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A LARGE SAMPLE STUDY OF COX’S REGRESSION MODEL!

By ANASTASIOS A. TSIATIS
St. Jude Children’s Research Hospital

Strong consistency and asymptotic normality are established for the maxi-
mum partial likelihood estimate of the regression parameter in Cox’s regression
model.

Estimates are also derived for the underlying cumulative hazard function
and survival distribution. We establish the asymptotic normality of these estimates
and calculate the limiting variances.

1. Introduction. Regression models for survival analysis with censored observations have
been used quite extensively in the past few years. One of the more widely used models is the
one suggested by Cox (1972), which assumes

(LD) A(1]2) = Ao(1)exp(B2),

where A(?| z) is the hazard function for an individual with regressor variables z’ = (z1, - - -, z,),
regression parameters 8’ = (81, - - -, 8,), and A(?) the underlying hazard function.

Estimates for the regression parameters were derived by Cox (1972). A more detailed
justification was given by Cox (1975) under the term partial likelihood.

In this paper, we establish the asymptotic consistency and normality of the maximum
partial likelihood estimates by the use of weak convergence results.

Estimates for the underlying survival distribution

So(?) = exp(—Ao(?)); Ao(t) = f Ao(x) dx,
0

are also considered. Survivor function estimators have been suggested by Cox (1972),
Kalbfleisch and Prentice (1973), Breslow (1974) and Prentice and Gloeckler (1978) for grouped
data. However, the large sample properties of these estimates have not been examined
sufficiently. Using weak convergence results, we are able to show that the survivor function
estimate converges to a normal process.

The assumptions of the model and some key relationships are given in Section 2. In Section
3 the large sample properties of Cox’s maximum partial likelihood estimate, £, are established
including strong consistency of £ and asymptotic normality of Vn(B - B). An estimate for the
cumulative hazard function, A¢(f) = [ Ao(x) dx, is derived in Section 4. The large sample
properties of the cumulative hazard estimates including weak convergence to a mean zero
Gaussian process are established in Section 5. Finally, in Section 6 we extend the results of the
previous sections to include the asymptotic distribution of the estimate for survival distribution.

2. Notation and formulae. Let the covariate Z, be a random variable with density f(z).
The variable Z will be single valued but in Section 6 we shall indicate how to extend the
results to a vector valued set of covariates. Denote the true survival time and the time to
censoring by the positive random variables Y;, Y, respectively. It is assumed that Y, Y» are
conditionally independent given the covariate Z. The observable time until death or censoring
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94 ANASTASIOS A. TSIATIS

will be denoted by the random variable A. That is

T= min (Yl, Yz)
A=1 if Y, =Y, (death)
=0 Y. > Y (censoring).

The distribution of the survival time Y, is related to the covariate Z according to Cox’s
regression model. That is

A(t]2) = No(t)exp(Bz),

where A(7] z) denotes the hazard function given that Z = z. No specific relationship for the
conditional distribution of Y, given Z = z will be made, except that Y- is a positive random
variable whose conditional hazard function, given that Z = z, exists and is denoted by u(, 2).
Since most survival studies are ended after some prespecified time, 7o, we also assume that Y
is bounded Y; = T < o0,

Notation and relationships which are useful throughout the remainder of the paper will be
established.

The conditional probability of surviving until time ¢ without being censored, given that Z
=z, is given by

2.1 H(t|z)=P(T=t|Z=1z)=exp — f [Ao(x)exp(Bz) + p(x, z)] dx.

The probability of surviving until time ¢ without being censored and eventually dying before
being censored is

22) o) =PT=1A=1) =J 01| 2)f(2) dz,
where
2.3) OUlzy=P(T=t,A=1|Z=2)= J’ ' Ao(x)exp(Bz) H (x| z) dx.

The derivative of Q(¢) is given by

(2.4) dQ(t)/dt = —Ao(1) f exp(B2) H(t| 2)f(2) dz.

Letting /4 denote the indicator function of the event 4, and letting g(z) be a continuous
function of z, define

(25)  E(g(2), ) = E{g(D)lir=n} = E[g(Z)P(T= 1| Z)] =f g@H(|2)f(2) dz,

and

(2.6) E(g(2), 1) = E{g(Z) [ r=t.a-11} = E[g(Z)Q(t| 2)].
The derivative of Ei(g(z), t) is equal to

2.7) dE\(g(2), t)/dt = —Xo(1) J' g(2)exp(B2) H(1| 2)f(2) dz.
Using (2.4)-(2.6) we get

28) Ao(1) = —(dQ(t)/dt)/ E(exp(B2), 1),

and

29 dEi(g(2), t)/dt = dQ(1)/dtE(g(2)exp(B2), 1)/ E(exp(Bz2), 1).
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Let n be the number of individuals in the study. Associated with each individual is the
random vector (73, A,, Z,), i = 1, - - -, n which are assumed to be independent and identically
distributed random vectors. The empirical estimates of Q(x), and E(exp(8z), x) are denoted
by Q(x), E(exp(Bz), x); § is the estimate for the regression variables suggested by Cox (1972).
That is

(2.10) Q(x) = yia Itrzxa-11/1
E(exp(B2), x) = Y= exp(BZ) Iirz1/n = Yjerw exp(BZ,)/n,

where R(x) denotes the risk set at time x, or the set of indices i =1, .-, n corresponding to
individuals who survived until time x.

