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where the Y;’s and Z are independent Gaussian
processes with covariance functions o;(x; — w;) and
a.(x — w) respectively, so that

cov(Y(x), Y(w)) = ¥ a;(x; — w;) + o.(x — w).

One specific parametric form of this model that might
be worth exploring is

cov(Y(x), Y(w))
= 3 Gyl wy — 51V Koley | w0y — 35])
+ D [1Bilwj — % 1)K, (B; | wj — x;]).

A large C; would correspond to an important main
effect. The model for Z(-) is somewhat problematic
as it allows Z(-) to have an additive component.
Following the decomposition into main effects and
interactions from Section 6 of the article by Sacks,
Welch, Mitchell and Wynn, it might be more satisfy-
ing to define Z(-) to be a stochastic process with no
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additive component:

Z(x) =Z*x) — X f Z*(x) II dxn

h#j

+(d-1) fZ*(x)dx,

where d is the number of dimensions of x and Z*(x)
is a Gaussian process with some simple covariance
function. I think it would be very interesting to find
optimal designs under some models of the general
form given by (1). If the optimal designs are very
different from those obtained by Sacks, Welch, Mitch-
ell and Wynn for their models, that would call into
question the effectiveness of their designs for proc-
esses where most of the variation can be explained by
main effects.
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We thank the discussants for their incisive com-
ments, suggestions and questions. Nearly all the dis-
cussants have been key participants at the workshops
mentioned by Johnson and Ylvisaker; all have been
instrumental in the development of new methodol-
ogies for the design and analysis of computer experi-
ments. Most of the comments and our responses are
concerned with the choice of the experimental design
and the choice of the correlation function.

We had hoped that the example of Section 6 would
attract some suggestions from the discussants, and in
this we are not disappointed. Morris’ results on the
first-stage, 16-point design are interesting—in partic-
ular, they indicate that the concentration of the design
in the center of the region also occurs for the much
rougher process corresponding to p = 1 in (9). As this
is only a preliminary stage, and there is not much to
be lost by using a cheaper design anyway, his scaled
quarter fraction makes a lot of sense. In a seven-
dimensional problem, Sacks, Schiller and Welch
(1989) similarly reduced the optimization problem by
restricting attention to scaled central-composite de-
signs. Without doing the optimization or amassing
experience from many problems, though, we cannot
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know when the relative performance of cheap designs
will be satisfactory.

For all 32 runs, Easterling recommends two com-
plementary quarter fractions. He rightly points out
the advantage of not having to optimize anything, and
we tried these fractions on {—, %} and {—%, %}°. In
some recent applications where data are cheap to
generate, we have been using Latin hypercube designs,
and for comparison we also report results for a 32-run
Latin hypercube. The six factors have the same 32
equally spaced values, —Y64, — 2%u, ..., 3%a4, but in
different random orders. For both designs, the predic-
tor is based on model (14) after re-estimating the
parameters 6, . . ., s and p in the correlation function
(9). Table R1 shows the average squared error of
prediction at the same 100 random points we used
previously. For ease of comparison, the results for our
original design are repeated. The complementary
quarter fractions and the Latin hypercube perform
similarly, with our design showing a modest
advantage.

It is of interest to note that, for certain values of n
and d, scaled standard designs can be optimal. For 8
points in 4 dimensions and 16 points in 5 dimensions
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the optimization problem is still tractable. Suitably
scaled half fractions of maximum resolution are ap-
parently optimal or very close to optimal for the IMSE
criterion when the model has only a constant term for
the regression, and the correlation family is (9) with
p = 2. The scaling of the design depends on the value
of 6. (We regret that we did not include more of these
anecdotes.) Extrapolating these results to the six-
dimensional problem at hand, we tried a half fraction
(I = ABCDEF) on {—0.37, 0.37}5, a scaling associated
with a small value of 6. As seen in Table R1, this
design performs much the same as the complementary
quarter fractions. It is quite likely that a Faure se-
quence, favored by Owen, Koehler and Sharifzadeh,
or a geometrical design, as in Johnson, Moore and
Ylvisaker (1988), would also perform similarly.

These very different designs produce rather similar
results, then. In this respect, our choice of example
was less revealing than we had hoped. Whether this
is a feature of the particular surface or something
more general we can only guess.

In other examples optimal design provides greater
benefits. The 42 design suggested by Easterling for the
problem in Currin, Mitchell, Morris and Ylvisaker
(1988) performs relatively poorly. For the cubic cor-
relation function (11) with parameters determined by
maximum likelihood, the empirical average squared
error of prediction on a 21 X 21 grid is (0.62)2 for the
optimal design shown in Easterling’s figure, compared
to (0.94)* for the 42 design. Although this is just one
example, it does indicate that the well balanced, sym-
metric design does not necessarily perform best, and
the difference is not necessarily trivial. Incidentally
to us, the Currin, Mitchell, Morris and Ylvisaker
design seems rather elegant—beauty of a design is in
the eye of the beholder.

