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THE DIP TEST OF UNIMODALITY!

By J. A. HARTIGAN AND P. M. HARTIGAN

Yale University and Veteran’s Administration Hospital

The dip test measures multimodality in a sample by the maximum
difference, over all sample points, between the empirical distribution function,
and the unimodal distribution function that minimizes that maximum
difference. The uniform distribution is the asymptotically least favorable
unimodal distribution, and the distribution of the test statistic is determined
asymptotically and empirically when sampling from the uniform.

1. Introduction. There are few statistical tests for discovering the presence
of more than one mode in a distribution. One test, suggested by Wolfe (1970),
uses the likelihood ratio for a two-component normal mixture against the normal
null hypothesis. This test is defined in any number of dimensions. It is a
formidable task to compute the statistic, and the usual maximum likelihood
asymptotics do not apply (the likelihood ratio approaches infinity in probability
in the null case as the number of observations increases). Worse, the test may
be expected to be quite sensitive to the normality assumption, and may, for
example, decide with high probability that a long-tailed unimodal distribution
has more than one mode. Such a distribution may look more like a normal
mixture than a normal.

A related test due to Engelman and Hartigan (1969) divides the sample into
two subsets to maximize the likelihood ratio that the two subsets are sampled
from normals with different means, against the null hypothesis that the means
are equal. The test statistic is the maximum likelihood ratio over all divisions.
The distribution is asymptotically normal (Hartigan, 1978), the statistic is easy
to compute, but again the test will not work well when the bimodal alternative
is not a normal mixture.

A test based on intervals between successive order statistics is suggested by
J. B. Kruskal in Giacomelli, et al. (1971), but this test requires that the two
modes be specified in advance. Another test based on intervals, using the idea
that in a bimodal distribution, there should be a large interval accompanied by
many small intervals on either side, is described in Hartigan (1977). In the many-
dimensional case, a similar idea breaks the minimum spanning tree at a link
such that there are large numbers of neighboring smaller links on each side of
the break, and uses as test statistic the least of the two numbers of neighboring
small links. Equivalently, take the maximum size of the smaller cluster among
all pairs of disjoint single linkage clusters (Hartigan, 1981).

Why not compute the likelihood ratio test for unimodality versus bimodality
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using monotone regression? The maximum likelihood density is infinite at the
mode, and so it is necessary to constrain the estimate to be constant in the
neighborhood of the mode (Wegman, 1970), perhaps by setting a bound on the
density. Setting the width of the modal interval is analogous to the intractable
problem of setting kernel widths in density estimation, which usually requires
knowledge of higher derivatives of the density. See, for example, Silverman
(1978). Setting the width is crucial in testing for bimodality, because contributions
to the likelihood from observations near the mode and between the two modes
in the bimodal fit, have the main effect—observations in the tail usually make
the same contribution to the bimodal and unimodal likelihoods, and so have little
effect, as one would desire.

Silverman (1981) suggests using the smallest window width, such that the
resulting kernel density estimate is unimodal, as a test statistic for unimodality.
The significance level of the test statistic is evaluated by empirically sampling
from a rescaled version of the unimodal density estimate.

We propose the dip statistic as the maximum difference between the empirical
distribution function, and the unimodal distribution function that minimizes
that maximum difference. The statistic may be computed in order n operations,
for n observations, and it is consistent for testing any unimodal against any
multimodal distribution. We argue that- the appropriate null distribution is
uniform, by showing that the dip is asymptotically larger for the uniform than
for any distribution in a wide class of unimodal distributions, those with expo-
nentially decreasing tails. (We speculate that the result holds for the class of all
unimodal distributions.) The asymptotic distribution of the dip is given in the
uniform case, empirically derived distributions are specified for some finite
sample sizes, and a few power computations are performed.

A modal interval is produced as an outcome of the dip calculation; it is not
known how this competes with the various estimates of a mode considered by
Chernoff (1964), Venter (1967), Wegman (1970), Sager (1979), Eddy (1980) and
others. It does have the benefit of not requiring a kernel width.

