) ≤C‖f‖Lp

ω(Rn)

uniformly on |z| ≤ s < δη/(1 + η).
The function z → Tzf is analytic, and by the Cauchy theorem, if s <

δη/(1 + η),

d

dz
Tzf

∣∣∣∣
z=0

=
1

2πi

∫
|z|=s

Tzf

s2
dz.

Observing that
d

dz
Tzf

∣∣∣∣
z=0

= [b,T ]f

and applying the Minkowski inequality to the previous equality, we get∥∥[b,T ]f∥∥
Lp

ω(Rn)
≤ 1

2π

∫
|z|=s

‖Tzf‖Lp(ω)

s2
|dz| ≤ C

s
‖f‖Lp

ω(Rn).

It remains to prove the claim, which is equivalent to(∫
Rn

∣∣Tf(x)∣∣p exp(
R(z)pb(x)

)
ω(x)dx

)1/p

(7.3)

≤C

(∫
Rn

∣∣f(x)∣∣p exp(
R(z)pb(x)

)
ω(x)dx

)1/p

.

We write ω0 := exp(R(z)b(1 + η)/η) and ω1 := ω1+η . Since ω0 and ω1 ∈
Aloc

p , we have(∫
Rn

∣∣Tf(x)∣∣pω0(x)dx

)1/p

≤C

(∫
Rn

∣∣f(x)∣∣pω0(x)dx

)1/p

and (∫
Rn

∣∣Tf(x)∣∣pω1(x)dx

)1/p

≤C

(∫
Rn

∣∣f(x)∣∣pω1(x)dx

)1/p

.

Now, by Stein–Weiss interpolation theorem, we have(∫
Rn

∣∣Tf(x)∣∣pω(1−β)
0 ωβ

1 dx

)1/p

≤C

(∫
Rn

∣∣f(x)∣∣pω(1−β)
0 ωβ

1 dx

)1/p
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and taking β = (1 + η)−1, then we obtain (7.3). Thus, (i) of Theorem 7.2 is
proved.

For (ii), Let the function aj(x) is a h1
ω(R

n) atom and suppaj ⊂Q(xj , rj),
and a0 is a single atom if ω(Rn)<∞, we then have

ω
({

x ∈R
n :

∣∣[b,T ]f(x)∣∣> λ
})

= ω

({
x ∈R

n :

∣∣∣∣ ∑
j∈N0

λj [b,T ]aj(x)

∣∣∣∣ > λ

})

≤ ω

({
x ∈R

n :

∣∣∣∣ ∑
j∈E1

λj [b,T ]aj(x)

∣∣∣∣ > λ/3

})

+ ω

({
x ∈R

n :

∣∣∣∣ ∑
j∈E2

λj [b,T ]aj(x)

∣∣∣∣ > λ/3

})
+ ω

({
x ∈R

n :
∣∣λ0[b,T ]a0(x)

∣∣ > λ/3
})

:= F1 + F2 + F3,

where E1 = {j ∈ N : rj < δ0} and E2 = {j ∈ N : 2 ≥ rj ≥ δ0} and δ0 be a

number satisfying 4δ0 = δ
1/(1+θ)
0 . Obviously, δ0 < 1.

For F1, let bj =
1

|Qj |
∫
Qj

b(y)dy. Note that∑
j∈E1

λj [b,T ]aj(x) =
∑
j∈E1

λj [b− bj , T ]aj(x)

=
∑
j∈E1

λj

(
b(x)− bj

)
Taj(x)χ4nQj (x)

+
∑
j∈E1

λj

(
b(x)− bj

)
Taj(x)χ(4nQj)c(x)

− T

( ∑
j∈E1

λj

(
b(x)− bj

)
aj

)
(x)

:= F11(x) + F12(x) + F13(x).

