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SIGNAL EXTRACTION FOR NONSTATIONARY TIME SERIES

By WiLLIAM BELL!

Bureau of the Census

The nonstationary signal extraction problem is to estimate s, given
observations on z; = s, + n, (signal plus noise) when either s, or n, or both is
nonstationary. Homogeneous or explosive nonstationary time series described
by models of the form 6 (B)z; = w; where §(B) has zeroes on or inside the unit
circle and w, is stationary are considered. For certain cases, approximate
solutions to the nonstationary signal extraction problem have been given by
Hannan (1967), Sobel (1967), and Cleveland and Tiao (1976). The paper gives
exact solutions in the forms of expressions for E(s;|{z;}) and Var(s|{z:})
(assuming normality) under two sets of alternative assumptions regarding the
generation of z;, s;, and n,. Extensions to signal extraction with a finite
number of observations, to the nonGaussian case, and to the multivariate
case are discussed.

1. Introduction. Suppose that
(1.1) =8 +n, t= 0, il, i2, s

where 2z, is an observable time series and s, and n; are unobservable signal and
noise time series. The signal extraction problem is to find the best (e.g., minimum
mean squared error) estimate of s, for any fixed ¢ given the observed data. The
problem for the case where s; and n, are independent and stationary was solved
independently by Kolmogorov (1939, 1941) and Wiener (1949). This paper deals
with the signal extraction problem when either s, or n, or both are nonstationary.

NOTATION. If y, is a time series we shall write {y,} for its entire doubly
infinite realization. The segment of the time series between and including any
two time points i < j, shall be denoted by yg)) = (¥, Yi+1, - -+, ¥;)’, where prime
denotes transpose, or by y; = (¥, ---, ¥;)’ if 1 = 1. If y, is stationary
with autocovariances v,(k) = Cov(y;, ¥:.+x) that are absolutely summable

(X%« | v4(k)| < ) then the spectral density of y; is
(1.2) £ = 21)7F $% vy (k)e™ = (21) My, (™),

where v, ({) = 3% v,(k) ¥ is the covariance generating function (CGF) of y, and
¢ denotes a dummy complex variable. It will be convenient to let [y, ] represent
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NONSTATIONARY SIGNAL EXTRACTION 647

the variance matrix of any segment, y (¢}, of the stationary series y, of length
m: :
v(0) oo v (m—1)

[vylm = Var(yiﬁim)) = : :
vy(m - 1) - 'Yy(O)

If we apply an absolutely summable linear filter «(B) = Y %. a;B’, where B is
the backshift operator, to y,;, the resulting time series has autocovariances
a(B)a(F )y,(k), and we write [a(B)a(F)'yy](m) for the varlance matrix of m
successive observatlons on a(B)y;.

ASSUMPTIONS. For convenience, all random vartables in this paper will be
assumed to have zero mean. We shall initially deal only with univariate timeé
series that, except where stated otherwise, are jointly normal. Extensions of the
results to multivariate and nonnormal time series are discussed in Section 6.

With respect to the decomposition (1.1), we assume that while s, and n, can
be nonstationary,

(1.3) 0s(B)s; = u, and 6,(B)n; = v,
are stationary time series independent of each other, where §,(B) = 1 —
0B — .- — 8,4,B% is a polynomial of degree ds in the backshift operator B,

and 6,(B) is a similar polynomial of degree dn in B. We assume all the zeroes of
4,($) and 6, (¢) lie on or inside the unit circle—if 6,({) has a zero outside the unit
circle it corresponds to a factor of 6,(B) that can be inverted and incorporated
on the right hand side with u;, and similarly for 6,({). (Anderson (1971, pages
170-171) notes that factors corresponding to zeroes inside the unit circle can be
reversed in time to factors with zeroes outside the unit circle, thus becoming part
of the stationary part of the model, although operating backwards in time. We
shall not allow this here since it corresponds to assumptions about the generation
of time series that are different from those we shall use—which are discussed in
Sections 2 and 3.) We let

(1.4) 0(B) = 6.(B)o5(B)o5(B)

where §.(B) is the product of the common factors in 6,(B) and §,(B), 65(B) =
0, (B)/(S (B), and 6*(B) = 6,(B)/5.(B). We let d denote the degree ofé(B) Define
= 6(B)z;, which from (1.3) and (1.4) is given by

(1.5) 0(B)z, = w, = 85(B)u, + 6¥(B)uv,
S0 w; is a stationary time series with CGF
(1.6) vw(s“) = 6x(0XE N vu(§) + 8X(O8FE Yo (§).

We assume that w; is purely nondetermmlstlc so it has an infinite moving
average (Wold) representation

(1.7) w, = ¥(B)a, = Y5 Y;a,;.
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We further assume that the v, (k) are absolutely summable, and that v, ({) has
no zeroes on the unit circle (which means f,(\) = (27) 'y, (e”™), the spectral
density of w, is never zero). Then (Brillinger 1975, pages 78-79) w, has an
infinite autoregressive representation (invertibility)

(1.8) ODB)w. = (1 - XTI;B)w, = a

with II(B) = ¥(B)™'. We also make these assumptions about u, and v,. These
assumptions will hold, in particular, if u;, v, and w, all follow stationary,
invertible, autoregressive-moving average (ARMA) models.

If 6(¢) and v,({) have a common zero, then Findley (1982) shows that the
model 6(B)z;, = ¥(B)a, can be simplified by cancelling a factor from both sides
and adding to the right hand side a deterministic term that is annihilated by the
cancelled factor. Thus, we assume there are no common zeroes within the pairs
{6(6), Yw (D)}, 18:(5), vu($)}, and {6,(5), v,({)}, and that any deterministic terms
have been subtracted out. Findley (1982) also shows that then §(B) is the minimal
polynomial that renders 2, stationary, in that it divides any other such polynomial.

