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In this issue Andersen and Gill (hereafter AG) present a stimulating
development of asymptotic distribution theory for the Cox regression model
with time-dependent covariates. They use a counting process formulation for
the failure time data and martingale covergence results. This approach in-
volves such conditions as ¢-algebra right continuity and predictable, locally
bounded, covariate processes. In this commentary we consider the implications
of such assumptions for likelihood factorization and covariate modeling. In
particular, it is noted that the partial likelihood function modeled by AG
cannot, in general, involve covariate measurements at the random failure
times. Some related work by the authors on a partial likelihood function that
may involve covariate values at the random failure times is briefly discussed.
Assumptions under which the intensity process modeled by AG has a standard
“hazard” function interpretation are described and some generalizations of
the AG results are mentioned.

1. Introduction. The Cox (1972) regression model is now widely used in failure time
studies, particularly in biomedical applications. Such a model along with the partial
likelihood (Cox, 1975) method of estimation merely requires the hazard ratio (relative risk)
to be some non-negative parametric (usually exponential) form as a function of regression
variables, without any restriction on the “baseline” hazard function. Notationally a
dependence of the hazard ratio on time is accommodated through the inclusion of time-
dependent variables in the modeled regression vector. For example, the regression vector
may include product terms between some basic regression variable and time. Of equal
importance in terms of applications is the use of a Cox-type model when the basic
regression variables are stochastic processes over time. For example, the regression variable
may include cumulative exposure levels to some carcinogen in an epidemiologic study or
may include a sequence of daily leukocyte counts in a clinical trail involving the use of
immunosuppressive drugs. In such settings Cox models provide a powerful means for
studying complex interrelationships and failure time mechanism (see Kalbfleisch and
Prentice, 1980, and Oakes, 1981, for elaboration of these points).

The work of AG provides a rigorous development of Cox model asymptotic distribution
theory that is general enough to allow locally bounded stochastic time-dependent covari-
ates and to include certain classes of multivariate failure time problems. They use a
counting process representation of the failure times and decompose the counting process
into the sum of its cumulative intensity process (or compensator) and a local square
integrable martingale. A Cox-type regression model is specified for the intensity processes
and some general results on the asymptotic behaviour of stochastic integrals with respect
to martingales yield the desired convergence results. Here we consider likelihood factori-
zations that will lead to the likelihood function maximized by AG and consider conditions
under which the intensity process will have a standard hazard function interpretation.
Particular attention is paid to the technical assumptions made by AG in relation to
covariate specification and modeling. We also discuss a related partial likelihood function
that involves covariate values at the random failure times.
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2. Partial likelihood and the intensity process. Let us begin by considering the
overall likelihood function using the same probabilistic structure and notation (supple-
mented as necessary) as do AG. This structure involves an increasing class of o-algebras
{%; t € [0, 1]} that includes failure time, censoring and covariate histories. In the AG
notation N = (INy, ---, N,) denotes a multivariate counting process (and hence each N;
has right continuous sample paths) such that N, counts “failures” on the ith subject over
the time period [0, 1]; in fact, N, count only “observable” failures in that IV, can jump only
when the ith subject is under observation (at times ¢ such that Y;(¢) = 1). The indicator
process Y, appears as a factor in the intensity process A, modeled by AG. In order that the
intensity process be predictable, AG require the sample paths of Y; to be left continuous.
The multivariate indicator process Y = (Y1, ---, Y,) will be referred to as the censoring
process. As new notation, let X = (Xj, -- -, X,,) denote basic covariate processes such that
X, (t) = {Xu(t), Xi2(2), - - -} involves measurements taken on the ith subject at time ¢. The
theorems applied by AG require the family of o-algebras to be right continuous (i.e., % =
Ns>¢ %) so that % should be defined to include counting process information up to and
including time ¢, and censoring process information up to and including time ¢* (in view of
the left continuity of sample paths of Y this will be necessary if % is to include information
on Y (¢) values and be right continuous). The sample paths of X should be taken to be
right continuous (with left-hand limits) in order that 4 may include information on X ()
values, but not on X (¢ + ¢) values for any & > 0 since such values may not even conceptually
exist (i.e., covariate processes may be randomly stopped by the corresponding failure
times).