Thus, by (i) of Theorem 7.2 and Theorem 7.1, we obtain

ω
({

x ∈R
n :

∣∣F11(x)
∣∣ > λ/9

})
≤ C

λ

∑
j∈E1

|λj |
∥∥(b− bj)(Taj)χ4nQj

∥∥
L1

ω(Rn)

≤ C

λ

∑
j∈E1

|λj |
∥∥(b− bj)χ4nQj

∥∥
L2

ω(Rn)
‖aj‖L2

ω(Rn)

≤ C

λ

∑
j∈N

|λj |‖b‖BMOloc

≤ C

λ
‖b‖BMOloc‖f‖h1

ω(Rn).
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By the weighted weak type (1,1) of T (see Theorem 7.1(ii)) and Proposi-
tion 7.1, we get

ω
({

x ∈R
n :

∣∣F13(x)
∣∣ > λ/9

})
≤ C

λ

∑
j∈E1

|λj |
∥∥(b− bj)aj

∥∥
L1

ω(Rn)

≤ C

λ

∑
j∈N

|λj |‖b‖BMOloc

≤ C

λ
‖b‖BMOloc‖f‖h1

ω(Rn).

Now, we consider the term F12(x). Obviously,

ω
({

x ∈R
n :

∣∣F12(x)
∣∣ > λ/6

})
(7.4)

≤ λ−1
∑
j∈E1

|λj |
∫
Rn

T
((
b(x)− bj

)
aj

)
(x)ω(x)dx.

We claim that ∫
Rn

T
((
b(x)− bj

)
aj

)
(x)ω(x)dx≤C

holds for all atoms aj for j ∈ E1. For convenience, we denote aj by a,
Qj(xj , rj) by Q(x0, δ) and bj by bQ for j ∈E1.

We let Q∗ = 4Q and Q̄=Q(x0, δ
1/(1+θ)). Then∫

Rn

∣∣T (b− b)a
∣∣ω(x)dx ≤

∫
Q∗

∣∣T (b− bQ)a
∣∣ω(x)dx

+

∫
Q̄\Q∗

∣∣T (b− bQ)a
∣∣ω(x)dx+

∫
Rn\Q̄

|Ta|ω(x)dx

:= I + II + III .

For I , similar to (7.2), we have

I ≤C

(∫
Rn

∣∣T (b− bQ)a
∣∣pω(x)dx)1/p(∫

Q∗
ω(x)dx

)1/p′

≤C.

We now estimate the term III . Clearly, by the mean value theorem,∣∣T (b− bQ)a(x)
∣∣ ≤ Cδ|b(x)− bQ|

|x− x0|θ+n+1
χ{|x−x0|<4n}(x)

∫
Q

∣∣a(y)∣∣dy
≤ Cδ|b(x)− bQ|

|x− x0|θ+n+1
χ{|x−x0|<4n}(x)

×
(∫

Q

∣∣a(x)∣∣pω(x)dy)1/p(∫
Q

[
ω(x)

]−p′/p
dx

)1/p′

≤ Cδ|b(x)− bQ|
|x− x0|θ+n+1

χ{|x−x0|<4n}(x)
|Q|
ω(Q)

.
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Hence, by the properties of Aloc
1 (see Lemma 2.1), we have

III ≤ Cδ|Q|
ω(Q)

∫
δ1/(1+θ)≤|x−x0|≤4n

|b(x)− bQ|ω(x)
|x− x0|θ+n+1

dx

≤ Cδ|Q|
ω(Q)

k1∑
k=k0

1

(2kδ)1+θ

(
1

(2kδ)n

∫
|x−x0|≤2kδ

|b(x)− bQ|ω(x)
|x− x0|θ+n+1

dx

)
≤ C,

where k0 and k1 are positive integers such that 2k0δ ≤ δ1/(1+θ) ≤ 2k0+1δ and
2k1−1 ≤ 4n≤ 2k1 . We now estimate the term II . For x ∈ Q̄ \Q∗

Ta(x) =

∫
Rn

ei|x−y|−θ

v(x− y)

|x− y|n(2+θ)/r′

×
(

1

|x− y|n(1−(2+θ)/r′)
− 1

|x0 − x|n(1−(2+θ)/r′)

)(
b(x)− bQ

)
a(y)dy

+

∫
Rn

ei|x−y|−θ

v(x− y)

|x− y|n(2+θ)/r′
(b(x)− bQ)a(y)

|x0 − x|n(1−(2+θ)/r′)
dy

= A(x) +B(x),

where r′ is taken so close to 1 to guarantee that 2+ θ < r. Applying the mean
value theorem to the term in brackets in the integrand of A, and noting that
for y ∈Q, and x ∈ Q̄ \Q∗, |x− y| ≥ c|x− x0|, we have∣∣A(x)∣∣ ≤ Cδ|b(x)− bQ|

|x− x0|n+1
χ{|x−x0|<4n}(x)

∫
Q

∣∣a(y)∣∣dy
≤ Cδ|b(x)− bQ|

|x− x0|n+1
χ{|x−x0|<4n}(x)

|Q|
ω(Q)

.