PREVIOUS WORK. Signal extraction has been used with nonstationary time
series in such areas as actuarial graduation (by Whittaker, see Whittaker and
Robinson, 1944, pages 303-316), smoothing (Tiao and Hillmer, 1978), and sea-
sonal adjustment (Cleveland, 1972, Burman, 1980, and Hillmer and Tiao, 1982).
Typically, the solution for the stationary case has been borrowed and used in the
nonstationary case. If s, and n, are both stationary, normal, and independent of
each other, and the entire realization {z,} is available, the solution of Kolmogorov
and Wiener may be written (Fuller 1976, page 170)

(1.9) E(s¢|{2:}) = v(F)v.(F) 'z

where v,({) is the CGF of z,. In the nonstationary case v,({) and v,(¢) will not
exist, but proceeding formally from (1.3) and (1.4), we are led to consider using

R, defined by
(1.10) R, = 65(B)o%(F)vu(F)vuw(F) 2.

There has been work done on the properties of R; in the nonstationary case.
Hannan (1967) and Sobel (1967) considered the case where n, is stationary and
85(¢) has all its zeroes on the unit circle. Hannan (1967) showed that R, minimizes
the mean squared error in the class of linear estimators that perfectly predict
any sequence p; that is annihilated by 6,(B) (i.e., 6,(B)p. = 0). Sobel (1967)
established that R, asymptotically approaches (as t — o) the best linear estimator.
Cleveland and Tiao (1976) obtained an approximation to E(s; | 2, - - + , Zm+n) for
large m > 0 when s, and n; follow ARIMA models, and §(B) is allowed to have
factors (1 — B)“(1 — B¢)®. They then noted their approximation approaches R,
as the number of observations, N, grows large, for ¢t not near m or m + N. Pierce
(1979) examined the behavior of the error series s, — R,, showing it is stationary
if 6,({) and 6,({) have no common zeroes and obtaining its spectral density, and
hence Var(s; — R;) in this case. Hannan (1967) had also obtained these for the
case of stationary n,.
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The above results leave several questions unanswered. Notice that the exact
signal extraction solution, E (s, | {z;}), has not been obtained. Also, for some cases,
notably when s; or n; is explosively nonstationary or when 6,({) and 6,(¢) have a
common zero, not even an approximate solution is available. In Section 4 we
obtain the exact solutions to the nonstationary signal extraction problem under
two sets of alternative assumptions, which we label A and B. It turns out that
E(s;|{z:}) = R, under our Assumption A when &,({) and 4,(¢) have no common
zeroes; otherwise, other terms must be added to R; to get E(s;|{z:}).

The assumptions we make have to do with the generation of the time series
s, ng, and z;, and their starting values, something that is often ignored in the
literature. That our results depend on these assumptions shows that they should
not be ignored. We discuss generation of time series in Section 2 and our
Assumptions A and B in Section 3. After the results for E(s;|{z:}) in Section 4,
we obtain results for Var(s;|{z;}) in Section 5. It is seen that the usual results
(e.g., Pierce, 1979) give Var(s;|{z;}) under Assumption A when §,({) and 4§,(¢{)
have no common zeroes, and otherwise other expressions as given are needed.
Finally, in Section 6 we extend our results to signal extraction for a finite set of
observations, for nonGaussian time series, for series with known starting values,
and for multivariate time series.

For some of the results given here, details are omitted from the proofs. The
interested reader is urged to consult Bell (1982) for detailed proofs.

2. Generation of nonstationary time series. A purely nondeterministic
stationary time series w; may be viewed as arising for all ¢ from the Wold
decomposition (1.7), given a white noise series {a.}. If the zeroes of §({) were
outside the unit circle (so z; would be stationary) then we could write

(2.1) 2t = (1 + EIB + £2B2 + .. ')wt

where £(B) = (1 + £&B + &B? + -..) = §(B)™%. The £s can be obtained by
equating coefficients of B, B!, B%, ... in (¢, + &, B+ &B2+ ---) 8(B) =1, so
that

(2.2) So=1% =M@ 56 1> 1.

Unfortunately, when 6({) contains zeroes that lie on or inside the unit circle,
(2.1) will not converge, and 2, cannot be viewed as being generated this way.

To produce {z;} in the nonstationary case we need, in addition to {w,}, a
suitable set of starting values for z;. Since 6(B) is of order d we need d starting

values, which we will assume are (zi, ---, 24)’ = z,. Given z, and {w,}, the
remaining z,’s are easily generated recursively from

(2.3) 2:=061211+ - +0g2_qg +w t>d

(2.4) 2t = 07" (244d — 01204d-1 — *++ — 0a—1241 — Wia), t = 0.

(Notice 63" # 0 or 6(B) would not be of degree d.) In the stationary case there is
a one-to-one correspondence between the collections of random variables {z;}
and {w,} through 6(B)z; = w; and (2.1), while in the nonstationary case there is
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a one-to-one correspondence between {z;} and {z,, {w.}} through 6(B)z; = w, and
(2.3) and (2.4).

We now obtain a representation of z, for ¢ > 0 in the nonstatlonary case that
is analogous to (2.1). Notice the £’s can still be defined by (2.2). For our
representation we need the following quantities A; ;, defined for ¢t = 1 by (using
&=0fori<0) -

Al,t =& — E90; — -0 — ft—dad—l

Adg-1t = Et—ar1 — £1-aby

CAay = Eiea -

From (£ + &B + £&B* + --.)8(B) = 1 we see 8(B)¢; = 0 for i = 1. Using this
fact, it can be shown that fort =1, ..., d, A;, = 1 'when ¢t =j and is 0 otherwise,
and A; 441 = 8a4+1-,. Also, 6(B)&; = 0 for ¢ = 1 immediately shows A;, = 6:4; .,
+ <+ + 6qAj—q for t > d, so the A; /s may be computed directly without
computing the £/’s. A useful result relating the £’s and A; /s is as follows.

