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ROBUST TESTS FOR SPHERICAL SYMMETRY AND THEIR
APPLICATION TO LEAST SQUARES REGRESSION

By M. L. KiNG

Monash University

Invariance is used to show that Kariya and Eaton’s test for multivariate
spherical symmetry is UMP invariant against elliptically symmetric distributions.
Also both the null and alternative distributions of the test statistic are found to be
the same as those which occur when the sample is normally distributed. UMP
and UMPU tests for serial correlation derived assuming normality are found to
be even more robust against departure from this assumption than was recently
demonstrated by Kariya. When applied to the linear regression model, these
results give useful robustness properties for Kadiyala’s T'1 test and the Durbin-
Watson test.

1. Introduction and Notation'. Following Kariya and Eaton (1977), let O(n) denote the
group of n X n orthogonal matrices in Euclidean n-space, R", and let #(x) denote the
distribution law of an n X 1 random vector x. A random vector x has a spherically symmetric
distribution if #(x) = L(Gx) for G € O(n). Let #; denote the class of spherically symmetric
pdf’s, ie., Ft = {f€ F"| f(x) = f(Gx), x € R", G € O(n)} where #" is the class of all pdf’s
with respect to the Lebesgue measure on R".

In order to introduce the problems considered in this paper, set

Qo = {q| ¢ is a function on [0, ®)},
01 = {q|q € Qo and ¢ is nonincreasing},
0: = {q|q € Qi and ¢ is convex},
and, for any given n X n positive definite matrix, Z, let
FUD) ={f€ F"|fx)=|Z]7*q(x'27'x), ¢ € Qo},
FD) = {f€ F'|f(x)=|2]*q(Z7'x), 9 € 01},
FHE)={f€ Z"|f(0)=|Z[*g(x'27'x), g € 0}

The term elliptically symmetric often is used to describe a distribution with pdf belonging to
Fi (2).

Suppose x € R" is an observed random vector with pdf 4. The problem of testing Ho : A
€ #i against h € F7 (Z), £ # 0°l,, has been studied by Kariya and Eaton (1977) who
found that the test which rejects Ho for small values of ¢t = x’S™'x/x’x is UMP (uniformly
most powerful), and that the null distribution of ¢ is the same as that when Z(x) is N(0, I,).
In Section 2, we show that the test is also UMP invariant against the more general alternative
hypothesis, H, : h € 5 (Z), £ # ¢°I,. An interesting corollary of this result is that the
distribution of ¢ under H, is identical to that when #(x) is N(0, Z).

When 2 is of the form

(L.1) SA) =1, + A4
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' Throughout we use upper-case symbols to denote matrices while vectors are represented by lower-
case symbols.
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(1.2) with A € A = {A € R|Z(\)"’ positive definite},
A # ¢°I,, A # 0 and A unknown, Kariya (1977) has shown that the test statistic
s=x'Ax/x'x

with c.r. (critical region) s < ¢, or s > ¢, provides a UMPU (UMP unbiased) test against the
alternative hypothesis # € #3 (yZ(A)), y > 0, A # 0. We show that this test is also UMPU
invariant against the more general alternative, H; : h € #5 (YZ(A)), y >0, A #'0 and that the
distributions of s under H; are the same as those when #(x) is N(0, Z())), for each nonzero
value of A.

The remainder of the paper is devoted to the application of these results, through invariance,
to the linear model y = XB + u, where X is an n X k fixed matrix of rank k. In Section 3, we
derive a UMP invariant test of h € %5 versus h € #¢(Z), where A is the pdf of the regression
disturbance vector, u, and X is any fixed, positive definite matrix. This generalizes a result
obtained by Kadiyala (1970) for normally distributed disturbances and is followed, in Section
4, by a generalization of Kariya’s (1977) theorem on the problem of testing h € %%
versus h € Z3(y2(A)), y > 0 when either A > 0 or A 0 and Z(]) is given by (1.1) and (1.2).
The final section deals with the application of these results to the Durbin-Watson test.

2. The Main Results. Suppose x is an n X 1 random vector with pdf 4. The problem of
testing Ho : h € F5 against H, : h € 5(2), £ # 0°I, remains invariant under transformations
of the form

g(x) =ax

where a is a positive scalar. A maximal invariant statistic is

w(x) = x/(x'x)"?

since w(x;) = w(x2), where x; and x; are n X 1 vectors, implies ax; = x, where a = (x5x2)"?/

(xix:)"A

THEOREM 1. For a fixed, positive definite, n X n matrix, 2, when testing Ho : h € F§
versus H, : h € F4(2), = # 0°I,, the test which rejects Ho for small values of

t=x'2""x/x'x

is a UMP invariant test.