3. Asymptotic properties of Cox’s estimate for 8. Cox (1972), suggested the estimation of
the regression parameter by maximizing the partial likelihood

L(B) = Il.en{exp(BZ.)/ (X erw,) exp(BZ,)/n},
or log partial likelihood

@3.1) I(B) = B Xiep Z:/n — Fiep 1/nlog(Y er, exp(BZ)/n),

where D denotes the set of indices i = 1, - .., n corresponding to individuals who died. The
estimate £ is the solution to the likelihood equation

(3.2) Yien Z/n = Yien 1/n(Y eruy Z; exp(BZ))/n)/ (X jer«, exp(BZ,)/n).

In this section we shall prove the strong consistency of 4 and asymptotic normality of
Vn(B — B). It will be assumed that the covariate Z satisfies the following assumption:

AssuMPTION 3.1. E[ Z exp(BZ)]* is bounded uniformly in a neighborhood of 8.

We shall also assume that T, which denotes the time that the study is terminated is such
that P(T = To) > 0. This assumption implies that at the end of the study there is a positive
chance that an individual will have survived without being censored. Although this last
assumption is not necessary to prove the desired results, we feel justified that such an
assumption is true in most survival studies. Later we shall indicate how this assumption may
be weakened.

In proving the large sample results, it will be convenient to characterize the log partial
likelihood (3.1) as

To
(33) H(B) = BE(z, 0) — f — dQ(x)log E(e®, x),
0
and the likelihood equation (3.2) as
- Ty
(3.4 F(B) = %}f) = Ey(z, 0) — f — dQ(x)E(z¢", x)/E (¢*, x) = 0,
0

where Ei(z, 0) is the empirical estimate of Ey(z, 0). The quantities E1(z, 0), Q(x), E(e**, x) and
their estimates are defined in Section 2.
The consistency of § is shown in the following theorem.

THEOREM 3.1.  There exists a sequence of solutions f(n) of equation (3.2) such that B(n)
converges almost surely to f3.

Proor. Consider the function
To

H(B) = BE:(z, 0) - f — dQ(x)logE (", x).

0



96 ANASTASIOS A. TSIATIS

Using (2.9) we show that the first derivative
T,

H'(B) = Ei(z, 0) — f — dQ(x)E(ze**, x)/E(e**, x) = 0.

0

The second derivative
To

H"(B) = f — dQ[E(Z"e", x)/E(e”, x) — (E(z¢", x)/E(e*, x))°]

To
= —J' — dQ[E((z— E(z| R(x))¢*, x))/E(¢"*, x)] < 0

where
E(z| R(x)) = E(ze*, x)/E(e", x).

Therefore, the function H(x) has a local maximum at x = 8. This implies for 8* in a §
neighborhood of B(| 8* — B| = §) we get

H(B) - H(B*) =0,

with strict inequality when | 8* — 8| = 6.
The use of Lemmas A.1 and A.2 of Appendix 1, together with the strong law of large
numbers implies that

H(B) - H(B*)— H(B) — H(B*) as.

(The notation — a.s. means converges almost surely). Therefore for almost all realizations
there exists an no (depending on the realization) such that for all n = ny

AB*)<H(B) for |B*—p|=8.

The function H(x) is continuous and differentiable, therefore on the set | 8* — 8| < 8, H(8*)
has a maximum which is not on the boundary. This implies that we have local maximum and
the first derivative vanishes. That is

aa(p) _
ag

which is precisely the solution to the likelihood equation (3.4). We can repeat this argument

for balls of size § which get smaller and by this means find a consistent sequence S(n) — B a.s.

To show that the statistic vn (B — B) converges to a normal distribution, we will

approximate it by a sum of random variables which converge jointly to a multivariate normal.

Using a Taylor series expansion we get

F(B)=F(B) = (B = B) Yiep n'Var(z| R() |8

+ (B = B)'/2 Tien nT'E((z — Ez| R(1)))’| R()) | B*,

B* lies between 8 and f, where using the notation from Efron (1977),

E(h(2)| R(1))|B* = ¥ jerwy h(Z)exp(B*Z;)/ S rw,) exp(B*Z),

O,

and

Var(z| R(t:)) |B* = Lray Ziexp(B*Z)/ L ke, exp(B*Z)
= (Zruy Zexp(B*Z,)/ T ra,) exp(B*Z))).
Therefore the statistic v (8 — B) can be expressed as
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(3.3) Vn(B-B) = [Cn/J - dQVar(ZIR(t))] - F,

where
To

Cn = «/Z[El(z, 0)—J

[}

_dOEG| R(r»],

Fu= CuFs, /F;,,
Ty

Ty
3.6) F, = f - dQVar(z | R(®) — J —dQVar(z| R(t)) — Rn(,é -B8)/2,
) 0

T, Ty
Fy, = [ f — dQVar(z| R() — (Rn)(f — ﬁ)/2] f — dQVar(z| R(),
R, = Yiepn"'E((z — E(z| R(1)))’| R(1)) | B*.