(2.5)

LEMMA 1. Fort>d
(Bi=67 &B)8(B) =1 — X1 A B
PROOF. On the left hand side above, the coefficient of B° is 1 and that of B’,

forj=1,.-..,t—d—1,is §(B){; = 0 (using ¢, = 0 for i < 0). The coefﬁc1ent of
B~ifori=1,-..,dis -

—8abi—g—i = *++ — Sar1-ibtmd—1 = Odcibtea + -+ + 61Emic1 — £ = —Ayp. O

This result allows us to easily prove the following.

THEOREM 1. Let 6(B)z; = w; where 6(B) is of degree d and z, is generated
from {w,} and starting values z, = (z1, - - -, 24)’. Then, for t > d

AtZ + td_ Eiwe—;

where Al = (A, -+, Ad,,). The result holds for t = 1, - --, d if the last term is
interpreted as zero. ‘

Proor. By Lemmall, fort>d
-Alz, =(1-3% A,.B*” Nz, = (Tiz™ &B' )6(B)z¢

— t d 1 Ezwt— D

As solutions to 6(B)A,; = 0, the behavior of the A;’s as t increases will depend
on the zeroes of §(¢). If any lie inside the unit circle the A ;s will exhibit explosive
behavior, while if they all lie on the unit circle the A ;’s will either remain bounded
(all zeroes distinct) or grow in polynomial fashlon (repeated zeroes) The same
comments apply to &; as i increases.
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We could obtain an analogous backward representation for z; for ¢ < 0 involving
the starting values z, and w;, j < d. The coefficients of the w;’s would be obtained
by formally inverting the operator 1 + (84-1/04)F + --- + (8,/84)F ¢t —
(1/84)F ¢ (see 2.4). An important special case occurs when all the zeroes of §(B)
lie on the unit circle. In this case it can be shown that §(B) = (—1)"B%(F) where
r is the number of times the factor (1 — B) occurs in 6(B). From this relation we
can write 6(F )z, = x, where x, = (—1)"w;+q. The A;,’s and £/’s that we need will
thus be the same as above, and using the starting values z,, - - -, 2;, now going
backwards in time, we get the following backward representation for z, for ¢t < 0:

(2.6) 2= (Agasr-ts ~ 5 Avar1-0)Z, + Dico EiXesi.

3. Assumptions about starting values in signal extraction. In doing
signal extraction we must make assumptions about the generation of the three
time series {2.}, {s.}, and {n,}. Generating these series is equivalent to generating
their starting values and the series {w,}, {u.}, and {v,} (see (1.3)). We shall always
assume that the series {u,} is generated independently of the series {v,}, and that
each w, is then obtained from (1.5). The starting values we need are z, =
(z1, ~++,24),8, =(s1, -+, Sas)’,and n, = (ny, ---, ng,)’, where ds is the order
of 6,(B) and dn is the order of 4,(B). There are thus d + ds + dn = 2d + dc
starting values, where dc, the order of §.(B), is the number of common factors in
8,(B) and 6,(B).

Notice that Theorem 1 implies that

se=A{s, + D2 Hupy, >0
(3.1)

n, = Ay’ n, + f;(c)m_1 &V, t>0
where the £f and Aj are obtained from 6,(B) in the same way that £; and A, were
obtained above from 6(B), and similarly for the £ and A?. From (3.1) we get

Uds+1 Udn+1
s .
(32) z, = [HIHQ] [n*:| + Cl . + CQ
* Uq [ ]
where
— —
Ids Idn
Abin Adrn
H, =| - H, =| -
dXxds * dXdn °
Ay LAY
Odsx(d—ds) Odnx(d—-dn)
§ n
gO . EO
Cl = . '.. C2 =
dX(d—ds) * dX(d—dn)
Ea—ds—1 - &0 $d-dn—1 +++ §0

which relates the starting values for s, and n.(s, and n,) to those for z, (z,).
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We will assume the starting values are generated in one of two ways.

ASSUMPTION A. 1z, is generated independently of {u.}, {v.}, and hence {w,}.
Then s, and n, are obtained by solving (3.2). When dc > 0 the solution will not
be unique (see comments below).

ASSUMPTION B. s, and n, are generated independently of each other and of
{u,}, {v,}, and hence {w;}. Then {s;} and {n,} are generated in the same way as
(2.3) and (2.4), and z,, is obtained through 2z, =s; + n,,t=1, ---, d.

Bell (1982) shows that the d X (ds + dn) matrix [H;H,] in (3.2) has rank d.
Under Assumption A, if §,(B) and 8,(B) have no common factors (dc = 0), then
ds + dn = d and the solution to (3.2) is unique. A simple case of this occurs when
n, is stationary so it requires no starting values (dn = 0) and s, = 2, — n;, t = 1,
..., d. If ,(B) and 6,(B) do have common factors (dc > 0), then (3.2) has d
equations and ds + dn = d + dc unknowns, so multiple solutions exist. Each
solution corresponds to a particular choice of generalized inverse, [H;H,]™, of
[H H,], so in making Assumption A with dc > 0, one must also make an
assumption as to which generalized inverse of [H; H,] is used in solving (3.2).