Therefore,

II ≤ Cδ|Q|
ω(Q)

∫
δ≤|x−x0|≤4n

|b(x)− bQ|ω(x)
|x− x0|n+1

dx

+C

∫
δ≤|x−x0|<δ1/(1+b)

|Kθ,r ∗ a|
|b(x)− bQ|ω(x)

|x0 − x|n(1−(2+θ)/r′)
dx

≤ C +C

(∫
Rn

|Kθ,r ∗ a|r dx
)1/r

×
(∫

δ<|x−x0|<δ1/(1+θ)

|b(x)− bQ|ω(x)r
′

|x0 − x|n(1−(2+θ)/r′)
dx

)1/r′

≤ C.

Thus, the claim is proved.
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From (7.4), we have

ω
({

x ∈R
n :

∣∣F12(x)
∣∣ > λ/9

})
≤Cλ−1

∑
j∈E1

|λj | ≤Cλ−1‖f‖h1
ω(Rn).

It remains to consider the term F2. In fact, it is very simple. Let Q∗
j =

10n
δ0

Qj .
Note that for any atom aj∫

Rn

∣∣[b,T ]aj∣∣ω(x)dx=

∫
Q∗

j

∣∣[b,T ]aj∣∣ω(x)dx.
Note that ω(Q∗

j )≤Cω(Qj), we then have

F2 = ω

({
x ∈R

n :

∣∣∣∣ ∑
j∈E2

λj [b,T ]aj(x)

∣∣∣∣ > λ/3

})

≤ λ−1
∑
j∈E2

|λj |
∫
Rn

∣∣[b,T ]aj∣∣ω(x)dx
≤ λ−1

∑
j∈E2

|λj |
∫
Q∗

j

∣∣[b,T ]aj∣∣ω(x)dx
≤ λ−1

∑
j∈E2

|λj |
∥∥[b,T ]aj∥∥L2

ω(Rn)

[
ω
(
Q∗

j

)]1/2
≤ C‖b‖BMOlocλ−1

∑
j∈E2

|λj |‖aj‖L2
ω(Rn)

[
ω
(
Q∗

j

)]1/2
≤ C‖b‖BMOlocλ−1

∑
j∈E2

|λj |.

It remains to estimate the term F3:

F3 ≤ C
|λ0|
λ

∫
Rn

∣∣[b,T ]a(x)∣∣ω(x)dz
≤ C

|λ0|
λ

∥∥[b,T ]a∥∥
L2

ω(Rn)

[
ω
(
R

n
)]1/2

≤ C
|λ0|
λ

‖a‖L2
ω(Rn)

[
ω
(
R

n
)]1/2 ≤C

|λ0|
λ

.

From these, we have

ω
({

x ∈R
n :

∣∣[b,T ]f(x)∣∣> λ
})

≤
3∑

i=1

∣∣{x ∈R
n :

∣∣F1i(x)
∣∣ > λ/9

}∣∣
+ ω

({
x ∈R

n :
∣∣F2(x)

∣∣ > λ/3
})

+ ω
({

x ∈R
n :

∣∣F3(x)
∣∣ > λ/3

})
≤ C

λ
‖b‖BMOloc‖f‖h1

ω(Rn).
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Thus, the proof of Theorem 7.2 is complete. �

Next, we show that the pseudodifferential operators are bounded on
hp
ω(R

n), where the weight ω is in the weight class Ap(ϕ) which is contained
in Aloc

p for 1≤ p <∞. Let us first introduce some definitions.
Let m be real number. Following [21], a symbol in Sm