The overall likelihood function can now be written as a product integral from 0 to 1 of

P[ F-+an | F-] = limgy, P[ Fisvan |97s]

where %_ = U,~; % includes all information on counting and covariate processes up to, but
not including, time ¢ along with all information on the censoring process up to and including
time ¢. Questions of interest usually involve the dependence of the failure rate at ¢ on
preceding (in time) covariate and counting process histories. The likelihood function can
be factored to isolate this dependence by setting

@1) P[Fvvan| Fi] = PIN( + dt) | F- WP[Fivan | P, N(E + dt)]
where, for example,
P[N(t™ + dt)| #-] =limy, P[N(s + dt) | %].

The first factor in (2.1) can be written as a product \.(¢) dt for any subject (at most one)
failing at £ and 1 — A, (¢) dt for each subject not failing at ¢, where

(2.2) A (¢) = limyy, limajo A 'P[N.(s + ) — Ni(s) = 1| %&].

Expression (2.2) determines a stochastic process X = (5\1, ..+, ) that is precisely the
intensity function modeled by AG, under some regularity. Specifically

(2.3) X(¢%) = limyyo A'P[N,{t + h) — N,(t) = 1| %]

which equals the corresponding intensity process value A.(t*) if, for example, each A, is
bounded by an integrable random variable (Aalen, 1978).
At a time ¢ at which a failure occurs P[N (¢t~ + dt) | %-] can be further factorized as

(24) P[N({t +dt)|%-1=P[N{t +dt) # N(t")|%-]

.P[N,(t” +dt) — N,(t7)=1|%-, Nt~ +dt) # N(t)]
the second factor of which, from (2.2), can be written
(2.5) AN/ Y =1 Ae(2),

under the regularity mentioned above. It is the product of terms (2.5) over distinct failure
times that constitutes the function C(8, 1) maximized by AG. The above development
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shows it to be a partial likelihood function. They consider such maximization after
specifying

(2.6) \i(8) = Y. (£)Ao () exp{B6 Z:(¢)},

where Z; = (Z;1, ---, Z,) is an adapted column vector of p regression processes (i = 1,
.-+, n). In order to apply martingale convergence results AG require the sample paths of
Z; to be left continuous with right-hand limits (and so to be predictable and locally
bounded). Aside from these requirements it is evident from the above development that
the sample paths of Z; can be any data-analyst-defined function of %_. Note, however,
that Z (¢) may not, in general, include functions of the corresponding basic covariate value
X (t) since %- only involves information on X (u) for u < ¢. Within the context in which
AG work, the numerator of (2.5) therefore may not include covariate information at the
(random) failure times in contrast to the usual perspective of the Cox model partial
likelihood (eg. AG expression (1.2)).

AG do not comment on the role of standard assumptions concerning the independence
of failure times on distinct study subjects and the independence of the censoring mechanism
in their development. While such assumptions are not necessary for the partial likelihood
development or for the corresponding asymptotic distribution theory, they will usually be
necessary for the intensity processes to have a useful interpretation. Beginning with (2.3),
an independent censoring mechanism may be defined as one requiring, for each ; = 1,

., n,

Xi(t*) = limaj0 A'P[N, (¢ + h) — Ni(t) = 1| {N,(u); X,(w); 0< u<t},¢=1, .-, n]

at all times ¢ at which the ith subject is under observation (Y;(¢) = 1). The addition of an
independent failure time assumption between subjects would require