Assumptions A and B have different implications. Assumption B implies that
s, and n; are independent for all ¢ and j, an assumption usually made in signal
extraction. This is not the case under Assumption A. For example, if n, is
stationary and (1 — B)s, = u,, then s; = 2, — n, and s, = s; + Y /=3 u,—; for t > 1,
and Cov(s;, n,) = — Cov(n,, n,) for all j, which need not be zero for any j. Under
Assumption A the stationary filtered series u; = §,(B)s; and v, = 6,(B)n; are still
independent, but correlation between s, and n, can be generated through their
starting values.

However, Assumption A has one advantage over Assumption B. Under As-
sumption A, z, is assumed independent of {w,}, so it is independent of any a, =
I1(B)w,. Since a., is independent of w;, w;—;, - -+ for any /> 0, it follows from
the expression for z, in Theorem 1 that, for t > 0, z; and a,+, are independent for
any ~ > 0. This is typically assumed in modeling and forecasting the observed
series z,, but it does not generally hold under Assumption B. For example, under
Assumption B suppose (1 — B)s, = u,; and n, are both white noise, so w; = u; +
(1 — B)n, is moving average of order one, i.e., w; = (1 — 6B)a,. Then 2, = z; +
Zf;é wi—; with 2, = 81 + n,, and an, = (1 — OB)_le., =1 - HB)_IUH/ +
1 — (1 - 60) Y% 67'B] nu,, implying Cov(z, an,) = Cov(ni, nu., —
1-9) X% oi_lntw—i), =—(1-190) 0t+/_2')’n(0)-

It should be noted that it does not seem possible in general to make assump-
tions so that z and a.., (# > 0) are independent for all ¢. Under Assumption A
we get this only for t > 0. There is an analogous result using a backward
representation for z, (such as (2.6)), which states that, under Assumption A, for
t <0, z is independent of the backward innovation at time ¢ — # for /> 0
(@,—, = I (F)x,—, in (2.6)). .

In Section 4 we obtain signal extraction results under both Assumptions A
and B. The results under the two sets of assumptions differ, reflecting the fact
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that assumptions about starting values are important. A choice betwéen Assump-
tions A and B for any given problem will depend on the problem. If there is
reason to believe that z, was actually generated by two independént components
s, and n,, then Assumption B may be preferred. On the other hand, if the
components s; and n, are really just artificial constructs (as in seasonal adjust-
ment), then Assumption A may have more appeal. We do not intend to suggest
that A and B are the only reasonable assumptions; other assumptions could also
be used. Rather, the purposes of this paper are (i) to show how exact nonstation-
ary signal extraction results can be obtained given assumptions about the starting
values, and (ii) to demonstrate that such assumptions are required to obtain
results, a fact that has not previously been appreciated.

4. Signal extraction for nonstationary time series. We now return to
the signal extraction problem and obtain a general expression for E(s;|{z}) in
the nonstationary case. In subsections 4.1 and 4.2 we obtain specific results under
Assumptions A and B, respectively. The results are given for E(s;|{z;}) fort = 1,
but analogous results for ¢ < 0 could be obtained using a backward representation
for s, (see Section 2). In some cases it may be easier to apply the results here to
get E(n.|{z:}), which can be done by relabeling, and then compute E(s;|{z.}) as
z: — E(n]{2:}).

To begin we need the following lemma which is proved in Bell (1982).

LEMMA 2. Let I and J be index sets, countable or uncountable, and assume Y,
{Xi} ={X;, 1 € I}, and {W;} = {W,, j € J} are jointly normal, with zero means
and finite variances. Then

E(Y|{Xi}, (W;}) = E(Y[{X:}) + E(Y [{W; — EW;|{X:)}).
From the discussion in Section 2, E(s;|{z:}) = E(s| z,, {w:}), so i)y (3.1), the
linearity of conditional expectations, and Lemma 2
1) E(s:|{z.}) = AV[E(s, [{w)) + E(s,|z, — E(z,]{w.}))]
+ X8 EIE (we-i [ {wd)) + E(u—i| 2, — E(z, [{w )]

Since u, and w, are stationary, it is well known that (e.g., Brillinger, 1975,
Theorems 8.3.1 and 8.3.2) E(uw;|{w:}) = Yuw(F)yuw(F) 'w,—;. The stationary
signal extraction result (1.9) is a special case of this. From (1.5), vu.(F) =
0% (F)vu(F) so from this and (1.10)

(4.2)  E(u-i| {wt;) = 05(F)yu(F)yu(F)™'6,(B)6%(B)2:~i = 6,(B)R,-.
By Lemma 1, (3¢~ £BY)6,(B) =1 — Y%, A{,B'™, so from (4.2)
(4.3) 287 EE(w—i | {we}) = R, — A Reay).
Using (4.3), (4.1) can be written as

E(s:|{z}) = AV[E(s,|{z}) — Ruy] + R,

(4.4)
+ 28T EE(u-il 2, — E(z, [{we)).
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Notice that (4.4) includes R, the nonstationary analogue of the stationary
solution. However, (4.4) also includes an adjustment for the effect of the deviation
of E(s;|{z:}) from R; forj=1, ..., ds, plus an adjustment for what z, has to say
about Y28~ £iu,—; beyond the information in {w,}. If it happens that R; is correct
at the starting vaues s;(j = 1, ---, ds), and z, contains no information on the
u;—;’s beyond that in {w,}, then R; will be E(s; | {z:}).