1,δ is a smooth function

σ(x, ξ) defined on R
n×R

n such that for all multi-indices α and β the following
estimate holds: ∣∣Dα

xD
β
ξ σ(x, ξ)

∣∣ ≤Cα,β

(
1 + |ξ|

)m−|β|+δ|α|
,

where Cα,β > 0 is independent of x and ξ.
The operator T given by

Tf(x) =

∫
Rn

σ(x, ξ)e2πix·ξ f̂(ξ)dξ

is called a pseudo-differential operator with symbol σ(x, ξ) ∈ Sm
1,δ , where f is

a Schwartz function and f̂ denotes the Fourier transform of f .
In the rest of this section, we let ϕ(t) = (1 + t)α with α> 0.
A weight will always mean a positive function which is locally integrable.

We say that a weight ω belongs to the class Ap(ϕ) for 1< p<∞, if there is a
constant C such that for all cubes Q=Q(x, r) with center x and sidelength r(

1

ϕ(|Q|)|Q|

∫
Q

ω(y)dy

)(
1

ϕ(|Q|)|Q|

∫
Q

ω− 1
p−1 (y)dy

)p−1

≤C.

We also say that a nonnegative function ω satisfies the A1(ϕ) condition if
there exists a constant C for all cubes Q

Mϕ(ω)(x)≤Cω(x), a.e. x ∈R
n.

where

Mϕf(x) = sup
x∈Q

1

ϕ(|Q|)|Q|

∫
Q

∣∣f(y)∣∣dy.
Since ϕ(|Q|)≥ 1, so Ap(R

n)⊂Ap(ϕ)⊂Aloc
p (Rn) for 1≤ p <∞, where Ap(R

n)
denote the classical Muckenhoupt weights; see [9].

Remark 7.1. It is easy to see that if ω ∈Ap(ϕ), then ω(x)dx may be not
a doubling measure. In fact, let α > 0 and 0≤ γ < α, it is easy to check that
ω(x) = (1 + |x| log(1 + |x|))−(n+γ) /∈ A∞(Rn) and ω(x)dx is not a doubling
measure, but ω(x) = (1+ |x| log(1+ |x|))−(n+γ) ∈A1(ϕ) provided that ϕ(r) =
(1 + r1/n)α.

Similar to the classical Muckenhoupt weights, we give some properties for
weights ω ∈A∞(ϕ) =

⋃
p≥1Ap(ϕ).

Lemma 7.3. For any cube Q⊂R
n, then

(i) If 1≤ p1 < p2 <∞, then Ap1(ϕ)⊂Ap2(ϕ).
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(ii) ω ∈Ap(ϕ) if and only if ω− 1
p−1 ∈Ap′(ϕ), where 1/p+ 1/p′ = 1.

(iii) If ω ∈Ap for 1≤ p <∞, then for any measurable set E ⊂Q,

|E|
ϕ(|Q|)|Q| ≤C

(
ω(E)

ω(Q)

)1/p

.

Lemma 7.4. Let T be the S0
1,0 pseudodifferential operators, then

‖Tf‖Lp
ω(Rn) ≤Cp,ω‖f‖Lp

ω(Rn)

for 1< p<∞ and ω ∈Ap(ϕ).

Lemmas 7.3 and 7.4 can be founded in [21]. The following lemma was
proved in [10].

Lemma 7.5. Let T be the S0
1,0 pseudodifferential operators, if ϕ ∈ D then

Ttf = ϕt ∗Tf has a symbol σt which satisfies Dβ
xD

α
ξ σt(x, ξ)≤Cα,β(1+ |ξ|)−|α|

and a kernel Kt(x, z) = FTξσt(x, ξ) which satisfies |Dβ
xD

α
z Kt(x, z)| ≤

Cα,β |z|−n−|α|, where Cα,β is independent of t if 0< t < 1.

Theorem 7.3. Let T be the S0
1,0 pseudodifferential operators, then

‖Tf‖hp
ω(Rn) ≤Cp,ω‖f‖hp

ω(Rn)

for ω ∈A∞(ϕ) and 0< p≤ 1.

