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FINITE SAMPLE BREAKDOWN OF M- AND P-ESTIMATORS!

BY PETER J. HUBER

Harvard University

The finite sample breakdown properties of M-estimators, defined by
Yo(x,— T) = min!, and of the associated Pitman-type or P-estimators, defined
by

7= {expi=Fo(x = 0)}0 df
J exp{=%p(x, — 0)} do’

are investigated. If p is symmetric, and ¢ = p’ is monotone and bounded, then
the breakdown point of either estimator is e* = V4. If ¢ decreases to 0 for large
x (“redescending estimators”), the same result remains true if p is unbounded.
For bounded p, the P-estimator is undefined, and the breakdown point of the
M-estimator typically is slightly less than 4; it is calculated in explicit form.

1. Introduction. Since 1970 many new types of robust location estimators
have been introduced. Somewhat surprisingly, the breakdown point (Hampel
1968, 1971) of hardly any of them is known; see Donoho and Huber (1982) for a
recent discussion of this concept. The present paper begins to fill this gap in the
literature by establishing the breakdown properties of redescending M-estimators
(see Andrews et al., 1972) and of Pitman-type or P-estimators (Johns, 1979).

For the purposes of this paper, we define the value T'(X) of an M-estimator,
based on the sample X = (x;, ---, x,), by the property that it produces an
absolute minimum of

(1.1) 2o(x = T),
rather than by the conventional definition of 7'(X) as the solution of
(1.2) W —T)=0

nearest to the sample median (or the like), where ¢ = p’ is the derivative of p.

If ¢ is monotone and bounded, with ¢/(—0) = —y(x), then the breakdown
point of T, that is the smallest fraction of bad sample values that may cause the
estimator to take on arbitrarily large values, is ¢* = . The same is true if we
scale the observations by the MAD (median absolute deviation from the median)
and determine T from

(1.3) o (’;VI;DT ) = min!
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or from

(1.4) W(J;/[;DT ) =0.

For details see Huber (1981).

If ¥ is nonmonotone and redescends to 0O, we shall now show that the
breakdown point remains ¢* = % if p is unbounded. If p is bounded, the breakdown
point can be less than %, but for reasonably well-tuned estimates the deficiency
is negligibly small.

The associated P-estimates, defined by

_ J exp{=Fp(x; — 6)}6 db
- 10 J exp{=Yp(x; — 0)} db

exist only for unbounded p; they have the same breakdown point 2.

Since it appears that the notion of breakdown point is most useful in a small
sample setup (cf. the discussion in Donoho and Huber [1982], and in Donoho
[1982]), we shall give it a finite sample definition.

2. Finite sample breakdown. Let X = (x,, ---, x,) be a finite sample of
size n. We can corrupt this sample in many ways; in this paper we shall work
exclusively with e-contamination: adjoin m arbitrary values Y = (y;, -+, yn) to
the sample. The corrupted sample X’ = X U Y then has size n + m and contains
a fraction ¢ = m/(n + m) of bad values.

We could also have corrupted the sample by e-replacement: replace an arbitrary
subset of size m of the sample by arbitrary values y;, ---, y.. The corrupted
sample X’ then has size n and contains a fraction ¢ = m/n of bad values.

In unstructured problems (like location/scale estimation), e-contamination
usually is more convenient to deal with. In structured cases (e.g. for time series
problems) the situation is reversed.

For a fixed type of e-corruption we define the maximum bias

b(e; X, T) = sup | T(X') — T(X)],

where the supremum is taken over all e-corrupted samples X’.
The breakdown point ¢* is defined as

e*(X, T) = infle | b(e; X, T) = w}.

The breakdown point can be as high as 1 (for a constant statistic, or more
generally, for a Bayes estimate whose prior has compact support), and it can
approach 0 (e.g. for the sample mean, ¢* = 1/(n + 1)).

The sample median has ¢* = %, which is the highest value attainable by a
translation equivariant estimate (if ¢ = ., no translation equivariant estimate
can decide whether X or Y is the good part of the sample, and thus it must break
down.

3. Redescending M-estimates: bounded p. We first consider the fixed
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scale case (1.1) and assume that p has a minimum at 0, p(0) = —1, that p increases
monotonely toward both sides, and that lim p(x) = 0 for | x| — o.
THEOREM. If we put
3.1) Yxplxi— T(X) =—A,
then the e-contamination breakdown point of T is
m*
n+ m*’

(3.2) (X, T) =

where m* is an integer satisfying [A1 < m* < LAl + 1. If there is a ¢ < ®© such
that p(x) =0 for | x| = ¢, we have m* =TA1.

PROOF. Assume first that the number of elements in Y is m < A; we shall
show that then T (X U Y) stays bounded. Let 6 > 0 be such that m + né < A4,
and let ¢ be such that p(x) = —6 for | x| = c. Let ¢t be any real number such that
|x —t] = cforall xin X. Then

(3.3) Yrexuy plx — T(X)) = -A
and
(3.4) Yrexuy p(x — t) = —né — m.