THEOREM 3.2. The statistic \'n B-8 converges in distribution to a normal random variable
with mean 0 and variance equal to [ [§° — dQVar(z| R())]™".

Proor. The proof will consist of (i) showing that the statistic C, of (3.6) converges in
distribution to N (0, f§* — dQ Var(z| R(?))), and (ii) that F, converges in probability to zero.
(i) Using (2.9) the statistic C, can be written as

Cn = Vn[Ex(z, 0) — Ei(z, 0] - &[f

To To

— dQE./E - f

0

— dQE, /E],
where E.(f) = E(z exp(pBz), ) and E(t) = E(exp(Bz), 1). Using techniques similar to Breslow-
Crowley (1974) C, can be expressed as
Co=Cin+ -+ Con+Rin+ - + Run
where

Cin = V[ Ex(z, 0) — Ex(z, 0], Con = = Vn[Q(0) — Q(0)] E-(0)/E(0),
BT Cn=- f [Vn(Q — Q)/E1dE.,  Ci= J [Vn(Q — Q)E./E*) dE

C5n = f ' [\/’;(Ez - Ez)/E] dQ, C6n = _J' ' [\/;(E - E)EZ/EQ] dQ’
and

T, ' To
Run = f [Va(E. - E)/EM(0 — Q),  Run=- f (Va(E. — E)(E — E)/EE] dQ,

(3.9) . .
Rs, = —J [Vn(E = E)E./EE1d(0 — Q), Rin = f [Vn(E — E)E./EE?] dQ.

0

In Theorem 5.1 we shall show that (Cin, -+, Cen) will converge in distribution to a
multivariate normal random variable which is denoted by (Cj, - - -, Cs). It will also be shown
that Rin, - -+, Ry, converge in probability to zero. Therefore the statistic C, = Y&, C,, +
Yi=1 Ri, will converge in distribution to the normal random variable Y%, C, whose mean is
zero and variance (which is calculated in Appendix 2) is equal to §{3° — dQVar(z | R(2)).

(ii). As a consequence of Lemmas A.1, A.2, and Assumption 3.1, we can show
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Ty

Ty
f — dQVar(z| R(t)) — J —dQVar(z| R(t)) » O a.s.

0

This, together with the consistency of B, implies that F5, — 0 a.s. Similarly, Fs, converges
almost surely to [ [T° — dQVar(z | R(¢))]*. Therefore by applying Slutsky’s theorem we prove
that F, converges to 0 in probability.

REeMARK. The asymptotic variance of n(B - B), denoted by o

(3.9 o5 = [ J " dQ(t)Var(z | R(t))]_

can be estimated by substituting the empirical estimates into (3.9). That is
-1

T, -1
. A% 5 1o 5
(3.10) G4 = [J - dQVar(ZlR(t))Iﬂ] = [ZieD;Var(ZlR(tz))l,B]
0
Formula (3.10) is minus the inverse of the second derivate of Cox’s partial likelihood.

4. Estimate for the cumulative hazard function. The cumulative hazard function is defined
as

t
Ao(2) =f Ao(x) dx.
0
By using equation (2.8) we can express the cumulative hazard function as
t
4.1 Ao(t) = f — dQ(x)/E(e*?, x).
0
An intuitive estimate of Ao(¢) would be
t
Ao(t) = f — dQ(x)/E(e", x).
0
That is

. 1 N .
4.2) Ao(t) = Yieny ;/Z;eR(t,) exp(8Z,)/n = Y.enw) 1/ Y jerw,) exp(BZ),

where D(t) denotes the set of indices i = 1, ..., n corresponding to individuals who died
before time . The estimate (4.2) is the nonparametric MLE under 8 = £ as developed by
Breslow (1974).

We shall examine the large sample properties of the statistic va(Ao(f) — Ao(t)) by
approximating it with a sum of stochastic integrals which will be shown to converge to a joint
normal process on the interval [0, M]. The value M, M =< Ty, is such that P(T = M) is strictly
positive.

Expanding Ao() about f in (4.2) using a Taylor series expansion we get

Ao(t) = Yienw) (1/ X re) exp(BZ)))
- (B = B) Yienwy [Xre ZJCXP(BZ/)/(ZRW eXp(ﬁZJ))Q] + (B - ,B)ZK(t)/Z,
where

K(1) = Yienw) [=Xrey Ziexp(B*Z) /(T R exp(8*Z))*

+ 2T rey Z,exp(B*Z))*/(Zrey exp(B*Z))’],
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= J’ dQ[E(z%e""%, x)/E*(e#"%, x) — 2E%(ze*"%, x)/E*(e""%, x)],
0

and B* lies between 8 and B. By the use of (4.1) and (4.3) the statistic v7(Ao(f) — Ao(?)) can
be expressed as

(4.4) Vn(Ao(t) = Ao(1)) = An(t) + Ba(t) + En(0),

where

An(t) = &[f — dQ(x)/E(exp(Bz), x) — J = dQ(x)/ E(exp(B2), X)] ,

Ba(1) = —Vn(B - B) f — dQ(x)E(z exp(Bz), x)/E*(exp(B2), x),

and

Ex(1) = Yn(B — B’K(1)/2.
LeEMMA 4.1, supo<:i=mEn(t) converges in probability to zero (—p).
Proor. See Appendix 1.