2. The dip. A distribution function F is unimodal with mode m if F is
convex in (—o, m] and concave in [m, «). The mode m is not necessarily unique.
A unimodal F may have an atom only at a unique node m, and has a density,
except possibly at a unique mode m, that increases in (—%, m) and decreases in
(m, ). 1

Define p(F, G) = sup, | F(x) — G(x) | for any bounded functions F, G. Define
p(F, o7) = infgey p(F, G) for any class o/ of bounded functions. Let % be
the class of unimodal distribution functions.

The dip of a distribution function F is defined by D(F) = p(F, % ). Note that
D(F,) = D(F,) + p(F,, Fy) and D(F) =0 for F€ %, D(F) > 0 for F & %; thus
the dip measures departure from unimodality.

The greatest convex minorant (g.c.m.) of F in (—, a] is sup G(x) for x < a,
where the sup is taken over all functions G that are convex in (-, a] and
nowhere greater than F.
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The least concave majorant (l.c.m.) of F in [a, «) is inf L(x) for x = a, where
the inf is taken over all functions L that are concave in [a, ©] and nowhere less

than F.
It is necessary to extend the definition of the dip to bounded functions F that

are constant on [—o, 0] and on [1, «]. Define 2 to be the class of functions
that are constant on [—o, 0] and on [1, ] and for some m, 0 < m < 1, are convex
on [0, m] and concave on [m, 1]. Define D(F) = p(F, 2”). We need to show that
this definition is consistent with the previous one. Both definitions apply to
distribution functions on [0, 1].

THEOREM 1. Let F be a distribution function with F(0) = 0, F(1) = 1. Then
o(F, %) =p(F, 7).

ProoF. For G € %, define
H(x) =G0){x <0} + Gx){0 =x =1} + G(1){x > 1}.
(Here the set {x < 0} is used as a 0 — 1 function equal to 1 if x < 0 and to 0 if
x=0.)
Then H € 27 and sup.| F(x) — H(x) | = supo<:=1| F(x) — G(x) | = p(F, G).

Thus p(F, ') < p(F, %).
Conversely, suppose that G € 2/ If G(0) = G(1), set

Hx) =GO AD{0=x<1} + {x=1}.
Then H € %,
p(F, H) < max[| G(0) — F(0)|, | G(0) — F(1)]]
< max[| G(0) — F(0)|, |G(1) — F(1)]|] since G(0) = G(1)
< p(F, G).
For G(0) < G(1), define
H = G0){G < G(0)} + G{G(0) = G(x) = GO1)} + GG > G(1)}.

Then H € 2] H is nondecreasing, and

p(F, H) = supgo)=wm=cm | F(x) — G(x)| < p(F, G).

Also (HV 0) A 1 € %;is nondecreasing, and p(F, (HV 0) A 1) < p(F, H).

Thus for G € 2 we can find H with 0 = H < 1, H nondecreasing, H € %,
p(F, H) < p(F, G). Suppose H is convex on [0, m] and concave on [m, 1]. For
a = 1, define G, to be the g.c.m. of {x = —a}H on (—«, m], and the lL.c.m. of
{x<a}V Hon[m, ). Then G, € %.

The function G, is constant on (—o, —a], consists of a linear segment
on [—a, x;] for some x;, 0 < x; < m, and will be identical to H on [x;, m]. As
a — ®, the slope of the linear segment approaches zero, and since H is nonde-
creasing, SUPosz<m| H(x) — Go(x) | — 0.

Similarly sup,<.<1| H(x) — Go(x) | = 0 as a — oo,

p(F, G.) = sUposy=1| Ga(x) — F(x) | — supos.<i| H(x) — F(x) | = p(F, H).
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Thus for each ¢ > 0, each G € % there exists G, € % with p(F, G,) <
p(F, G) + ¢. It follows that p(F, %) < p(F, 2).0

THEOREM 2. Let F be a bounded function constant on [—», 0] and on [1, «].
Let I be the distribution function of the uniform on (0, 1).
Then D (aF + BI) = aD(F) for a, 8 = 0.

Thus if a distribution function F is mixed with a uniform, the dip of the
resulting distribution is the dip of F multiplied by the mixing proportion of F.

PROOF:
D(aF + BI) = p(aF + BI, ) = infge p(aF + BI, G)
= infgeop(aF + BI, oG + BI),

noting that G € % if and only if aG + BI € 2; when o > 0.
Thus D(aF + BI) = infge o ap(F, G) = aD(F).