ProoF. Under Ho, w(x) is uniformly distributed on C, = {x|x € R", x’x = 1}. Hence,
w(x) has the same distribution for all # € % including pdf’s of the multivariate normal
distribution.

The pdf of y = w(x) under H, can be shown to be

f(3) = WL(n/2)n ™| 2|72 (Y2 ly) 2

with respect to the uniform measure on C,. Therefore, under H,, w(x) has the same
distribution for all A € #¢ (2) including those of the multivariate normal distribution with
covariance matrix ¢°Z, ¢ # 0.

Since all invariant statistics can be expressed as functions of w(x), we appeal to the
corresponding known result for normally distributed x (Lehmann and Stein (1948)) to
complete the proof.

COROLLARY. The null distribution of t is identical to the distribution of t when £(x) is N (0,
I,) while the alternative distribution of t corresponds to that when ¥ (x) is N(0, Z).

Theorem 1 can be extended to cover the following situations when X is not fixed (see
Kariya and Eaton (1977)): (i) £ = 0® Zo, Z known; (ii) = = \i(I, — M) + A2 M, M* = M,
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M known, where A; > A2 > 0 (or A2 > A; > 0) and (iii)) 7' = A1, + A4, 4 known, A,
> 0, A2 > 0 such that X is positive definite.

In the latter case, using the case (i) extension, we can write =" in the form of (1.1) and
(1.2). For a two sided test against the alternative hypothesis which allows A in (1.1) to make
any nonzero value, the arguments used to prove Theorem 1 can be applied to generalize
Kariya’s (1977) Theorem 4 to the following:

THEOREM 2. The test statistic
s=x"Ax/x'x

with c.r. s < ¢y or s > ¢, provides a UMPU invariant test of Hy : h € %6 against H, : h €
FHYEN)), v > 0, A # 0, where Z(A) is given by (1.1) and (1.2), A # 0°I,, A # 0.

COROLLARY The null distribution of s is the same as when ¥£(x) is N(O, I,) while the
alternative distributions of s correspond to those when ¥(x) is N(0, Z(A)), A # 0.

3. Application to the Linear Model. In this section, Theorem 1 is applied to the linear
regression model

3.1 y=XB+u

where X is an n X k fixed matrix of rank k, 8 is a k X 1 vector of unknown parameters
and u is an n X | disturbance vector. This allows us to extend a result of Kadiyala (1970)
obtained assuming normally distributed disturbances.

Let b denote the ordinary least squares estimate of 8, i.e., b = (X’X)™' X’y and z the vector
of associated residuals, i.e., z =y — Xb = My = Mu, where M = I, — X(X'X)™'X’. Suppose
the unobservable error term u has pdf h. We shall consider the problem of testing Ho : h €
F¢ versus H, : h € #3(Z) where X is fixed.

This problem is invariant to transformations of the form

(3.2 y*=yy+ Xy

where o is a positive scalar and yis a k X 1 vector.
Following Kadiyala (1970), let P be an orthogonal matrix such that

’r_ In—h 0
(3.3) RMP-—[W 0;
and
(3.4) PP’ = P'P=1,.

Let P be partitioned as

P,
(3.5) P=[&]

where Py is (n — k) X n and P is k X n. Note that

e
e[l

and Piu = P,z follows from P\M = P,. From (3.4) we have P/P, = I, — P}P, . Post-
multiplying by M yields

(3.6) PiP =M.

since (3.3) and (3.4) imply
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37 w= Pyz/(z P, P z)"
= Pyu/(u'Pi Pu)"?

is a maximal invariant with respect to transformations of the form (3.2).
Let g be the pdf of v = Pu. Under Ho, g € #5 where m = n — k (see Lord (1954)) while
Kelker (1970) has shown that under H,,

(3.8) g € FZ(P,ZP)).

Since the maximal invariant, w, is a function of v, the principle of invariance and Theorem
1 imply that the test with c.r.

t=v(PIZP)) v/vv<e

is UMP invariant where invariance is with respect to transformations of the form (3.2).
We now shall show that this test is equivalent to the likelihood ratio test derived assuming
normally distributed disturbances. We require the following result from Rao (1973, page 77).

Lemma 1. V7' = VIUU'V'UY'U'V™ = T(T'VT)™'T’ where V is any n X n positive
definite matrix and U and T are n X k and n X (n — k) matrices respectively such that if
W= (U:T) then WW=WW’ = 1I,.

LeMMA 2. ¢t =V (P.ZPY) "' v/v'v=14d'27"/z'z where P is any (n — k) X n matrix for which
(3.3), (3.4) and (3.5) hold and i is the vector of generalized least squares residuals, i.e., i = y
- X(X'Z2'X)'X'= Y.