Actually, (4.2) above needs to be justified. Specifically, we need to know that
(i) R, exists, in that when we compute the filter 6}(B)6} (F)y.(F)v.(F)™* and
apply it to z;, we get something that converges in mean square, and (ii) we can
interchange operators like 6,(B), v.(F), and v,,(F)™" in (4.2) (this is not obvious
since z; is nonstationary.) Conditions under which these things hold are given in
Bell (1982). Here we merely note that these conditions will hold, in particular, if
all the zeroes of 6({) are on the unit circle, v, () is nonzero on the unit circle (as
we always assume), and v.(k) and v,(k) decrease exponentially to zero as
| k| — o (such as when u;, v, and w, follow autoregressive-moving average
models). If §(¢) has zeroes inside the unit circle, we must be more careful. For
the rest of this paper we will assume the required conditions are satisfied so that
we can manipulate things as in (4.2). If these conditions are not satisfied, all is
not lost. We can still do nonstationary signal extraction by substituting
0X(F)vu(F)yw(F) 'w,—; directly for E(u;-;|{w;}) in (4.1) and proceeding from
there instead of from (4.4). This approach is used in Section 5 when we obtain
Var(s,|{z:}).

4.1 Signal extraction under Assumption A. Under Assumption A, when 6,(¢)
and 6,,({) have no common zeroes, R, actually is the solution to the nonstationary
signal extraction problem, as is established in the following theorem.

THEOREM 2. Make Assumption A so that z, is independent of {w.}. Also
assume 6,({) and 6,({) have no common zeroes so 6(B) = 6,(B)6,(B). Then
E(s:1{2}) = R, = 6,(B)6n(F)vu(F)vW(F) 2.

ProOOF. The signal extraction error is

& =8 —R,
= 8; = 0n(B)6n(F)vu(F)vu(F)7(s; + 10)
= 0,(B)8y(F)vo(F)vu(F)'s; = 80(B)bu(F)vu(F)vu(F)'n,
= 8,(F)vo(F)yu(F) 'u = 6,(F)vu(F)yu(F) 0,

using the fact that (from 1.6) v, (F) = 6,(B)6,(F)y.(F) + 6,(B)é;(F)y,(F) in
the second line. The cross spectral density of u, with w; is f.(\)8,(e"*), and that
of v, with w; is f,(\)d,(e”™) (see 1.5), so from (4.5) the cross spectral density of
& with w, 1s

(4.5)

fewN) = 8™ fo(A) fu (M) u(N) b (™)
- 6n(e_i)\)fu(>\)fw()\)—lfu(x)és(e_i)\) = O
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This shows ¢; is uncorrelated with every w;, and since z, is assumed independent
of {u,} and {v,}, ¢ is also uncorrelated with z,. Thus, ¢ is uncorrelated with {z}.

Sihce we are assuming joint normality, by results in Gihman and Skorohod
(1980, pages 273-274) the theorem is proved. 0

We now consider the case where 6,(¢) and 6,({) have common zeroes so
8(B) = $*(B)s.(B)6*(B), where 6.(B) is the product of the factors in §(B) that
are in both 6,(B) and 6,(B). Returning to (4.4), we notice that the independence
of z, and {w;}, and z, and {u.}, under Assumption A implies that the last term
in (4 4) drops out. Thus, we only need to evaluate E(s,|{z}) = E(s,|z,) +
E(s | {w,}). From (3.2) we see that

(4.6) muu[ﬂi“ﬁd-z*—aEmgwnm»—@Ewgmumu

The jth element of CIE(ufg‘jﬂ’l {w,}) is zero for j =1, - - -, ds and by (4.3) is
ij—(t)i()‘_1 EsE(uj—i {wt}) = R - A‘?lR(dS‘)

forj = ds +1, ---, d. Similarly, the jth element of C,E (v | {w,}) is also zero -
forj=1, - dn and is

Szt en B (vjmi [ {we}) = (2, — R;) — A;""(Z(dn) = Rn)
forj=dn+1, ---, d. After some algebra, we get
wn CLE@E™ | {w}) + CEVS™ | {w,}) |
=1z, — H\Rys) — HoZn) + H:Ran).
Let m = max(ds, dn) and define

(4.8) d}xlii = H, — [H;0ux(ds-am)), ds = dn
= [H,O4x(dn-das)) — Hs, ds < dn.

We can now write (4.6) as

E(s,|{z})
E(n* | {Z[})

We summarize our results in the following theorem.

(49) [HIHQ] |: :| = HQZ(dn) + HaR(m).

THEOREM 3. Make Assumptwn A and assume &, (§‘) and 6 L(¢) have at least
one common zero. Then for t > ds

E(3t| {Zt}) = A?l{E(S* | {zt]) - R(dS)} + R.. .

E (é* | {z¢}) is obtained by solving (4.9) in the same Way it is assumed that (3.2)
is solved in generating s, and n,, i.e., we make the same choice of [H,H,].

4.2 Signal extraction under Assumption B. Under Assumption B, s, and {w.}
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are independent, so that E(s, | {w.}) = 0 and (4.4) becomes

(€10 E(s:|{z:})) = A{'{E[s, |z, — E(z, | {W})] — Rusy} + R:
' + D8 B Eu | 2, — E(z, | {w))].

For the case where n, is stationary and d,(¢) has no zeroes inside the unit circle,
Sobel (1967) establishes that R, converges to E(s;|{z}) as t — . Cleveland and
Tiao (1976) similarly show that R, approximates E(s; | z{Z;n)) for m and N large
and t between and not near m and m + N. We now show how to evaluate (4.10)
exactly by obtaining z, — E(z, | {w.}), its variance matrix, and its covariances
with s, and 21287 &7 u,es.

To evaluate z, — E(z, | {w.}) under Assumption B we notice n, and s, are
both independent of {w.} so E([s), n,]|{w.}) = 0’. Then, by (3.2), (4.7), and (4.8),
we get

(4.11) z, — E(z,|{w:}) = HyZan + HsR(m).