A (t%) = limajo A'P[N, (¢ + k) — N.(t) = 1| {N,(u), X (u); 0 < u < t}]

at all ¢ values such that Y;(¢) = 1. The right side of this expression has an ordinary
“hazard” function interpretation so that the parameters involved in the modeling of A =
(A1, + -+, A;) will have a clear interpretation under independent failure time and indepen-
dent censoring assumptions and under sufficient regularity to ensure A=A

3. An alternate partial likelihood function. The overall likelihood function can
alternatively be written as a product integral from 0 to 1 of P[ F+ar) | % ). A factorization
like (2.1) (with ¢~ everywhere replaced by ¢) may be written whence it can be noted that
P[N(t+dt)| #]isaproduct overi=1, ..., nof h;(¢)dt if subject i fails at £ or 1 — A, (¢)dt
if subject ¢ does not fail at ¢, where

(3.1) R(t) = limuyo A'P[Ni(t + h) — Ni(t) = 1| %].

Note that A;(¢) = X, (¢*). A further factorization like (2.4) (again with ¢ in place of ¢7) then
leads to a partial likelihood function which is a product of terms

(3.2) h () /X 7=1 he(8),

over each failure time. Note that A;(¢) = (A:(¢), - -+, h,(t)) may be modeled in terms of
available information on covariate and counting processes up to and including time ¢ (or
the censoring process up to ¢t*) since such information is included in %. For example, the
Cox model (2.6) for A, (t) gives

(3.3) Ru(t) = M(t7) = Y.(£)ho (¢7) exp{Bo Zi(¢7)}.

Under such a model the partial likelihood function from (3.2) addresses a different set of
questions concerning the dependence of failure rate on covariate histories than does the
partial likelihood from (2.4), since the failure rate % (¢) conditions on X (¢) (and thereby on
jumps X (¢) — X (¢7) in the covariate process). Of course, the two partial likelihood functions
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will coincide if it is assumed that counting and covariate processes cannot jump simulta-
neously. Otherwise it is evident that some regularity in the covariate processes at the
failure times will need to be imposed in order that the maximum partial likelihood function
,é from (3.2) be well behaved. As a rather extreme special case suppose the covariate
processes jump so that some component of X (T') is identically equal to a fixed value x; at
each (random) failure time 7. The likelihood factorization and partial likelihood develop-
ment described in this section then completely degenerates.

To demonstrate the consistency of ,é from (3.2), conditions similar to those of AG may
be used together with a generalization of Tsiatis’s (1981) argument (see Self, 1981; Self and
Prentice, 1982). It is, however, necessary also to introduce a smoothness condition on the
covariate path just prior to failure. A sufficient condition is

E[Z()|N(t) # N(@&)] = E[Z(t)) |N(t) # N(t)).

By using a generalization of Tsiatis’s (1981) expansion of the score statistic, the asymptotic
normality of ,@ may also be demonstrated but at the expense of introducing stronger
moment conditions than do AG as well as additional smoothness (e.g., bounded variation)
and regularity conditions on the covariate paths. The absence of such conditions in the
AG development points to the power of the martingale convergence results that they use.
It also seems evident that the partial likelihood function from (2.5), rather than that from
(3.2), should generally be used in applications.

4. Generalizations. There have been a number of other generalizations of the
original Cox (1972) model that are of practical importance. The methods employed by AG
seem well suited to most of these. For example, the baseline hazard function may be
permitted to differ among each of a fixed number of strata (as mentioned by AG). Time-
dependent strata may be accommodated by allowing Y;(¢) to indicate the stratum assign-
ment as well as the “observation” status for the ith subject at time ¢ The martingale
results will also apply to some problems with “forward going” semi-Markov processes
(Voelkel and Crowley, 1982) and would appear to generalize directly to the estimation of
type-specific intensity functions in competing risk problems. We will present elsewhere a
generalization of the AG results to Cox-type models in which the exponential form of
hazard function dependence on covariates is replaced by an arbitrary (non-negative)
parametric form.
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