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THE EFFICIENCY OF GOOD’S NONPARAMETRIC
COVERAGE ESTIMATOR

BY WARREN W. EsTY

Montana State University

The asymptotic efficiency of Good’s nonparametric coverage estimator is
obtained relative to the best estimator derived under the assumption that all
classes are equally likely. Even when that assumption is true, Good’s estima-
tor is quite efficient, with an asymptotic relative efficiency of greater than 85%
in all cases, and greater than 95% if the expected coverage is less than
one-half.

1. Introduction. The coverage, C, of a random sample of size n from a
multinomial population is defined to be the sum of the probabilities of the
observed classes. Estimating the coverage of a sample from an unknown multi-
nomial distribution is an occupancy problem with applications in ecology (Good
and Toulmin, 1956; Engen, 1974; Engen, 1978), vocabulary studies (Efron and
Thisted, 1976; McNeil, 1973) and archaeology (American Numismatic Society,
1974; Esty, 1982, 1983). Good (1953) introduced an estimator for C,

(1.1) C=1-Ny/n,

where N, denotes the number of classes observed exactly once, which has received
much attention (Robbins, 1968; Engen, 1978; Starr, 1979; Chao, 1981; and many
others). Esty (1983) found the associated confidence intervals under very general
conditions. Numismatists regularly use estimators derived under the hypothesis
that all classes are equally likely, which is the hypothesis of the classical
occupancy problem (Feller, 1968; Johnson and Kotz, 1977, Section 6.2.1). Carter
(1981) compared several of these (Lyon, 1965; Brown 1955 /57; Carcassone, 1980;
and Mora-Mas, 1981; Schroeck, 1981, has given another one since then) by
evaluating them using real data where the classes are varieties of ancient coins,
but no theoretical comparison of Good’s estimator to other commonly employed
estimators has been given. Users of these intervals will ask if the generality of the
nonparametric approach is accompanied by a substantial loss in efficiency rela-
tive to the methods already in use. The answer is “no”; Good’s estimator is
remarkably efficient. When all classes are equally likely, the asymptotic efficiency
of C relative to the best estimator based on the hypothesis that all classes are
equally likely exceeds 85% in all cases and exceeds 90% if the expected coverage is
below 76%. An explicit formula for the asymptotic relative efficiency is given by
Theorem 3.

2. Discussion and results. Note that the coverage of a sample is not a
parameter of the population. Therefore an “estimator” of the coverage is not an
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estimator in the usual sense and the “efficiency” of an estimator of C cannot be
defined in the usual sense, but it is possible to define the asymptotic relative
efficiency of two estimators by comparing the variances of their associated
normal limit theorems in the usual manner. Good’s nonparametric estimator will
be compared to the most restrictive parametric estimator, namely, the estimator
based on the equally likely hypothesis, when the equally likely hypothesis is true.

First we need the normal limit law for the estimator based on the equally
likely hypothesis. Suppose n balls are distributed at random into %2 boxes. Let D
denote the number of occupied boxes. The asymptotic behavior of D is well
known as n = o0 and k2 — oo such that n/k — m > 0 (Geiringer, 1938; or see
Johnson and Kotz, 1977, Chapter 6.1). If £ is unknown, D is a sufficient statistic
for k& (Darroch, 1958). Asymptotically, the estimator for k, Y, is given by the
solution of

(2.1) D=Y(1-e"Y).
Now C = D/k, and the corresponding estimator for C is
(2.2) C=D/Y.

The associated normal limit law is:

THEOREM 1. If all classes are equally likely and n - « and k — oo such
that n/k - —In(l1 — ¢),0 < ¢ < 1, then

c[-(1 - ¢)In(1 - ¢)]
ct+(1-c)n(l-c¢) |

nl/z(C - é) _)D N 0,

CoMMENT. Note that ¢ has been chosen such that E(C) — ¢ and C -, c.
The corresponding result for Good’s estimator is:

THEOREM 2. If all classes are equally likely and n - « and k — oo such
thatn/k - —In(1 — ¢),0 < ¢ < 1, then

n'/?(C - €) -, N(0,(1 — ¢)(c — In(1 — ¢))).

THEOREM 3. If all classes are equally likely and n — « and k — o such
that n/k - —In(1 — ¢),0 < ¢ <1, then the asymptotic relative efficiency of
Good’s estimator to the estimator based on the equally likely hypothesis is given
by

B (=In(1 = ¢))c?
T (e+(1-c)n(1-¢))(e=In(1-¢))"

COROLLARY. (a)Asc—0,E—>1.(b)Asc—1,E - 1.(c) E > 0.85 for ail
c,0<cec<1.

For example, if ¢ = 0.1, then E = 0.9913 and confidence intervals based on
Good’s estimator are asymptotically only 0.45% longer than those using the
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equally likely hypothesis. If ¢ = 0.5, then E = 0.9466 and intervals are 2.8%
longer. If ¢ = 0.9, E = 0.8735 and intervals are 7% longer. The minimum value of
E, 0.8516, is attained at ¢ = 0.978. Thus Good’s estimator is quite efficient.

3. Proofs. Since D = k — N,,, where N, denotes the number of unoccupied
boxes, D is asymptotically normal with mean and variance asymptotic to
(3.1) k(1 —e ™*) and ke "*(1 — e "k — (n/k)e "/*),
respectively (Johnson and Kotz, 1977, page 317, number 3, where an m = k& is
missing on the right side). Since C = D/k =1 — N,/k, E(C) = ¢ and C —p c.
To prove Theorem 1 note that

A D D D Y-k

12 _ el 2\ e

(3.2) n/*(C-C)=n (k Y) 7" P

From (2.1), D/Y -, ¢, also. Thus in (3.2) it remains to determine the limit law of

nY%(Y — k)/k. In (2.1), treating Y as a function of D, Y’ =[1 —e /Y —

(n/Y)e "/Y]7', by implicit differentiation. Let d = k(1 — e "/*). Y/(d) —
[c + (1 — o)In(1 — ¢)]" L. Expanding Y(D) about d in a Taylor series,

nl/2 _1pl/2

k k

(Y- k) = [1 ek %e'”/k] (D -d)

(3.3) y
+ n—k—O((D —ay).

Now, (n'%2/k)D — d) = (n/2/k)(D — E(D) + E(D) — d). Note that
n'/?2(E(D) — d)/k — 0. Using (3.1) and n/k — —In(1 — ¢), (3.3) is
asymptotically normal with mean 0 and variance (—(1 — ¢)ln(l — ¢))/
(¢ + (1 — ¢)In(1 — ¢)). The D/Y factor in (3.2) contributes the extra factor of c?,
and Theorem 1 is proven.

Under the hypotheses, Theorem 2 follows easily from Theorem 4 of Esty
(1983), since E(N,)/n = (E(N,)/k)(k/n) ~ (n/k)e "/*(k/n) > 1 — c, and
E@2N,)/n ~ (n/k)%e "*(k/n) - (—In(1 — ¢))1 — o).

Theorem 3 follows immediately from Theorems 1 and 2. Corollary (a) is
obtained from the Taylor expansion of In(1 - ¢). Corollaries (b) and (c) are
straightforward.

4. Conclusion. Good’s nonparametric coverage estimator, which is ap-
propriate for a wide variety of multinomial distributions, is remarkably efficient
relative to the best coverage estimator developed under the strong hypothesis
that all classes are equally likely, even when that hypothesis is true. Thus the
advantages of its wider validity serve to recommend the Good estimator for the
coverage of a sample even if the classes are approximately equally likely.
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