In order to determine the asymptotic distribution of \/;([\O(t) — Ao(?)) it will suffice to
look at the joint asymptotic distribution of 4,(¢) and B.(t). Using (4.4) and (3.5) through (3.8)
we get

Bu(1) = {[(cm 4o+ Cont Rin e + R4,,)/J T 40 Var(le(t))] - F,,}
4.5) ’

e [f — dQE./E* + ROn(t)],

where

Ron(1) = [ J — dQF./E? — J - dQEz/Ez].

As a direct consequence of Lemmas A.1, A.2, and Assumption 3.1 we get supo<¢=mRon()
converging almost surely to zero.
Similarly, the statistic 4.(¢) of (4.4) can be expressed as

(46) An(t) = Aln(t) + ...+ ASn(t) + Eln(t) + EZn(t),

where
Ara(t) = f [Vn(E — E)*/E®]dQ,  Aza(t) = — J [Vn(Q — Q)/E?] dE,

4.7 0 0

Asn(t) = Yn(Q(0) — Q(0)/E(0) — Vn(Q(t) — Q(1))/E(1),

and
(4.8) Ew@)= f [(Vn(E — E)*/E’E1dQ,  Eam(t)=— J [Vn(E — E)/EE]1 d(Q — Q).

The representation of A.(f) and Ba(¢) given in (4.5)-(4.8) will facilitate the proof of weak
convergence of vn(Ao(r) — Ao(t)) to a normal process, as will be shown in Section 5.
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5. Weak Convergence. Let D[0, M] denote the space of functions defined on [0, M] that
are left continuous and have right-hand limits. Let (X,.(¢), Ya(?), Z.(t), Wa(t)) be random
functions defined on the product space D*[0, M], where

6.1 Xu(t) = Vn(Q(1) — Q1) Yu(r) = Vn(E(1) — E(t)),
Z,(t) = Vn(E«t) = E.(0),  Walt) = Vn(Ba(z, 1) = Ei(2, 1)),
LemMa 5.1, If the random variable Z satisfies Assumption 3.1 then the sequence of distri-

butions induced by (X, Yn, Z,, Wy) converges weakly to a joint Gaussian process (X, Y, Z, W)
which has mean zero and covariance structure given by

Cov(X(s), X(1)) = Q(u) — Q()Q(1)
Cov(Y(s), Y(t)) = E(exp(2Bz), u) — E(s)E(t)
Cov(Z(s), Z(t)) = E(z*exp(282), u) — E.(s)E.(t)
Cov(W(s), W(1)) = Ei(z°, u) — Ei(z, )Ei(z, 1)
5.2) Cov(X(s), Y(1)) = Ex(exp(z2), u) — Q(s)E(t)
Cov(X(s), Z(1)) = Ei(z exp(Bz), u) — Q(s)E:(1)
Cov(X(s), W(1)) = Er(2, u) = Q(9)Ex(z, 1)
Cov(Y(s), Z(1)) = E(z exp(2Bz), u) — E(s)E.(1)
Cov(Y(s), W(1)) = Ev(z exp(Bz), u) — E(s)Ei(z, 1)
Cov(Z(s), W(1)) = E\(z%exp(Bz), u) — E.(s)Ei(z, 1)
forall0 =5, t = M, u= max(s, t).
Proor. The proof of Lemma 5.1 consists of applying the standard theory of weak
convergence given in Billingsley (1968). We first show that the finite dimensional distributions

converge to a multivariate normal, and then prove tightness.
The vector (X,(t), Yu(t), Z.(t), Wa(2)) can be represented as

(Xns Yu, Zn, Wo) = 02 {Ties (Iir208,-11 — O(t), exp(BZ) 17,20 — E(2),
Z,exp(BZ)Iir=11— Et), Zd{1,20,8,-11 — Ei(2, 1))}

Boundedness of the second moments follows directly from Assumption 3.1. Therefore, a
simple application of the multivariate central limit theorem implies that the finite dimensional
distribution of (X, Y., Z,, W,) are multivariate normal with covariance structure (5.2). As
shown in Lemma A2, the sequence of distributions induced by Y, Z, are tight. Similarly, we
can show that the sequence of distributions induced by X,,, W, are tight. Consequently, (X,,
Y., Z., W) induces a tight sequence on the product space D*[0, M].