To compute the variance matrix of z, — E(z,|{w.}) we need a different
expression than (4.11). For ¢t > ds, from (3.1), (4.2), (1.5), and (1.6) we get

s E(sl{w)) = A”’s, + (Si=4" 1)
(4.12) - ue = S (F)yu(F)yu(F) 185 (B)u: + 65(B)vr)]
= Ai’s, + (T8 £1BY)o¥(B) X,

where

X; = 6X(F)yo(F)yu(F)'uy = 85 (F)yu(F)yuw(F) 0r.
Similarly, for t > dn we can show that
(4.13) n. — E(n|{w}) = A¥'n, — (ZI=6"" £7B")85(B) X..

Fort=1, -..,ds, E(s;|{w;}) =0, so for t = 1 we may write
se = E(sil {w.) = A¥'s, + X 8 X;

where for all ¢, j we define
(4.14) - g = coefficient of B* in (Yiz§*™" £:B")6¥(B).

Notice g{} is zero for ¢t < j, t < ds, and j < dc. We thus have s — E (s | {w.}) =
H:s, + G\ X4 where G, = (g{)) is a d X d lower triangular matrix. Similarly
ng — E(n) | {w.}) = Han, — G X(g) where G, = (g{?) and

(4.15) g2 = coefficient of B~ in (X{z§"! £7BY)6}(B).
Therefore, letting Gs = G, — G,
(4.16) z, — E(z*I{wt}) = Hls* + Hzn* + G3X(d).
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Since s,, n,, and X, are independent, letting Q denote Var(z, — E(z, |{w:})),
we see

(417) Q= HIVar(s*)H{ + HgVar(n*)Hé + GB['Yx](d)GI;
(4.18) Cov(s,, z, — E(z,|{w})) = Var(s,)H1.

From (4.11), (4.17), (4.18), and standard results on conditional expectations for
zero mean normal random vectors

(4.19) E(s,|z, — E(z,|{w})) = Var(s,) H Q' {Hozn) + HsR(m)}.

To compute this we need the autocovariances for X,. The spectral density for X,
can be shown to be equal to f,(\) = £.(A\) fu(A)7'f,(X). The autocovariances, v.(k),
can be computed by Fourier transforming f,()) or by expanding the CGF

(4.20) ¥2(6) = Yul(E)vul(9) T vu(§).

If u,, v:, and hence X, follow autoregressive-moving average models the techniques
discussed in McLeod (1975, 1977) for the univariate case and in Nicholls and
Hall (1979) for the multivariate case can be used to compute the v<(R).

Finally, we consider E(X/z¢* ! &fu,—i| z, — E(z | {w.})). Notice Nizg g5y
is independent of s, and n,, so by (4. 16) we only need consider its covariance
with X(4. The cross spectral density between the time series u, and X, is
£V (V)X (™) = f(X)8E(e?), so that Cov(u, X;) = 63(F)y.(J — t).
Using this and (4.14) we write (F applies to j)

Cov(DEd™ Eui, X;) = (T EF)8EF)v:(j — )
(4.21) o
= E§=dc+1 ga(tzl)'Yx(] - L)-

Taking (4.21) forj =1, - - -, d we obtain
Cov(Tiz8"™ Elui, Xw)
700 - v(d—1)

(4.22)

=0 - 0gtd¢+1 B (1)]

Y1 =¢8) - vAd =)
We thus havé

EQZe gluilz, — E(z,|{w}))
(4.23)
= Cov(Riz8 ™ £lui, X)) X G5O H{HoZan) + H;R ()}

and use (4.22) in evaluating (4.23).
We summarize our results in a theorem.

THEOREM 4. Make Assumption B so that s, and n, are independent of each
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other and of {w,}. Then, for t > ds
E(s:|{z:}) = AV{Els, |z, — E(z, | {w})]- Ry}
+ R+ EQS Euilz, — E(z, | {w)))

where R, = 8}(B)6}(F )y (F)vu(F) 2, E[s, | 2, — E(z, | {w.})] is given by (4.19),
and E(X=68" Efuei| 2, — E(z, | {w,})) is given by (4.23), using (4.22) and (4.14).
The covariance generating function v,(£) given by (4.20) may be used to compute
the v.(k) needed.

If 6,(¢) and 6,.(¢) have no common zeroes, the above results simplify somewhat.
We first notice that 6%(B) = 8,(B) and 6} (B) = §,(B), so that (4.14) shows g{}
to be the coefficient of B in 1 ~ Y&, A} B'"" and similarly for g{?. Bell (1982)
then shows that GsX ) = —H3X () (m = max(ds, dn)), so we may substitute —H;
for Gs and m for d in (4.17) and (4.23). In addition, we may replace (4.22) by

Cov(Ti=d™ Eltrmis Xim) = [12(1 = t) -+ ya(m = t)]
'Yx(o) ce 71(m - 1)
car | .
vl —ds) -+ vy (m-— ds)“
and use this in (4.23).

5. Variances of signal extraction errors. In many applications of signal
extraction we want to compute not only the estimate E(s;|{z:}), but also the
conditional variance, Var(s;|{z,}). This is the same as the variance of the signal
extraction error, ¢, = s, — E(s;|{z:}). When R; is used instead of E(s;|{z:}),
Hannan (1967) gives the variance of the resulting error, Var(s, — R;), for the case
where n, is stationary. For this and other cases the properties of s; — R, have
been more extensively investigated by Pierce (1979) (see Theorem 6 and the
discussion following it in the next subsection).

To obtain Var(s,| {2;}), notice that by Lemma 2 we may write

(5.1) s = & + E(s|{z.})
(5.2) = g + E(s;|{w.}) + E(s:| z, — E(Z* | {w:})).