3. Asymptotic behavior of the dip. If X;, X;, ---, X,, is a sample from
F, define the empirical distribution function F, by

Fu(x) = (1/n) X {X: = x}.

The Glivenko-Cantelli theorem states that p(F,, F) — 0 as., and so
D(F,) — D(F) a.s. A test based on the dip will thus asymptotically distinguish
any unimodal F from any multimodal F.

In developing a test, it is necessary to choose a unimodal distribution as the
null distribution, and we have chosen to use the uniform. This choice would be
justified if D(F,) were stochastically larger for the uniform than for any other
unimodal distribution—that is, if

PI{D(Fn) = x} = SUPFG%PF{D(Fn) = x}’

Unfortunately this is not true for all x and n. For example, when n = 4, the
dip is an increasing function of the statistic

T=1V [(Xe — Xa)/sup(Xe — Xy, Xu) — X))l

where X, X(2), X(3), X are the order statistics.

Let F= ol + (1 — a)d; where §;(x) = {x = 1}.

Let E,, E,, E; denote independent exponentials; then T is distributed as
[Ei/(E + Y2E3)] V 1 in sampling from the uniform.

In sampling from F, T is distributed

as [El/(Ez + 1/2E3)] Vi given that X(a) < 1;
as [El/Ezl Vi given that X(3) =1, X(z) <1
as 1 given that X = 1.

The three conditioning events occur with respective probabilities a* +
403(1 — a), 6a3(1 — ), 4a(l — a)® - (1 — a)*.
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Now [E,/E;] V 1 is stochastically larger than [E,/(E; + %E3)] V 1.

And it will always be possible to choose « close to 1 so that the conditioning
event X = 1 has arbitrarily small probability compared to the event X3 = 1,
X9)< 1. (The event X(3) < 1is of no importance since the conditional distribution
of T is the same as for the uniform.)

Thus for each x, « may be chosen so that Pr[T = x] > P;[T = x]; the uniform
does not give the stochastically largest distribution of the dip.

However, we conjecture that, asymptotically, the distribution of the dip is
stochastically largest for the uniform; we have been able to prove that VnD(F,)
is asymptotically positive for the uniform and asymptotically zero for distribu-
tions whose densities decrease exponentially away from the mode.

THEOREM 3. Let F, be the empirical distribution function for a sample
from the uniform on (0, 1), and let B be the Brownian bridge process with
cov[B(s), B(t)] =s(1 —1t),0 =s <t =<1. Assume that B is zero outside (0, 1).

Then VnD (F,) — D(B) in distribution as n — .

PROOF. From the Skorohod embedding of Donsker’s theorem (Breiman,
1968, page 296), it is possible to construct a probability space in which ¥, has
the same distribution as F, for each n, and in which B is a Brownian bridge, and

supo=s<1| Vn(F,(x) — x) — B(x)| — 0 in probability.
Since D(F,) — D(F,) < p(Fy, F»),
| D(VnF,) — D(~¥nI + B)| < sup,| Vn(F.(x) — x) — B(x)| — 0,
| D(¥nF,) — D(B)| — 0 in probability, from Theorem 2.
Thus vnD(F,) — D(B) in distribution.

THEOREM 4. Let F, be the empirical distribution for a sample of size n from I.
Then

SUPo=zzy=1{ V1 [Fa(y) — Fo(x) = (y — 0)I/[(Vy — x + 1/n)(log n)?]} — 0

in probability as n — oo,

ProoF. This result differs from Theorem 1.3 of Shorack and Wellner (1982)
only in the standardization factor vy — x + (1/ vn) where the (1/+/n) is intro-
duced to obtain a result uniform over all intervals (they exclude very small
intervals), and in the (log n)2 which is a little larger than their factor.

From Bennett (1962), if Z is binomial with mean np and variance np(1 — p),
P(|Z—-np|>1t) < 2exp(—t%/[2np(1 — p) + %t]).

Set Z = n(Fu(y) — Fa(x)),p=y — 1, t = 6¥n (Vy — x + (1/Vn))(log n)*.

Let Z2, = Vn [Fo(y) — Fu(x) — (y — 2))/[(Vy — x + (1/¥n))(log n)?].

Then P[|ZZ,| > 6] = P[|Z — np| > t] < 2 exp[—%4d*(log n)?] for & < 3,
n=3, cons1der1ng the two cases t < 3np and ¢ > 3np separately.