Arguing as in Pyke-Shorack (1968), or Breslow-Crowley (1974) we can replace (X,, Y.,
Z,, W,) and (X, Y, Z, W) with a sequence of random functions having the same distribution
for each n, but which also satisfies

(5.3) 0(Xn, Yn, Zn, Wp), (X, Y, Z, W)) — 0, as.,

where p is the Skorohod metric on D*[0, M]. Therefore, if we show convergence of any
function of these replaced sequences, it will be equivalent to convergence in distribution of the
same function of the original sequences.

THEOREM 5.1.  The random function \/-r;[[\o(t) — Ao(1)], 0 =t = M converges weakly to a
Gaussian process defined by

V([) = Al(t) + .0+ A3([)
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¢ To
+(Cr+ - + @)[(J' - dQEz/EQ)/j - dQVar(z|R(t))}

t

A(t) = J' Y dQ/E%, Aq(t) = —J X dE/E?, As(t) = [X(0)/E(0) — X(¢)/E(1)],

(5.4)

where

and

To
C, = W(0), C, = —X(0)E.(0)/E(0), Cs = —J' XdE./E
0
To

To To
Ci= J XE.dE/E®, Cs= J' ZdQ/E, Cs=-— J' YE.dQ/E?,
0 0 0

and (X, Y, Z, W) is a joint Gaussian process with mean O and covariance structure (5.2).
V(t) is a Gaussian process with mean zero and covariance structure given by

Cov(V(s), V(2))

= f — dQ/E? + U - dQEz/E2><f - dQEz/E2)/j T dQVar(z| R(1))

where0 <s<t= M.

(5.5)

PROOF. Let py denote the supremum metric on [0, M] and let p denote the Skorohod
metric. The proof consists of showing

(i) Cn—C,, as. i=1...,6
(11) Rm—”po, i=1,-..,4
(i) p(Ain(t), A(t)) =0, as. i=1...,3

(iv) p(Ewn(2)) =, 0, i=1,2.

Convergence to a continuous limit in pa is equivalent to convergence in p. Therefore, since
(A(t),i=1, .-+, 3) and O are continuous almost surely, then we can replace p by px in the
last two conditions.

Upon realizing that E(¢) is a nonincreasing function on the interval [0, M ], and since E(M)
> 0 follows from the fact that P(T = M) > 0, we can then prove conditions (iii) and (iv)
exactly as Breslow-Crowley (1974), Theorem 4. Conditions (i) and (ii) can be proved similarly
since by assumption P(T = To) > 0.

ReMARK. Conditions (i) and (ii) are true even if we allow the P(T = T;) to be equal to
zero. Although the detailed arguments are very lengthy, the idea is to represent the integrals
of the remainder terms in formula (3.8) as [3°? + [7°_y. Applying the same arguments as in
the proof of Theorem 5.1, we can show that the first part of the integral converges in
probability to zero as long as § is positive. Using techniques similar to Crowley and Thomas
(1975) and Crowley (1973), we can find 6 > 0 so that the second integral is as small as we want
with large probability uniformly in n. Therefore, the remainder terms converge in probability
to zero.

The evaluation of the covariance structure is a straightforward calculation of the covariances
for the additive terms. The details of the calculations are deferred until Appendix 2.

Some interesting observations that result from the calculations of Appendix 2 are as follows:
letting

(5.6) V(t)y=Vi(t) + ¢(t) Va



102 ANASTASIOS A. TSIATIS

where
Vi(t) = A1(t) + A2(t) + As(2),
Ty
Vo=(Ci+ -+ + Cs)/J’ — dQ Var(z| R(2)),
(1) =J’ — dQE./E?,
then

(). 71(¢) is a mean zero, independent increments Gaussian process with
covariance structure given by Cov(Vi(s), V1(¢)) = [§ — dQ/E% s <1t;

(5.7)  (ii). V2 is a mean 0 normal random variable with variance equal to [ f T dQ
Var(z| R()] ™

(iii). The variable V> is independent of the process Vi(¢), 0 <t < M.

6. Complementary results. In this section we shall extend some of the results from the
previous sections and outline their proofs. In Lemma 6.1 we calculate the asymptotic
distribution for the cumulative hazard function for an individual with covariate zo.

LEMMA 6.1. The estimate for the cumulative hazard function evaluated at zo, (Ao(t)exp(Bz0)),
is given by Ao(t)exp(Bzo). The random function Vn [Ao(t)exp(Bzo) — Ao(t)exp(Bzo)] converges
weakly to a Gaussian process V., (t) which has mean 0 and covariance structure

Cov(V,(s5), V(1)) = exp(Zﬂzo)[f

0

X<J' —dQ[E(z|R(-))—zo]/E)/J’0—dQVar(z|R(-))}j|, O=ss=st=M.

ProOF. The proof consists of expanding Ao(#)exp(fzo) about Ao(f) and B in a Taylor
series expansion and noting that the joint distribution of vr(Ao(r) — Ao()), Vr(B — B))
converges asymptotically to (V1(¢) + ¢(2) Va, V2) (see (5.6)).

— dQ/E* + {(J — dQ[E(z| R(+)) = Zo]/E>

LEMMA 6.2. Let the survival probability at time t for an individual with covariate z, be
denoted by S(t|zo). Then
(1| 20) = exp — [Ao(1)exp(Bz0)].