Proof. Since ω ∈ A∞(ϕ), so ω ∈ Aq(ϕ) for some q > 1. By Theorem 6.2,
it suffices to show that for any atom (p, q, s)ω a supported Q=Q(x0, r) with
r ≤ 2 and ‖a‖Lq

ω(Rn) ≤ [ω(Q)]1/p−1/q, such that

‖Ta‖hp
ω(Rn) ≤Cω,p,(7.5)

and if a is a single atom, then

‖Ta‖hp
ω(Rn) ≤Cω,p.(7.6)

Obviously, (7.6) holds. Now we prove (7.5).
If Q∗ = 2Q, we then have∫

Q∗
sup

0<t<1

∣∣ϕt ∗ Ta(x)
∣∣pω(x)dx

≤ ω
(
Q∗)(q−p)/q

(∫
Q∗

sup
0<t<1

∣∣ϕt ∗ Ta(x)
∣∣qω(x)dx)p/q

≤Cω
(
Q∗)(q−p)/q

(∫
Rn

|Ta|qω(x)dx
)p/q

≤Cω
(
Q∗)(q−p)/q

(∫
Rn

|a|qω(x)dx
)p/q

≤C.

To estimate
∫
Rn\Q∗ supt<1 |ϕ ∗ Ta|p, we consider two cases.
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The first case is when r < 1. We expand Kt(x,x − z) in a Taylor series
about z = x0 so that

ϕt ∗ Ta(x) =
∫
Rn

Kt(x,x− z)a(z)dx=

∫
Rn

∑
‖α|=N+1

Dα
z Kt(x,x− ξ)zαa(z)dz,

where ξ is in Q, and hence by Lemma 7.5,∣∣ϕt ∗ Ta(x)
∣∣ ≤C|x− x0|−(n+N+1)‖a‖1|Q|(N+1)/n.

Taking N is large enough and r < 1, by Lemma 7.3(iii), we then have∫
Rn\Q∗

sup
0<t<1

∣∣ϕt ∗ Ta(x)
∣∣pω(x)dx

≤C|Q|p(N+1)/n |Q|p
ω(Q)

∫
Rn\Q∗

|x− x0|−p(n+N+1)ω(x)dx

≤C|Q|p(N+1)/n |Q|p
ω(Q)

∞∑
k=1

(
2kr

)−p(n+N+1)
∫
|x−x0|<2kr

ω(x)dx

≤C
1

ω(Q)

k0∑
k=1

(
2k

)−p(n+N+1)
∫
|x−x0|<2kr

ω(x)dx

+C
1

ω(Q)

∞∑
k=k0

(
2k

)−(n+N+1)
∫
|x−x0|<2kr

ω(x)dx

≤C
1

ω(Q)

k0∑
k=1

2knq2−kp(n+N+1)ω(Q)

+C
1

ω(Q)

∞∑
k=k0

(
2kr

)−p(n+N+1)+αn
2knqω(Q)

≤C,

where the integer k0 satisfies 2k0−1 ≤ 1/r < 2k0 . To estimate with the case
when 1< r ≤ 2, by Lemma 7.5, for all M > 0, we have∣∣Kt(x,x− z)

∣∣ ≤CM |x− z|−M .

So ∣∣ϕt ∗ Ta(x)
∣∣ ≤ ∫

Q

∣∣Kt(x,x− z)a(z)
∣∣dz ≤CM |x− x0|−M‖a‖L1(Rn).

Note that 1< r ≤ 2, we then have∫
Rn\Q∗

sup
0<t<1

∣∣ϕt ∗ Ta(x)
∣∣pω(x)dx ≤ CM‖a‖pL1(Rn)

∫
Rn\Q∗

|x− x0|−Mpω(x)dx

≤ CM
|Q|p
ω(Q)

∫
Rn\Q∗

|x− x0|−Mω(x)dx
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≤ CM
1

ω(Q)

∞∑
k=0

(
2kr

)−Mp+αn
2knpω(Q)

≤ C,

if M is large enough. The proof is complete. �

8. A characterization of weighted local Hardy spaces h1
ω(R

n)

The main purpose of this section is to give a characterization of weighted
local Hardy spaces h1

ω(R
n) by using the truncated Reisz transforms. Let Φ be

a nonnegative, radial and C∞-function on R
n with compact support B(0,2)

and Φ≡ 1 on B(0,1). Define the truncated Reisz transforms by

Rjf(x) =

∫
Rn

Kj(x− y)f(y)dy, Kj(z) =
zj

|z|n+1
Φ(z), j = 1, . . . , n.