Hence the left hand side of (3.3) is strictly smaller than the left hand side of
(3.4), and it follows that T'(X U Y) must fall within distance ¢ from a point in
X.

On the other hand, if m > A, let § > 0 be such that m — mé > A, and let ¢ be
such that p(x) = —6 for | x| = c. Let y be any real number, and assume that all
points in Y are equal to y. Then, for all ¢t with |y — t| = ¢, we obtain

(3.5) Yrexuy plx — t) = —A — m§,
and
(3.6) Yxexuy p(x —y) < —m.

Hence the left hand side of (3.6) is strictly less than the left hand side of (3.5),
and it follows that (X U Y) must lie within a distance ¢ from y. If we let y —
oo, breakdown occurs.

This leaves the case m = A open. But if p(x) = 0 for | x| = ¢, then (3.5) holds
with 6 = 0, and if y is chosen sufficiently far out (namely such that |x — y| = 2¢
for all x € X), we easily verify that the minimum problem has the two solutions
T(XUY)=T(X)and T(X U Y) = y. Thus, there is at least one solution going
off to infinity, and we have breakdown. O

Clearly, the breakdown point as determined in the above theorem depends not
only on the shape of ¢, and the scaling (tuning), but also on the sample
configuration.
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If scale is determined from sources extraneous to the sample—this is the
typical situation in structured problems like regression and ANOVA—and if it
is severely underestimated because of unrecognized heteroskedasticity, the break-
down point can become dangerously low.

However, for the usual redescending estimators and for reasonable tuning (i.e.
such that the efficiency at the normal model is high and the gross error sensitivity
is low, within reason) the breakdown point is quite high, usually above 0.4.

If scale is determined from the sample itself, the situation gets even more
favorable with regard to breakdown. The presence of bad observations increases
the MAD; while this increases the gross error sensitivity (the maximum of the
sensitivity curve), it also increases the quantity A in the theorem, and numerical
examples show that the breakdown point then typically exceeds 0.49, at least for
the customary estimates with the customary tuning constants, e.g. for the
biweight

Y(x) = x (1 —(x/c))i
with ¢ = 6.
4. Redescending M-estimates: unbounded p. Assume now that p is
symmetric, p(0) = 0, and that p is increasing towards both sides. Assume
lim ;) wp(x) = oo,
but

lim|x|_m M = 0.

| x|

Furthermore, we shall assume that ¢ = p’ is continuous, and that there is an x,
such that y is weakly increasing for 0 < x < xo, weakly decreasing for x, < x < .
(At the cost of some complications in the proofs, these regularity assumptions
on y could be considerably weakened.)

THEOREM 4.1. The e-contamination breakdown point of an M-estimate (1.1)
with p satisfying the above conditions is e* = .

We first prove two auxiliary lemmas. Let

M(t) = sup:|p(x + ¢) — p(x)].

Since p is symmetric, we clearly have M(— t) = M(t), and we may omit the
absolute value bars in the definition without changing M (t).

LEMMA 4.2. The difference n(t) = M(t) — p(t) is bounded: 0 < n(t) < xo¥(xo).
For t = x,, we have n(t) < xoy/(t), hence n(t) — 0 for t — . '

PROOF. 7(t) = 0is clear. Keep ¢t = 0 fixed. Then p(x + t) — p(x) = 0 for x =
—t/2, and the mean value theorem implies that p(x + t) — p(x) = t¥(x + yt) —
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0 for x — oo (with 0 < y < 1). Hence, p(x + t) — p(x) reaches its maximum at
some x;, —t/2 < x; < o; at xy, its derivative vanishes, thus ¢(x; + t) = ¢¥(x;). In
view of the representation

plx +1t) — p(x) = f ¥(s) ds

and of the monotonicity properties of ¥, ¢ must reach its maximum at a point
between x; and x; + t. Without loss of generality, we may take x, to be this point.
Then we must have

0<ux;<x<x +t
and
n(t) = M(¢) = p(t) = [p(x1 + t) = p(t)] — [p(x1) — p(0)]
s xy(t+vyx) with 0<y<1.

The assertion of the lemma follows.

LEMMA 4.3. Let n and m be the respective sample sizes of X and Y. Put

Axuy(t) = Yiexuy p(x — t) — p(x).

Then there is a constant C which depends on X and on m, but not on the actual
values in Y, such that for all t

(n =m)p(t) — C = Axuy(t) = (n + m)p(t) + C.