Tfle estimate Sfor S(t] z0) is given by exp — [[\o(t)exp( Bz0)]. The random function Vn {exp —
[Ao(#)exp(B20)] — S(|20)} converges weakly 10 a Gaussian process S.,(t) which has mean 0
and covariance structure

COV(S:,(5), Se(t)) = S(1]20)S(s| 20)CoV (Vo (5), Voo (1)), O=<s=t=<M.

Proor. This proof is a simple application of the §-method, Rao (1965), (see, for example,
Breslow-Crowley (1974), Theorem 5).

The above results can be extended to vector valued covariates. Therefore, if 2’ = (zy, - - -,
25), B' = (B1, -+ -, Bp), and the relationship of the hazard function to the covariates is given
by (1.1), then

THEOREM 6.1.  The estimate of the underlying cumulative hazard function Ao(t) is given by

Ao(t) = Yienw) 1/ T ke, exp(B'z).
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The random function vn (Ao(t) = Ao(t)) converges weakly to a Gaussian process V(1) which has
mean zero and covariance structure given by

S

(6.1) Cov(¥(s), V(1)) = f — dQ/E*(exp(B'z), x) + /()X (BW(1),

0

where

() = (i), -5 (1)),
(1) =J' — dQE(z.exp(B'z), x)/E*(exp(B'z), x)),
0
£(B) = (oy, Lj=1,-. > p)
To
oy = J' — dQ[E(z.z,exp(28'z), x) — E(z.exp(B'z)E(z,exp(B’z), x)],

and
B is the estimate of the regressor variables given by Cox,

E7Y(B) is the variance-covariance matrix of \/71(,3 -B).

REMARK. As a consequence of Lemmas A.l and A.2 estimates of the variances and
covariances can be derived by the substitution of the appropriate empirical estimates in the
variance and covariance formulas.

For example, by the appropriate substitution into (6.1) the estimate of the asymptotic
variance for the cumulative hazard function estimate would be

f — 40/ EXexp(B'z. x) + §(0F ()
62 S
=n{Yienw) 1/(Zre,) exp(B'z))?) + &' ()T (1)

where §/(1) = (41(0), -+, $p(0), $1(0) = Sueniw [Srerien 20exp(B2,)/(Srcy exp(fBz,))*] and
%7 is the estimate of the variance-covariance matrix of £ as derived by Cox (1972).
We note that (6.2) is the same as the asymptotic variance derived by Tsiatis (1978).

APPENDIX 1
7. Appendix 1. Let E(g(z), t) be the empitical estimate of E( g(z), ), so that

E(g(2), 1) = Y,er) g(Z)/n.

LeMMA A.l. Let Z be a random variable such that E(g*(Z)) is finite, where g(z) is a
continuous function, then

‘

supo=c<nm| E(g(2), 1) — E(g(2), )] = 0, as.

ProoF. Without any loss in generality we may assume that g(z) is positive. This is because
g(2z) may be written as g*(z) — g (z), where g*(z) = max(g(z), 0), g~ (z) = max(—g(z), 0) are
both positive. Since E(g*(Z)) is finite, this implies that E(g(z)) is bounded. The functions
E(g(2), ) and E(g(2), ?) are both monotone decreasing. E(g(z), ) is bounded and E(g(z), 1) is
bounded a.s., therefore the desired result can be proved exactly as in the Glivenko-Cantelli
lemma (see Loeve (1963) page 28).

The following lemma will prove useful in establishing consistency of certain estimates
which appear in the main body of the paper.

LEMMA A.2. Let X,(t), Yu(t), On(t) be random Sfunctions on the interval [0, M ] that converge
almost surely in sup norm to the functions X(t), Y(t), Q(t). X(¢), Y(t) are continuous functions on
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[0, M]. Q(¢) is a continuous subsurvival function, that is Q(t) is a positive decreasing function
Q(0) = 1. Let f(x, y) be a continuous function from R* — R such that the partial derivatives af/
ax, 8f/dy, exist and are continuous on Rx X R,, where Rx X R, denote the range space of X(t),
Y(¢t) respectively, 0 <t < M. Then

SUPost=M

f f(Xn, V) (—dO,) — f fX, Y)(—dQ)’—»O, as.
0 0

ProoF. The proof of Lemma A.2 is given by Aalen (1976, Lemma 6.1).
Let Z.(t) = Jn[E(g(2), 1) — E(g(2), t)].

LeMMA A3. If Z is a random variable such that E(g%(Z)) is finite, then the sequence of
distributions induced by the random functions Z,(t) are tight.

Proor. Using the standard theory of weak convergence (see Billingsley (1968) page 128) it
suffices to show

7. E[(Zn(t) — Za(t)(Zn(t2) — Za(1))*] = Co(F(t2) — F(11))?
where
F(t) = E(gX(Z)Itr<q), Ost=t=t=T.

Arguing as in Billingsley (1968) page 106, we note that the left-hand side of (7.1) can be
written as

(7.2) nPE[(Tim1 UL )T Ua)?,

where
U.= g(Zz)Iu - E(g(Z)Il), I, = I[Tle[tl.t)]’

Ua = g(Zz)IZi - E(g(Z)Ig), I = I[TlE[t,lg)]-
Due to the symmetry and independence of the Uy’s, (7.2) can be expresed as
(7.3) n[nE(UIU3) + n(n — DE(U)E(U3) + 2n(n — ))EXU, Us)].