Now let us state the main result of this section.

Theorem 8.1. Let ω ∈Aloc
1 . Then a function f is in h1

ω(R
n) if and only

if f ∈ L1
ω(R

n) and Rjf ∈ L1
ω(R

n), j = 1, . . . , n. More precisely,

‖f‖h1
ω(Rn) ∼ ‖f‖L1

ω(Rn) +

n∑
j=1

‖Rjf‖L1
ω(Rn).

We remark that if ω ∈ A1, Theorem 8.1 was proved essentially by Bui in
[3], that is, in the following.

Theorem A. Let ω ∈ A1. Then a function f is in h1
ω(R

n) if and only if
f ∈ L1

ω(R
n) and Rjf ∈ L1

ω(R
n), j = 1, . . . , n. More precisely,

‖f‖h1
ω(Rn) ∼ ‖f‖L1

ω(Rn) +

n∑
j=1

‖Rjf‖L1
ω(Rn).

In order to prove Theorem 8.1, we need the following lemmas.

Lemma 8.1. Let ω ∈Aloc
1 . Then

‖f‖h1
ω(Rn) ≤C

(
‖f‖L1

ω(Rn) +

n∑
j=1

‖Rjf‖L1
ω(Rn)

)
.(8.1)

Proof. We will borrow some idea from [14]. Let Q is an unit cube, χ′
3Q is a

C∞
0 nonnegative function supported in 4Q and χ′

3Q = 1 on 3Q. By Lemma 2.1,
we can set ω̄ ∈Ap so that ω̄ = ω on 14Q. Fix ϕ ∈N , by Theorem A, we have∥∥∥ sup

0<t<1
|ϕt ∗ f |

∥∥∥
L1

ω(Q)
=

∥∥∥ sup
0<t<1

∣∣ϕt ∗
(
fχ′

3Q

)∣∣∥∥∥
L1

ω̄(Rn)
(8.2)

≤ C
∥∥fχ′

3Q

∥∥
h1
ω̄(Rn)

≤ C

(∥∥fχ′
3q

∥∥
L1

ω̄(Rn)
+

n∑
j=1

∥∥Rj

(
fχ′

3Q

)∥∥
L1

ω̄(Rn)

)
.
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On the other hand, by the properties of Aloc
1 , we obtain∥∥Rj

(
fχ′

3Q

)
− χ′

3QRj(f)
∥∥
L1

ω̄(Rn)
(8.3)

≤
∥∥∥∥∫ ∣∣Rj(z − y)

[
χ′
3Q(y)− χ′

3Q(z)
]
f(y)

∣∣χ′
12Q(y)dy

∥∥∥∥
L1

ω̄(Rn)

≤C

∫
Rn

ω̄(z)

∫
Rn

∣∣Rj(z − y)
∣∣|z − y|

∣∣f(y)∣∣χ′
12Q(y)dy dz

≤C‖f‖L1
ω̄(14Q).

Combining (8.2) and (8.3), we obtain∥∥∥ sup
0<t<1

|ϕt ∗ f |
∥∥∥
L1

ω(Q)
≤C

(
‖f‖L1

ω(14Q) +

n∑
j=1

∥∥Rj(f)
∥∥
L1

ω(6Q)

)
.

Summing on Q, we obtain (8.1). �

Lemma 8.2. Let Rj be as above, then

(i) ‖Rjf‖Lp
ω(Rn) ≤Cp,ω‖f‖Lp

ω(Rn) for 1< p<∞ and ω ∈Aloc
p .

(ii) ‖Rjf‖L1,∞
ω (Rn) ≤Cω‖f‖L1

ω(Rn) for ω ∈Aloc
1 .

The proof of Lemma 8.2 is similar to that of Theorem 7.1, we omit the
details here.