Now cons1der A,, the set of intervals in which the endpoints are of form kn73,
0 < k < n? k an integer. There are ¥2n® such intervals.
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As x changes over the interval [kn~3, (k + 1)n"%], F,(x) — x changes by at
most (1/n) if the interval contains at most one point. Let B, be the event that
all intervals of the form [kn~2, (k + 1)n "] contain at most one point. Then when
B, holds, Z%, changes by at most

Vn (2/n)/[(1/Vn)(log n)?] = 2/(log n)?

as x and y change over intervals of form [kn~3, (k + 1)n2].
Note that

P(sup,yea,| Z%,| > 8] < n®sup.yea, Pl 2%, | > 6]
< 2n®exp[—%4é%(log n)?] > 0 as n — o,
P[B:] < n®P{[kn~3, (k + 1)n"®] contains more than one point}
< n®P{[kn~3, (k + 1)n"°] contains the first two observations}
=1/n—>0 as n— x,
{SUDoss=y=1| Z2y| > 8} < {supsyea,| Z%y] > 6 — 2/(log n)* + Bj,

— 0 in probability as required. 0O

THEOREM 5. Let F be unimodal with nonzero kth derivative at the mode m,
for some k = 2, and let F have exponentially decreasing density, that is,

inf0<F'(x)<F'(m)_,| (d/dx)log F’(x) I >0 for each ¢> 0.
Then ¥nD(F,) — 0 in probability.

PROOF. Let G, be the unimodal distribution equal to the g.c.m. of F, on
(—o0, m] and the l.c.m. of F,, on [m, ©). We show that G, is linear in segments of
length 0,(1), such that G, = F, at the endpoints of the segments. It then follows
from Theorem 4 that, in probability, «/r_zp(G,,, F,) — 0, so VnD(F,) — 0.

A similar result is proved by Kiefer and Wolfowitz (1976) for concave distri-
bution functions, but their conditions do not allow infinite tails or F”(m) = 0.
The condition on the tails is undoubtedly too strong, but at least the normal
distribution is covered; it is sufficient to have, for some k = 2, (C)

SUDmgt (syy1p), oty sszg=eo [F (%2) — F(21)]*/| F(x2) + F(x1) — 2F(%) ]| < o0
where & = Y2(x; + x2).
Let m = 0 without loss of generality. We will first show that condition (C) is
implied by the conditions given in the theorem.
(i) For x; < xy<—¢, F'(x) >0,
(d/dx)log F’(x) > B > 0.
F'(x2)/F’(x1) = exp[B(x; — x1)]
F(x;) — F(x;) = [F(x) — F(x,)]exp(B6) where 6= (x2 — x1)/2.
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For B6 = 1,
[F(x:) = F(x)]*/[F(x;) + F(x1) — 2F(%)]
=< [F(xp) — F(®)]*2*/[F(x2) — F@)[1 — e7'] = 2%/(1 — e™).
ForBo<1,
[F(x5) — F(x:)]*/[F(x5) + F (1) — 2F(%)]
= [F(x2) — F(&)]1"2%/[F (x,) — F(%)]Bé
< 2k*2[F’(0)]*!/B < 2HF’(0)]*/B*.

Similar bounds will apply for 0 < ¢ < x; < x5; note that B will depend on e.

(ii) For —e<x;, <, <0,
F(x3) + F(x;) — 2F(%) = Y(x2 — x1)’[F" (y1) + F"(y2)]

where x; <y, <X <y, < x5.
If F®(0) is the first nonzero derivative at the mode (except for F’(0)),

F”(y1) = y¥2H(y,)/(k — 2)! where H(y) - F®0) as y— 0.

Thus [F(x2) + F(x;) — 2F(%)] = Y%(x — x1) 2| £ * %A (21, %2)/(k — 2)! where
A(x1, %) — —F®(0) as x; — 0.

[F(x2) — F(x:)1*/[F(x2) + F(x1) — 2F(%)] < 8F'(0)*2*7%/A (x1, x2)
< 2k+2F1(0)k/| F(k)(o) I

for ¢ sufficiently close to zero.