We can express
Ui =1[g(Z) - E(g(2)1)I’L + EXg(Z)I)I, i=12,

where I, = 1 — I, therefore
E(UiU3) = E*(g(Z)1)E[[g(Z) — E(g(Z)]:)'I.]
(7.4) + EXg(Z)I)E([g(Z) — E(g(Z)1)I'L1]
+ EX(g(Z)1)EX(g(Z)]x)E(IL]y).

The following inequality

(1) E*(g(Z)1.) < E(gX(2)L.), i=1,2
follows from Schwartz’s inequality. Using (7.4) and (7.5) we get that

(1.6) E(UIU3) = 3E(8(Z)1)E(gX2) L) < 3E’[gXZ)(I + I)];

also

(&) E(UYE(US) < E(gAZ)L)E(gX2)) = E*[gXZ)( + I)],

and

(1.8)  E*UiU») = EXQ(Z)M)EXZ(Z)]2) < E(gX(Z)1)E(g*(2)L) < E*[gX(Z)(I1 + I»)].
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Applying inequalities (7.6)-(7.8) we get n *E[(Tiei Un)*(Tim U2)*] < 6(F(t:) — F(t1))%
The proof is complete upon setting Cy = 6.

PROOF OF LEMMA 4.1. The strong consistency of f, the asymptotic normality of V(8 —
B) and the use of Slutsky’s theorem would prove the desired result upon establishing that the
statistic

K@) = j dO[E(z%"", x)/E¥(e”™, x) — 2E%(ze*", x)/E*(€*"*, x)]
0

is bounded in probability.
Choose 8 > 0 such that E(Z%¢*?) and E(Z%¢**%) are finite where 8’ = 8 + 8. This follows
from Assumption 3.1. We establish that

7.9) E(z%", x) < E(z%", 0) = E(z%¢"*, 0)
(7.10) E¥(zeP, x) < E(2%%°%, x) < E(2%%", 0) < E(z%%*, 0).

The first inequality in (7.10) follows by Schwartz’s inequality, and the last inequality in both
(7.9) and (7.10) is guaranteed with arbitrarily large probability when the sample size is large
enough because of the consistency of £. Since the empirical estimates £(z%e*?, 0) and E(z%*",
0) converge in probability to the bounded quantities E(Z%e#*) and E(Z%¢*?) respectively,
then this implies that K(f) will be bounded in probability as long as E(e””%, x) is bounded
away from 0 uniformly for x € [0, M]. This follows because E@E* x)is a nonincreasing
function of x and by assumption P(T =M) > 0.

APPENDIX 2

8. Appendix 2. Calculation of the covariance structure. The covariance structure Cov(¥(s),
V(t)) will be calculated in three parts;

i)  Cov(Vi(s), Vi(2)), where Vi(s) = Ai(s) + -+ - + As(s), O=ss=<t=M,

(i) Var(Vs), where Vs=Ci+ --: + Cs;

(iii) Cov(Vi(s), V3), O=ss=<M.

(1). Write Cov(V1(s), Vi(2)) as Var(Vi(s)) + Cov(Vi(s), Vi(t) — Vi(s)) where s < t. We use
repeatedly the relationships (2.9), (5.2) and integration by parts.

(a). Var(Vi(s)) = Var([$YdQ/E* — [§ X dE/E* + X(0)/E(0) — X(s)/E(s)) which is equal to

8.1 2 f dQ(r)/Ez(r){ f Cov(Y(r), Y(u)) dQ(u)/ E*(u) — f Cov(Y(r), X(u)) dE(u)/E*(u)

+ Cov(Y(r), X(0))/E(0) — Cov(Y(r), X(s))/E(s)}
82 + 2{ J' dE(r)/E*(r) f Cov(X(r), X(u)) dE(u)/E*(u)
o 0 .

- J' dQ(n/E*(r) f Cov(X(r), Y(u)) dE(u)/ E*(u)

s

- f Cov(X(r), X(0)) dE(r)/E*(r)E(0) + f Cov(X(r), X(s)) dE(r)/EZ(r)E(s)}
(8.3) + Var(X(0))/E*0) + Var(X(s))/E*(s) — 2Cov(X(0), X(s))/E(0)E(s).

We note that the covariances of (5.2) are given as a difference of two terms, a single valued
term and a product term. Therefore, if we substitute the appropriate covariances of (5.2) into
(8.1) through (8.3) then

Var(Vi(s)) = Var'’(Vi(s)) — Var®(Vi(s)),
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where Var®”(¥y(s)) is the evaluation of (8.1)—(8.3) substituting the single valued term of the
covariances, whereas Var®(¥(s)) is the evaluation of (8.1)~(8.3) substituting the product term
of the covariances.