Lemma 8.3. Let ω ∈Aloc
1 . Then

‖Rjf‖h1
ω(Rn) ≤C‖f‖h1

ω(Rn).(8.4)

Proof. We first fix a function ϕ ∈N . Let a(x) be a (1,2) atom in h1
ω(R

n),
supported in a cube Q centered at y0 and sidelength r ≤ 2, or a(x) is a (1,2)
single atom. To prove the (iii), by Theorem A and Theorem 6.2, it is enough
to show that ∥∥M(Rja)

∥∥
L1

ω(Rn)
≤C,(8.5)

where C is independent of a.
If a is a single atom, by L2

ω(R
n) boundedness of M and Rj , then∥∥M(Rja)

∥∥
L1

ω(Rn)
≤C‖Rja‖L2

ω(Rn)ω
(
R

n
)1/2 ≤C.

Next we always assume that a is an atom in h1
ω(R

n), supported in a cube
Q centered at y0 and sidelength r ≤ 2.

We first consider the atom a with sidelength 1≤ r ≤ 2. Then by L2
ω(R

n)
of the operators M and Rj(see Lemma 8.2), we have∥∥M(Rja)

∥∥
L1

ω(Rn)
=

∫
8Q

M(Rja)(x)ω(y)dy

≤ Cω(8Q)1/2‖a‖L2
ω(Rn) ≤C.
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If r < 1, we write∥∥M(Rja)
∥∥
L1

ω(Rn)
=

∫
2Q

M(Rja)(x)ω(y)dy+

∫
Rn\2Q

M(Rja)(x)ω(y)dy

:= I + II .

For I , by L2
ω(R

n) boundedness of the operators M and Rj , we have

I ≤ ω(2Q)1/2‖a‖L2
ω(Rn) ≤C.

We now estimate II . Let x /∈ 2Q. For t > 0 we define the smooth functions

Rt
j = ϕt ∗Kj

and we observe that they satisfy

sup
0<t<1

∣∣∂βKt
j(x)

∣∣ ≤C|x− y0|−n−|β|χ{|x−y0|≤8n}(x)(8.6)

for all |β| ≤ 1; see their proof in p. 507 of [11].
Now note that if x /∈ 2Q and y ∈ Q, then |x− y0| ≥ 2|y − y0| stays away

from y0 and Kj(x− y) is well defined. We have

Rja ∗ϕt(x) =
(
a ∗Kt

j

)
(x) =

∫
Q

Kt
j(x− y)a(y)dy.

Using the cancellation of atoms, we deduce

Rja ∗ϕt(x) =

∫
Q

Kt
j(x− y)a(y)dy

=

∫
Q

[
Kt

j(x− y)−Kt
j(x− y0)

]
a(y)dy

=

∫
Q

[ ∑
|β|=1

(∂βKt
j

(
x− y0 − θy(y− y0)

)
yβ

]
a(y)dy

for some 0≤ θy ≤ 1. Using that |x− y0| ≥ 2|y− y0| and (8.6) we get

Rja ∗ϕt(x) ≤ C|x− y0|−n−1χ{|x−y0|≤8n}(x)

∫
Q

∣∣a(y)∣∣|y|dy(8.7)

≤ C
rn+1

|x− y0|n+1
ω(Q)−1χ{|x−y0|≤8n}(x).

By (8.7) and using properties of Aloc
1 , we obtain

II ≤ C

∫
2r≤|x−y0|≤8n

rn+1

|x− y0|n+1
ω(Q)−1ω(x)dx

≤ C
|Q|
ω(Q)

k0∑
k=1

2−kω(2
kQ)

|2kQ| ≤C,
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where k0 is an integer such that 8n ≤ 2k0 ≤ 16n. Thus, (8.5) holds. Hence,
the proof is complete. �

Obviously, Theorem 8.1 can be deduced by the above lemmas.
In addition, Theorem 8.1, Lemma 8.3 and (iii) in Theorem 7.1 imply im-

mediately the following corollary.

Corollary 8.1. Let T be strongly singular integral operators defined in
Section 7, then

‖Tf‖h1
ω(Rn) ≤Cω‖f‖h1

ω(Rn)

for ω ∈Aloc
1 .
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