(iii) It is necessary to consider also the case when x, is far from zero and x; is
close to zero. Suppose x; < —e < —y < %3 < 0, where F(0) — F(—1) < F(—y) —
F(—¢). Then

[F(x2) — F(21)1*/[F(x2) + F(x1) — 2F(%)]
< 2K F (=) — F(x)]*/[F(—=n) + F(x:) — 2F(x; — 9/2)]
< 2%C, say,

using the established bound for x; < x; = —1.

Choose ¢ to establish (ii), then 7 to establish (iii); (i) holds for that 5. The
cases where x;, ¥, are positive are handled similarly. This establishes condition
C, which we will now use to prove the theorem.

Let G, be the greatest convex minorant of F, in [—, 0], and the least concave
majorant of F,, in [0, «]. Then G, is a unimodal distribution; we will show that
Vno(F,, G,) — 0 in probability, which implies that vnD(F,) — 0 in
probability.

Let x — 6, x + 6 denote a maximal interval in [—o, 0] where G, is linear. Then
F.(x —6) = G,(x — d), F.(x + 6) = G.(x + 98). Since G, is the greatest convex
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minorant,
F.(y)=G,(y) for x—d<y=<zx+0a.

Thus F,(x) — F,(x — 8) = F,(x + ) — F.(x).
Let H(x, 5, n) = ([F(x + 8) — F(x — 8)]1%/n'2 + 1/n)(log n)®. From Theorem
4,

F,(x) — F,(x — 8) = F(x) — F(x — 6) + A(H(x, 6, n)).

(The notation A (x, 8, n) = A(B(x, 8, n)) means sup,;(| A(x, é, n)|/B(x, é, n))
— 0 in probability as n — .)
Thus

F(x) — F(x — 6) = F(x + 8) — F(x) + A(H(x, 6, n))
0<F(x—06)+ F(x —9) — 2F(x) = A(H(x, é, n)).
For some k = 2,
[F(x + 6) — F(x — 8)]* = A[H(x, 8, n)] from condition (C).
[F(x + 8) — F(x — 8)]** = Al(log n)*/n]
H(x, 6, n) = A(nY2).
Now consider sup,—ssy=z+s| Fn(¥) — Ga(¥) |-
Fo(y) — Ga(y)
= Fu(y) = Fo(x — 8) — (y — x + §)[Fulx + 8) — Fu(x — 8)]/20
=F(y)—F(x—06)— (y—x+ 8)[F(x+ 6) — F(x — 8)]/26
+ A(H(x, 6, n)).
Since F is concave in [—, 0], the first expression is negative, and
Fo(y) — Ga(y) = A(H(x, 8, n)) = A[n™'7].
This holds uniformly over all x, 6 and y, so
SUD;=0| Gn(x) — Fr(x) | = A(n7?)
Similarly supsso| Ga(x) — Fa(x) | = A(n™"2), s0 ¥Ynp(G,, F,) — 0 as required.

4. Computing the dip.

THEOREM 6. Let F be an arbitrary distribution function. Then D(F) = d only
if there exists a nondecreasing function G such that, for some x, < xu,
(i) G is the greatest convex minorant of F + d in (—o, X})
(ii) G has constant maximum slope in (x1, xu)
(iii) G is the least concave majorant of F — d in [xy, )

(iv) d = supsey e | F(x) — G(x) | = SUPzee,xp | F(x) — G(x)].



78 HARTIGAN AND HARTIGAQ

ProOF. We need some preliminary facts.

(A) The maximum value of D(F) is %, achieved when F has two atoms of size
Y. To see that D (F') < ¥4, consider a unimodal G that is long-tailed and symmetric
about the median of F with an atom of size ¥ at the median.

(B) If a unimodal G has mode m, for A > 0, F(A) — F(—A) > 2p(F, G), then
|m| = 24/[F(A) — F(-A) — 2p(F, G)].

(The worst case occurs when G is linear between a negative m and A, G(m) = 0,
G(—A) =F(-A) + p(F,G),G(A) =F(A) — p(F, G).)

(C) Let Z be the class of functions G that are nondecreasing, convex in(—w, m]
and concave in [m, ®) for some mode m. Then there exists G in & such that
o(F, G) = D(F). (It is true that there exists G in % such that p(F, G) = D(F)
but we do not need the slight extra generality.)