PrROOF. Write
Ax(t) = Xx [p(x — t) — p(x)] = np(t) + Tx [p(x — t) — p(t)] — Tx p(x).
Since | p(x — t) — p(t)| = | p(t) — p(t — x)| < | x| ¢¥(xo), we have
| Ax(t) — np(t)| = G
with C; = Y x p(x) + X x | x| Y (x0).
On the other hand
[Ay(@)] = | Zy [p(x — t) = p(x)]| = mM(t) = mp(t) + my(t).
Since 7(t) is bounded, it follows that '
[Ay(®)] = mp(t) + C,
for some C; and the assertion of the lemma holds with C = C; + C,. 0
PROOF OF THEOREM 4.1. Assume m < n. It follows from Lemma 4.3 that
Axuy(t) is bounded away from 0 for sufficiently large ¢, uniformly in Y. Since
Axuy(0) = 0, and since Axyy reaches its absolute minimum at T(X U Y), it

follows that T'(X U Y) cannot be outside a certain bounded neighborhood of 0.
Thus ¢* > m/(n + m). It follows that ¢* = %. O
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5. Pitman-type estimates: convex p. The Pitman-type, or P-, estimators
of location are defined by

_ J I f(xi — 6)}6 df _ J exp{=Y p(x; — 0)}60 db
SO f(xi—60)} do0 [ exp{—Y p(x;i — 6)} db’

where p(x) = — log f(x) is an essentially arbitrary function (f need not be a
probability density). The only constraint is that the integrals in (5.1) should
exist.

We say that the M-estimates (1.1) based on the same p is the M-estimate
associated with a particular P-estimate.

Assume that p is symmetric and convex, and let ¥ = p’ be the derivative of p.
Assume that ¢ is bounded.

(5.1) Tp

LEMMA 5.1. Under the above assumption Tp is monotone increasing in all of
its arguments.

PROOF. Denote the numerator and denominator of (5.1) by N and D respec-
tively. It is easy to show by the dominated convergence theorem that we can
differentiate under the integral signs, thus,

ﬂ‘_i(ﬂ)_—D_[\,b(xi—0)exp{~--}0d0+th//(x,~—G)exp{---}dﬂ
axi_axi D - D2

[ (Tp — 0)Y(x; — O)exp{---} db
5 )

Note that

f (Tp — O)expf---} db = 0,
hence we may write

0Tp _ [ (Tp = O)[Y(xi — 8) — ¥(xi — Tp)]expf---} db
ax,» D .

Since ¢ is monotone, the integrand in this expression is positive, hence dTp/dx;
=0.0

Note that we may replace p(x; — ). by p(x; — ) — p(x;) in the definition of
Tp. Furthermore, convexity of p implies that p(x) — p(x — 6) is an increasing
function of x, and that

lim, wp(x — ) — p(x) = —c 6,

where ¢ = sup y(x) < oo,
On the other hand

p(x—ﬂ)—p(x)__lf” _
P =3 J, Y(x — t) dt,




SAMPLE BREAKDOWN OF M- AND P-ESTIMATORS 125

and it follows

p(x —0) — p(x) _
161
It follows from Lemma 5.1 that the maximum bias that can be caused by m

contaminating observations occurs if they are all put at +o, and it follows from
the preceding remarks that its value is

1im0_>too

b( ?_ X, Tp) = To(X U Y) — To(X)
n+m

_ I exp{=3x [p(x = 0) — p(x)] + mch}6 db
J exp{—2x [p(x — 0) — p(x)] + mch} df

Moreover, for large | 8 | the exponent in this formula is

={=n|0]|1 + o(1)) + mbic,

— Tp(X).

and therefore both integrals are finite so long as m < n. Hence the breakdown
point is ¢* ¥%. Thus we have proved (assuming that p is differentiable):

THEOREM 5.2. Assume p is symmetric and convex, and 0 < lim,,|_.p(x)/| x|
= ¢ < oo, Then the breakdown point of the P-estimate (5.1) is ¢* = Y.

PROOF. If p is not differentiable, the proof needs straightforward but tedious
modifications, which are left to the reader. O

6. Pitman-type estimates: non-convex p. Assume now that p is no
longer convex, but satisfies the regularity conditions of Section 4. We define, as
in Section 5,

_ J exp{=3 [p(xi — 0) — p(x)]}6 db
P [ expl=% [p(xi — 8) — p(x))} d6 -

Clearly, bounded functions p do not make sense here; in order that the P-estimate
exists we must require that there is a constant k& > 0 such that

(6.1)

f exp{—kp(0)}| 6] df < oo.

In particular, we can take k = 1 if the P-estimate exists for sample size 1.

THEOREM 6.1. The e-contamination breakdown point of the P-estimate satis-
fiese* > (n — k)/(2n — k); if k < 1, we have ¢* = V.

PROOF. In the notation of Lemma 4.3, the exponent in (6.1) is Axuy(8), and
it follows from this lemma that

[ expi—(n — m)p(6) + C}16] db
[ exp{—(n + m)p(8) — C} db

| TP(XUY)| =
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If n — m = k, the right hand side is finite and provides a bound on T(X U Y)
which is uniform in Y. Hence T does not break down for m < n — k, and it
follows that e* > (n — k)/(2n — k). If k < 1, this implies that the smallest m for
which breakdown can happen is m = n, hence ¢* = V.
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