By results in Gihman and Skorohod (1980, pages 273-274), we can see that the
terms on the right hand side in (5.1) and (5.2) are independent, so we may
compute Var(s,|{z:}) = Var(e,) as '

(5.3) Var(s;| ‘Zt}) = Var(s;) — Var(E(s;| {zt}))
= Var(s,) — Var(E(s.|{w.}))
— Var(E(s:|{z, — E(z.|{w})})).

(5.3) and (5.4) will still hold if we replace s; by a vector, say (s, - -+, ;)" = 8,
so we can use (5.3) and (5.4) to compute variances and covariances of the s,’s

(5.4)
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conditional on {z;}. We now show how to evaluate the required terms in (5.3) and
(5.4) under Assumptions A and B.

5.1 Variances under Assumption A. We start with the general case under
Assumption A where 6,({) and 6,({) may have common zeroes. The case where
8,(¢) and 8,({) do not have common zeroes is much simpler and will be discussed
later.

To begin, we notice from (3.1) that

(5.5) Su) = HltS + Cuu(dﬂ-l)
where
Ids Ods‘x(t—ds)
Ads+l 56
Hlt = : Clt = .
g Eaa o £

Notice H,4 = H, and C,4 = C,. Solving for s, from (3.2) and substituting in (5.5),
we can show that

(5.6) sy = Kiz, + K;ul®™ + Kav(gH
where
Ki = Hy [ 14 Oasxan][H1Hs]™
K, = Ci: — [KiCy Oix(i-das)]
Ks; = —K,C..

The terms on the right hand side of (5.6) are independent under Assumption A
) '

(5.7) Var(s)) = KiVar(z,)K{ + Ko[vule-an K3 + Ks[volw-an K3.
To compute Var(E (s | {z:})) we notice from (5.6) that
(5.8) E(spliz)) = Kiz, + K,PS™ + K,Q(§+
where (see (4.2)) ‘
P, = E(u|{w:}) = 65(F)vu(F)vu(F)™w,
Q. = E(ve|{w.}) = 8¥(F)vo(F)vu,(F) 'w,.

(We could use (5.8) and (5.9) in place of the results of Theorems 2 and 3 to do
the signal extraction under Assumption A. This would be necessary if, as was
mentioned in Section 4, (4.2) should not hold.) It can be shown that

vp(k) = yu(k) = 5¥(B)5¥(F)v«(k), vpq(k) = 85(B)oy(F)y«(k)
Yo(R) = v, (k) = 87(B)o% (F)vx(k).

(5.9)

(5.10)
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Under Assumption A z, is independent of {P,} and {Q.}, so from (5.8) we get
Var(E(sw | {2:})) = KiVar(z,)Ki + Ks[vple-a0 K3
(5.11) + Ki[vgla-am K3 + K:Cov(P{H, Q) K}
+ K:Cov(Q(G*Y, PV K.
Using (5.3), we obtain the following theorem.

THEOREM 5. Under Assumption A when 6,({) and 6,({) have at least one
common zero

Var(s.) | {2:}) = Kao[6¥(B)6¥ (F)yxlit—as) K3
+ K3[6%(B)6% (F)yx)ia—an K3

[~ ype(dn —ds) -+ ype(d —ds — 1)
k| |k
| Yre(dn +1=1t) - vre(d —t) |
B vpg(dn — ds) <o+ ype(dn + 1 - t) ]
- K; K;.
| vre(d — ds — 1) - vr(d — 1) |

The v.(k) may be computed from (4.20) and the vpq(k) from (5.10).
PROOF. Subtract (5.11) from (5.7) and use (5.10). 0O

When 6,({) and 6,(¢) have no common zeroes there is a far simpler approach
to computing Var(s,|{z:}) than the above. From Theorem 3, (4.5), and (4.12)
the signal extraction error in this case is

St — E(S,HZJ) =8 — Rt = Xe.

(Note X, does not equal s, — R, if 6,({) and §,({) have common zeroes.) Thus, we
have

THEOREM 6. Under Assumption A, if 6,(¢) and 6,({) have no common zeroes,
then Var(s | {z:}) = Var(X() = [v)«), the elements of which may be computed
using (4.20).

This result has been given by Pierce (1979), who examines the behavior of
s; — R; when §,(¢) and 6,(¢) do and do not have common zeroes. However, Pierce’s
statement that when 6,({) and 6,(¢) have common zeroes the mean squared signal
extraction error does not exist (i.e., that it is infinite) is incorrect. Although both
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s:— R;and s, — E(s;| {2,}) will be nonstationary when 6,({) and 6,({) have common
zeroes (the latter will always be nonstationary under Assumption B) they will
both have finite mean square, as is easy to see from the results in this paper
(including Theorems 5 and 7).

It is interesting to note that under Assumption A, Var(s.,|{z:}) does not
involve Var(z,). For that matter, neither does E(s,|{z.})—see Theorems 2 and
3. This is true whether or not §,({) and 6,({) have common zeroes. Thus, when
making Assumption A we need not concern ourselves with Var(z , ). The situation
under Assumption B is different: there we must know Var(s,) and Var(n,).

5.2 Variances under Assumption B. Under Assumption B, s, and {u,} are
independent, so from (5.5)

(5.12) Var(s)) = Hy.Var(s,)Hi, + Cii[vu)i-a9Cie.

s, is also independent of {w,}, so from (5.5) and (5.9)
E(syl{w}) = C, PG

so that

(5.13) Var(E (s [{we})) = Cilvpli-as Cie.

The remaining term we need is Var(E[s., |z, — E(z,|{w.})]), which is
(5.14) Cov(s.), z, — E(z,|{w.})) @7 'Cov(s), z, — E(z,|{w:}))’
where @ = Var(z, — E(z | {w,})) is given by (4.17). It can be shown that
Cov(sy, z, — E(z, |{w}))

vx(0) s v:(d - 1)
= H,Var(s,)H! + Gy, G}
V(1 =8) oo vld—0)

(5.15)

where G,; = (giP) is t X t lower triangular (note G,4 = G)).