Consider a sequence G; of unimodal distribution functions with p(F, G;) —
D(F). Take p(F, G;) <% s0 | m;| < 24/(F(A) — F(—A) — ). The m, thus have
a limit point m, say, and by a standard diagonalization argument we can specify
a function G(r) on the rationals and m such that G is nondecreasing, convex on
(=%, m) and concave on (m, ), and G,,(r) — G(r) on some subsequence of G;.
The function G(x) = sup,<.G(r) has these properties on the real line. (Note that
G is continuous on the rationals except possibly at m.)

Thus p(F, G) = lim p(F, G,,) = D(F) as required.

(D) Note that F(x) — D(F) = G(x) < F(x) + D(F) all x. Let G, be the greatest
convex minorant of G(m) A [F + D(F)] in (—«, m] and the least concave
majorant of G(m) V [F — D(F)] in [m, ). Then Gy, € &, p(F, Go) = D(F), since
Gy is bounded by F — D(F), F + D(F) by its definition.

Let x;, = sup{x | Go(x) = D(F) + F(x)}, xuy = inf{x | Go(x) = F(x) — D(F)}. Gy
will be linear in the interval [x;, m] and in the interval [m, xy].

We may assume that m = x; or m = xy because we can repeat the construction
with mode at x;, if Gy has higher slope in [x;, m] and with mode at x;; otherwise.
(If x, = m = xy then F is unimodal and the conditions (i)-(iv) are trivially
satisfied. Otherwise G, is continuous.)

However the interval (x1, x7) is not necessarily of maximum slope. Suppose
that m = x;; it is then possible that G, has maximum slope at points less than
xz. In this case consider the minimum m such that G, has mode m, Go(m) =
D(F) + F(m), G, is the greatest convex minorant of F + D(F) in (—, m], Gy is
the least concave majorant of F — D(F) in [m, «). (A compactness argument
similar to the one showing p (G, F) = D(F') establishes the existence of Gy.)

Let m; be the greatest x < m such that Go(x) = F(x) + D(F). If m; < m then
Gy is linear in [m,, m]. If G, has greater slope in [m;, m] than in [m, xy], then G,
is concave in [m,, ] and so the requirement that m is minimal is contradicted;
thus if m; < m, conditions (i)-(iv) of the theorem are satisfied.

If m; = m, but G, has greater slope less than m than in [m, xy], take x, close
enough to m so that the line segment [xo, Go(x0)] to [xy, Go(xy)] lies between
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F — D(F) and F + D(F); this is possible because the interior of the segment
[m, Go(m)] to [xy, Go(xy)] lies in the region {(x, y) | F(x) — D(F) <y < F(x) +
D(F)}. Now define G* to be equal to G, except for xy < x < xy, and define G*(x)
to be linear in (xo, xy). Then G* contradicts the minimality of m.

Thus in both cases G, has greater slope in [m, xy/], and conditions (i)-(iv) are
satisfied. 0

For a purely discrete distribution function such as the empirical distribution
function, the theorem suggests the following algorithm:

Let x;, x2, - - - , x, be the atoms of F.

The only possible endpoints of the modal interval (x;, xy) are the atoms.
Consider the n(n — 1)/2 possible modal intervals, and compute for each [x;, x;]
the greatest convex minorant of F in [—o, x;] and the least concave majorant of
F in [x;, ©]. Let d;; be the maximum distance of F to these computed curves.
Then 2D(F) is the minimum value of d;; over all modal intervals (x;, x;) such
that the line segment [x;, F(x;) + Y%d;;] to [x;, F(x;) — Yd;;] lies in {(x, y) | F(x)
- I/Zdij <y<F(x)+ 1/2d,-,-}.

The minorant and majorant computations may be made once and for all in
order n. At first sight, it looks as if n(n — 1)/2 modal intervals must be examined,
but many possibilities may be excluded—for x; the lower endpoint, only those x;
where the least concave majorant of F in [x;, ©) touches F need be considered.

An order n algorithm exists. Consider a taut string stretched between [x;, d]
and [x,, F(x,) — d] where x; < x; < x, for 1 < i < n. Assume that the curves
{x, F(x) + d} and {x, F(x) — d} are solid. As d decreases, the string bends to form
a convex minorant from x; to x; and a concave majorant from xy to x, where x;,
increases with d decreasing, and xy decreases with d decreasing. Then D(F) is
the value of d such that any further decrease forces the string out of its unimodal
shape. It is necessary to consider at most n changes in d, and order 1 calculations
for each change, so the computation is order n.