One very important place for the use of optimal
design is for less-regular regions where intuition is
lacking. Ongoing work by D. Cox, J. Park and
C. Singer on a computer model for a nuclear-fusion
device (Tokamak) has a six-dimensional region
which is determined by linear constraints. The cost of
generating data is also fairly high, 3-5 minutes on a

TABLE R1
Empirical average squared error of prediction at the 100
random points
Average
Design squared error

Authors’ (.122)2
Complementary quarter fractions (.146)*
Latin hypercube (.136)2
Half fraction on {—0.37, 0.37}° (.143)
Authors’ (Stein’s correlation function) (.115)?

Cray 2 per run. Here, no regular, symmetric designs
easily come to mind.

We are intrigued by O’Hagan’s experience in apply-
ing similar models to the estimation of integrals. We
have some unpublished results relating to quadrature
in two dimensions. Low-discrepancy sequences (e.g.,
Halton sequences) perform well on the average for
functions generated by the model (9) when p = 1.
However, for functions generated by (9) with p = 2,
which are much smoother, the average performance
of the Halton sequences is poor relative to the optimal
designs obtainable for small problems or relative to
various ad hoc schemes for larger problems.

Morris’ connections between interactions and the
correlation parameters 6 in (9) suggest small rather
than large values of 6, a view shared by O’Hagan. Our
experience with estimating these parameters in a
number of examples, using models with no regression
terms other than a constant, is also consistent with
smaller values. This stands in contrast to Johnson
and Ylvisaker’s results that designs based on large 6
have certain robustness properties. How efficient their
designs are when small values of § are appropriate, or
when linear models are incorporated, is not clear.

To sum up on the choice of design, we suspect with
Easterling that, providing that the design does a rea-
sonable job of infiltrating the space, the predictor is
probably more important than the design. Unfortu-
nately, we do not have enough evidence to strengthen
these suspicions, nor to make notions like infiltration
more precise. Sometimes standard designs like frac-
tional factorials do fairly well; for other problems they
perform rather poorly. To know which case is true,
the optimal design is necessary as a benchmark. John-
son and Ylvisaker correctly point out that we do not
yet have catalogs of useful designs that can be auto-
matically applied. Clearly, more work is needed, and
advanced computations seem indispensable.

Stein suggests a more flexible class of correlation
functions. We took the design and data of Table 1 and
maximized the likelihood over oy, ..., ag and » = 1,
2, 3. Predictions based on » = 1 and a = (.260, .255,
.446, .566, .466, .934) at the 100 random points give
the results reported in Table R1. There is some im-
provement and this family may be worth pursuing
further. We do note, however, that optimization of the
likelihood is more costly, and there may be numerical
instabilities associated with computing K, as v grows.

Stein’s additive covariance models seem promising.
Though they introduce a number of additional param-
eters (the C’s and D), we agree they may be useful
when the output is nearly additive. There may also be
important design considerations.

Any help in estimating the correlation parameters
is welcome, and we look forward to seeing further
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details of the method outlined by Owen, Koehler and
Sharifzadeh. These discussants also note that smaller
6’s may indicate inactive factors, with implications for
dimension reduction. This is usually valid, but we
have found, for example, cases in which 8 is close to
zero for a variable with a strong linear effect. This is
backed up by theoretical work on asymptotic behavior
as § — 0 when p = 2 in (9), as mentioned in Sec-
tion 7.4. To avoid overinterpretation of the 0’s we
endorse the plotting of the main effects, interactions
and so on defined in Section 6.

Black box or gray box? We could not agree more
with Easterling about the need to employ subject-
matter expertise. Progress in applications and new
methodologies requires two-way exchange between
statisticians and the scientists conducting these ex-
periments. In our experience, as in the example of
Section 6, the expert has usually reduced the number
of factors to a small set, most of which are active for
one response or another. To ensure that all important
factors are included, however, a screening stage might
be used to determine the active set empirically. In this

case, as Owen, Koehler and Sharifzadeh point out,
designs that project well for one or relatively few active
factors will also be more useful for prediction. Overly
symmetric designs like fractional factorials may have
replicates when projected in this way. It might be
helpful to incorporate prior information on effects
sparsity into the assumed models, with implications
for design.

O’Hagan sheds some more light on the Bayesian
viewpoint here, to which he has made important con-
tributions, and Morris points out some difficulties
with the frequentist interpretation. In earlier drafts
we did attempt to discuss these philosophical matters
more fully, but we gave up due to differences amongst
the authors! A full Bayesian viewpoint might offer
some advantages. Unfortunately, as O’Hagan points
out, unknown correlation parameters are not easy to
deal with in a full Bayesian framework.

We are grateful that the discussants share and
reinforce our excitement in developing this area. It is
clear to us that there is much work to be done; we
hope that there will be many to do it.