Following (5.4) we subtract (5.13) and (5.14) from (5.12) to obtain our result.
THEOREM 7. Under Assumption B
Var(s.) [{z:}) = HiVar(s ) Hi, + C.[63(B)o3(F)vxli-a0 Ci:
— Cov(sy), z, — E(z,|{w:}))
- Q7'Cov(sy), z, — E(z,|{w.}))
where Q is given by (4.17) and Cov(s, z, — E(z, | {w.})) by (5.15).

If 6,(¢) and 6,(¢) have no common zeroes we substitute —H; for G; and m for
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d in (4.17). Also, Bell (1982) shows that (5.15) then simplifies to
Cov(sw), z, — E(z, |{w.})) = HyVar(s,) H{
v:(0) -0 v(m —1)
— {1, — [Hy| Otx(t—ds)]} H.
Y1 =1t) -+ y.m—1¢)

6. Extensions of results.

6.1 Signal extraction with a finite number of observations. In practice a finite
stretch of the time series, say zy) = (23, - - -, 2y)’, will be available rather than
the complete realization {z,}. Cleveland (1972) observed that E(s;|z)) =
E(E(s:|{2:})| z(n)), so that E(s;| z(n)) can be obtained by replacing unknown z,’s
in E(s:|{2:}) by E(z;| z.)), which are forecasted (j > N) or backcasted (j < 0)
values. Bell (1980) established that as long as the expression for E(s;|{z:}), which
is linear in the z’s, converges in mean square, then this procedure converges
pointwise to Cov(s;, z.y)) Var(zn)) 'z = E(s:| zav). To apply this procedure,
we need to be able to compute the forecasts and backcasts. Bell (1982) observes
that the usual forecasting and backcasting procedures (discussed, for example, in
Box and Jenkins, 1976) are correct under Assumption A, but incorrect under
Assumption B. For ARIMA models, Burman (1980) shows how to avoid the need
to compute a large number of forecasts and backcasts by using an algorithm due
to G. Tunnicliffe Wilson (this would apply under Assumption A when §,({) and
6,({) have no common zeroes).

A convenient means of obtaining E(s;|zy)) under Assumption B when s, and
n, follow autoregressive-moving average models, is to put the signal plus noise
model in state-space form and use the Kalman filter/smoother (see Meditch,
1969). Kitagawa (1981) illustrates how to do this for some particular models. The
Kalman filter/smoother can also be used under Assumption A, although one
must be careful then to choose a state representation such that the state vector
at time ¢t is independent of the process noise in the state equation at time ¢ + 1.

Along with E(s;| z.x)), the Kalman filter/smoother directly produces condi-
tional variances, Var(s;| z(y)); conditional covariances, Cov(s;, s;| zn)), can also
be obtained. This is important since Var(s;|{z;}) as given in Section 5 will differ
from Var(s:| z(v)) for any t for which E(s;|{z;}) is appreciably affected by z,’s
outside of z;, - -, zy-typically for ¢t near 1 or N. An alternative to the Kalman
filter/smoother under Assumption A when §,({) and §,({) have no common zeroes
is to use the results of Pierce (1979) to produce Var(s;|zn, 2n-1, **+, 20, =+ *).
Hillmer (1982) gives an approach that can be used to get Var(s;| z)).

6.2 Linear projection results for the nonGaussian case. By results of Gihman
and Skorohod (1980, pages 273-274) the results of Section 4 produce §;, the linear
function of the observed z,’s which minimizes E[(s; — §,)%], whether or not the
series involved are normal. The results of Section 5 produce variances and
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covariances. for the time series s, — §;, which are not the conditional variances
and covariances without the normality assumption.

6.3 The case of known starting values. In some cases the starting values s,
and n, might be known, fixed quantities. Then they are independent of {uw.}, {v.},
and {w,}, so we have Assumption B with Var(s,) = 0 and Var(n,) = 0::We
remove the effects of the known starting values by considering the decomposition
2, =S + n,, where for t >0

S=]O t=1,"',d8 n=l0 o t=1,~--dn
t ]st—A‘E’s* t>ds t ]n,/-— Al'n, t>dn
Z't=2t— ?,S* _A?,n*

with analogous definitions for ¢t < 0. We then apply the results of Section 4.2 to
2, to get E(s;|{z:}), to which we add A{’s, (for ¢t > 0) to produce E(s;|{z:}). In
this case Var(z, — E(z, | {w.})) may very well be singular, so that we must use a
generalized inverse of it.

6.4 Extensions to the multivariate case. In the multivariate case we have
Z; = S; + N, t=0, 1, £2, ...
where z,, s,, and n, are k X 1 random vectors with
0(B)z; = w;, 6,(B)s;=u;, 6,(B)n,=v,

jointly stationary & X 1 vector time series. An important special case occurs when
6(B), 65(B), and §,(B) remain scalar operators, so that (1.4) and (1.5) still hold.
The results and proofs in this paper have been presented in a way that allows
them to be used in this particular multivariate case with little or no modification.
For example, Theorem 2 is still correct with v,.(F) and v, (F) the k X k matrix
covariance generating functions of u; and w,. The starting values require some-
what special consideration, for which see Bell (1982).

The general case where 6(B), 6,(B), and 6,(B) are k X k matrix operators is
more difficult and we have chosen not to treat it here. In this case the relationship
between 6(B), 6,(B), and §,(B) is not clear—(1.4) need not hold. One may be
able to obtain results in a manner analogous to that used here for certain special
cases, such as when n, is stationary.
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