The following algorithm implements the stretched string notion:

(i) Begin with x; = x;, xy = x,, D = 0.

(ii) Compute the g.c.m. G and l.c.m. L for F in [x;, xy]; suppose the points of
contact with F are respectively g, g2, -+ -, grand I, b, - -+ , [,

(iii) Suppose d = sup| G(g;) — L(g;)| > sup| G(l;) — L(l;) | and that the sup
occurs at l; < g; < 4. Define x) = g;, x¥ = ls1.

(iv) Suppose d = sup | G(l;) — L(;) | = sup | G(g;) — L(g:) | and that the sup
occurs at g; < I; < g;4;. Define x = g;, x4 = I;.

(v) If d = D, stop and set D(F) = D.
(vi) If d > D, set .
D = sup{D, sup,,<:=4 | G(x) — F(x) |, sup.g<s<x,| L(x) — F(x)|}.

(vii) Set xy = x¥, xz = x? and return to (ii).
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5. Percentage points and power of the dip. In Table 1 appear the
percentage points

.01 .05 .10 .50 .90 .95 .99 .995 .999

of the DIP, for sample sizes n = 4-10, 15, 20, 30, 50, 100, 200, based on 9999
repetitions from the uniform. From Theorem 3, VnD(F,) converges in distribu-
tion to the dip computed for a Brownian bridge, and the table shows that
vnD(F,) has very nearly the same percentage points for n = 100 as n = 200. It
is suggested that interpolation be based on vnDIP.

We have not completed very extensive power computations. The following
special case is illuminating however. Let F, be uniform on (0, 1) and let F; be a
mixture, in the proportions 3:2:3, of a uniform on (0, %), a uniform on (%, %),
and a uniform on (34, 1). Thus F; has a density f;

fix) =%0<x=sU}l+RU<x<U}+%{HU=<x=<1]
Consider the three tests for bimodality:

(i) the dip
(ii) the depth:
sup[inf[F, (x5, x6), Fn(x1, x2] — Fn(x3, x4)]

over all points x; < x; < x3 < x4 < x5 < x¢ such that x, — x3 = x; — x4,
x¢ — x5; where F,(x, y) = F,(y) — F,(x). The depth is similar in aim to

TABLE 1
Percentage points of the dip in uniform samples

(1) Dip is the maximum distance between the empirical distribution and the best fitting unimodal
distribution.
(2) Based on 9999 dips. Maximum standard error is .001.

probability of dip less than tabled value is

sample

size .01 .05 .10 .50 .90 .95 .99 9956 .999
4 1250 01250 .1250 .1250 .1863 .2056 .2325  .2387  .2458
5 1000 .1000 .1000 .1217 .1773 .1872 .1966  .1981®° .1996°

6 .0833 .0833 .0833 .1224 .1586 .1645 .1904 .2034 .2224

7 0714 .0714 .0822 .1181 .1445 .1597 .1832 .1900 .2035

8 0625 .0745 .0828 .1109 .1428 .1552 .1744 .1801 .1978

9 .0618 .0735 .0807 .1041 .1362 .1458 .1623 .1693  .1851
10 0610 .0718 .0780 .0979 .1302 .1394 .1623° .1699  .1828
15 .0544 .0606 .0641 .0836 .1097 .1179 .1365 .1424 .1538
20 0474 .0529 .0569 .0735 .0970 .1047 .1209 .1262  .1382
30 0395 .0442 .0473 .0617 .0815 .0884 .1012 .1061 .1177
50 0312 .0352 .0378 .0489 .0645 .0702 .0804 .0842 .0926
100 0228 .0256 .0274 .0355 .0471 .0510 .0586 .0619  .0687
200 0165 .0185 .0197 .0255 .0341 .0370 .0429 .0449 .0496

(3) Repeated computations.
(4) Interpolate on N dip.
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the dip; it identifies three intervals of equal length such that the middle
interval has low empirical probability relative to both the outside inter-
vals. It has similar asymptotic properties to the dip, but is O(n? in
computation.

(iii) likelihood ratio:
SUpPfeu,; X i1 log f(x;)/supsev,, Xie1 log f(x:)

where U,c, is the class of unimodal densities, and U,c is the class of
bimodal densities, constrained to have maximum density less than C.