It is easily seen that

(84  Var?(Vy(s) = [ f EdQ/E* - f Q dE/E” + Q(0)/E(0) — Q(s)/E(s)] .
Integrating by parts we get
J dQ/E = Q(s)/ E(s) — Q(0)/E(0) + J' Q dE/E”.

Therefore, Var®(Vy(s)) = 0.
Substituting the single valued terms of (5.2) into (8.1) we get

(83) 2 f dQ(r)/Ez(r){J' E(exp(2Bz), u) dQ(u)/Ez(u)—f Ex(exp(Bz), u) dE(u)/ E*(u)
0 r r
+ Ei(exp(B2), r)/ E(0) — Ei(exp(B2), 5)/ E(S)}~

By using (2.9) we get

J E(exp(2Bz), u) dQ(u)/EZ(u)=f dE:(exp(B2), u)/ E(u)

= Ex(exp(Bz2), 5)/ E(s) — Ex(exp(Bz), r)/ E(r) + f Ei(exp(Bz), u) dE(u)/ E*(u).
Therefore, (8.5) is equal to
86) -2 J; Ex(exp(Bz), ) dQ(r)/E*(r) + 1/E(0) fo s Ex(exp(Bz), r) dQ(r)/ E*(1).
Substituting into (8.2) we get

@7 =2 J' O(r) dE(r)/E¥(r) + 2 J' Ey(exp(B2), ) dQ(r)/ E*(r)
0 0

= 2/E(0) J' Ey(exp(Bz), r) dQ(r)/ E*(r) + 20(s)/ E(s)[1/ E(0) — 1/E(s)].
0

Substituting into (8.3) we get

(8.8) Q(0)/E*(0) + Q(s)/EX(s) — 20(s)/ EQ)E(s).
Adding (8.6), (8.7), (8.8) we get

(8.9) =2 f 0(r) dE(r)/E*(r) — Q(s)/E*(s) + Q(0)/E*(0).

Integrating by parts

s

-2 f Q(r) dE(r)/E(r) = Q(s)/ E*(s) — Q(0)/E*(0) + f — dQ(n/E*(r);
0

0

therefore, (8.9) is equal to [§ — dQ(r)/E*d(r). Thus we show that Var(Vi(s)) = [5 — dO(r)/
EX(r).
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(b). In order to complete the evaluation of Cov(¥y(s), Vi(t)) we calculate Cov(V(s), Vi(z)
= Vi(s)). As in part (a) this is done by evaluating the covariances with the single valued terms
and the product terms of (5.2), say Cov” — Cov®. Also, similar to part (a) Cov® is equal to

Cov®(Vi(s), Vi(t) — Vi(s)) = [f EdQ/E* — J Q dE/E* + Q(0)/E(0) — Q(s)/E(s)]
0 o

X [f EdQ/E* — J Q dE/E* + Q(s)/E(s) — Q(t)/E(t)] =0.

CovP(Vi(s),-Vi(t) — Vi(s)) = Cov‘“( f Y dQ/E? — f X dE/E* + X(0)/E(0)
0 0

— X(s)/E(s), f Y dQ/E* — f X dE/E*?

+ X(s)/ E(s) — X(t)/ E(t)>
=J dQ/Ez{ J E(exp(2B2), u) dQ(u)/ E*

(8.10) —J (exp(Bz), u) dE/E*
+ Ei(exp(Bz), 5)/ E(s) — Ei(exp(Bz), f)/E(t)}

(8.11) - f dE/E“’{ f Ei(exp(B2), u) dQ/E?
- j Q dE/E* + Q(s)/E(s)

- Q(t)/E(t)} + [1/E©) - l/E(S)][J Ey(exp(Bz), u) dQ/E*

(8.12) - f QdE/E* + Q(s)/E(s) — Q(t)/E(t)]-

By (2.9), and integration by parts we get

J' E(exp(282), u) dQ(u)/ E*(u) = f dEi(exp(Bz), u)/ E(u)

= Ei(exp(B2), 1)/ E(t) — Ex(exp(B2), 5)/ E(s) + f Ev(exp(B2), u) dE(u)/ E*(u);

therefore (8.10) is equal to zero. Since [§ dE/E? = [1/E(0) — 1/E(s)], then (8.11) + (8.12) is
also equal to zero. Hence,

Cov(¥i(s), Vi(1)) —Vi(s)) = (8.10) + (8.11) + (8.12) = 0
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Combining the results from parts (a) and (b), we show that

Cov(Vi(s), V() =J — dQ(u)/E*(u).

0

The calculations in parts (ii) and (iii) are mechanically identical to those in part (i);
therefore we will only state the results and leave the details to the reader.
(ii) The variance of V3 is equal to
Ty

Ty
Var(Vs) = f —dQ Var(z|R(t)) = J — dQ{E(z” exp(Bz), 1)/ E(t) — [E:(1)/ E@)]*).

0 0
(iii) The covariance

Cov(Vi(s), V3) =0 forall O0=s=M.
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