The constraint on the density is necessary because Y log f(x;) has maximum
value o« over all unimodal densities. Wegman (1970) considers instead constrain-
ing the density to be constant in an interval about the mode—the two constraints
are equivalent with appropriate choice of C and interval length.

The constrained unimodal density estimate has value C in some interval
[xz, xu], and is proportional to the density of the g.c.m. in (—o, X;) and to the
density of the lL.c.m. in (xy, ®). It is thus quite similar in form to the DIP
estimate. There are two important differences.

(i) The measure of distance for the likelihood ratio test is [ log f - dF, and
for the dip is sup | F — F,|, so that the dip is relatively insensitive to large
changes in f that cause small changes in F.

(ii) The dip automatically determines [x;, xy], the modal interval, but the
likelihood ratio statistic requires some specification of C. We have used
C = 1/ngsz where gy is the vn smallest interval between the order
statistics; this may well result in too large a C (allowing exaggerated
contributions near the mode) when there is some discreteness or rounding
in the data. The dip is insensitive to such rounding.

It will be seen from Table 2 that the dip appears slightly superior to the depth,
and markedly superior to the likelihood ratio. The particular alternative distri-
bution, a mixture of uniforms, is very suitable for the type of density estimation
used in the depth, and the depth should be expected to do relatively worse in
other applications. The poor performance of the likelihood ratio test is probably
due to poor choice of C; but the real defect of this method is the difficulty in
choosing C.

We have used as reference distribution the “least-favorable” unimodal distri-
bution, the uniform. There may be evidence in the data that, if the true

TABLE 2
Power of dip, depth, and likelihood ratio.
In sampling from F;, the probability that the statistic exceeds the 95% point computed in sampling
from Fo(based on 1000 repetitions).

Sample Size dip depth likelihood ratio

50 195 749 540
100 973 961 .905
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FI1G. 1. Faculty quality in statistics department.

distribution is unimodal, it is far from uniform. Following Silverman (1981), it
would be possible to evaluate the significance of a computed dip, against the null
distribution of dips obtained by sampling from the best fitting unimodal distri-
bution as specified in Theorem 6. This procedure should have better power than
the present test for discovering two relatively close modes with pronounced
tails—the new procedure effectively conditions on the observations not in the
tails.

6. An example. From Scully (1982), the quality of faculty in 63 statistics
departments was assessed on a range of 30 to 72, distributed in the counts

1001011205411322223121252002013441001000102.

There seem to be modes about 40 and about 60. The dip illustrated in Figure 1
is .059 which has a tail probability about 10% from Table 1. (V63D (Fe3) is
distributed approximately as V100D (F100) which has 90% point .474. Thus D (Fg3)
has 90% point .060.)

7. The multivariate case. Empirical distribution functions do not gener-
alize nicely to more than 1 dimension; but we can linearize the higher dimensional
problem in various ways. The most promising linearization is through the
minimum spanning tree, which unfortunately requires some measure of distance
on the space. The minimum spanning tree is the graph of minimum total length
connecting all sample points.

(i) Use the greatest dip over all linear combinations of the original variables.



DIP TEST OF UNIMODALITY 83

(ii) Let a particular data point x, be a trial value of the mode. All data points
have a partial order in which x < y if y lies between x and x, on the tree.
Define the empirical probability on the tree, relative to xo, by F,(x) =
[# of points < x]/n. A probability distribution F is unimodal with respect
to x if F is supported by the minimum spanning tree and has increasing
density according to the partial order. The dip for x, will be the maximum
distance between F, and the closest unimodal distribution; then select x,
to minimize the dip for x,.

(iii) A simpler technique begins again with a trial value of the mode, say x,;
the closest point to xo, say x:, is found; then the closest point to either x,
or x,, say X; the closest point to xo, x; or x.; and so on. These points are
easily determined from the minimum spanning tree and vice-versa.

N

Let the successive closest distances be d;, ds, ---, d,—; and define y; =
i d;. Let F, be the empirical distribution on the y; and define D(x,)
= p(F,, F) where F is the least concave minorant of F,. (We expect the d;
to be roughly increasing if x, is the unique mode.) The test statistic would be
inf,, D (xo).
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