ProOF. Applying Lemma | with T = P{, U = P; and V = Z and using (3.6) we have

t=v'(P.ZP) v/v'y
=u'P{(P\ZP{)"'Piu/u’P{Piu
=u/(Z7 =SSPy P.Z ' P3) ' P27 Yu/u'Mu
=0/ -ZT'XXZTX)' X' Z Yu/u'Mu
=u'S'/z'z.
The second last equality follows because we can write P; = XG where G is a k X k nonsingular

transformation matrix.
The results of this section can be summarized as follows:

THEOREM 3. Let h be the pdf of the disturbance vector, u, in the linear model (3.1). For
testing Ho : h € #§ versus H, : h € F5(Z), where X is a fixed positive definite matrix, the test
which rejects H, for small values of

t=a'S"a/z'z

where u are the generalized least squares residuals assuming covariance matrix Z and z are the
ordinary least squares residuals, is UMP invariant.

COROLLARY. The null distribution of t is the same as that when ¥(u) is N (O, 1,,) while its
alternative distribution is identical to that when ¥(u) is N (0, 2).

4. Testing for Serial Correlation in the Linear Model. =~ Obviously Theorem 3 can be
extended to situations where = = 0°Z, with ” unknown and =, known. In the more interesting
case where =(A) " is given by (1.1) and (1.2) we need the restrictive assumption that the column
space of X is spanned by some k latent vectors of 4. The following generalizes Kariya’s
Theorem 5:
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THEOREM 4.  Let h be the pdf of the disturbance term, u, in the linear model (3.1). When the
column space of X is spanned by some k latent vectors of A in (1.1), then for testing Ho:h €
Fo versus Ho:h € 75 (YZ(N)), y > 0, A > 0, the test statistic

4.1 s=12'Az/z'z

with c.r. s < co, where z is the ordinary least squares residual vector, is UMP invariant unless A
= w’I, or A = 0 and for testing Hy: h € F§ versus Hy:h € Z3(yZ(N), >0, A # 0, thec.r. s
< ¢, ors > ¢z is UMPU invariant unless A = 0 or A = w?I,.

ProoF. The one-sided test is a straight forward application of Theorem 3 since it is well
known that when the column space of X is spanned by some k latent vectors of 4, # and z
coincide (see, for example, Watson (1967)).

That the two-sided test is UMPU invariant can be verified by following the proof of
Theorem 3 and noting that when the column space of X is spanned by some k latent vectors
of A, P, can be chosen so that its rows correspond to the remaining n — k latent vectors of
2(A) (and hence of A4). Then

(PZNP)™ = PZN) P
=In+ APIAP]
and (3.8) becomes
gE Ze(y(In + AP1AP)) ")
allowing Theorem 2 to be applied.

COROLLARY. The null distribution of s is the same as that when ¥(u) is N(0, I,) while its
alternative distributions correspond to those when ¥(u) is N(0, Z(A)), A # 0.

The properties of the s test in the neighbourhood of A = 0 are also of interest.

THEOREM 5. Let h be the pdf of the disturbance vector, u, in the linear model (3.1). For
testing Ho: h € #5 versus Ho:h € 75 (yZ(N)), v > 0, A > 0, where Z(A) is given by (1.1) and
(1.2), the test statistic (4.1) with c.r. s < co is a locally best invariant test in the neighbourhood of
A =0 unless A = w’I, or A = 0.

PrOOF. Let fo(w) denote the pdf of the maximal invariant w under Ho. With respect to the
uniform measure on Cn, fo(w) has the form,
fo(w) = %I (m/2)m ™",
Let fi\(w) denote the pdf of w under H,. It has the form
Saw) = BI(m/2)ymn =" PLLEA) P |72 (W' (PLEA) P ) 'w)™™?

with respect to the uniform measure on C,.
The Generalized Neyman-Pearson Lemma implies that a locally best invariant test is given
by the c.r.

(42) S LAMfo00] heo > cb.
ga):fx(w) [r=0

a
= —1/2[5 (|PENPL])] Plz(A)Pu‘ﬁ(w)]

A=0
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- ; {a—a}: {W'(P1>30\)P1’)‘w}{W'(Plz()\)Pf)_'w}T‘fA(W)]

A=0
= —Y%[c1 + mw' P AP{w]fo(w)
where £(A) = (I, + AA)™' and ¢} a scalar constant. Clearly (4.2) is equivalent to the c.r. s <

Co.

5. Application to the Durbin-Watson Test. Suppose the components of the disturbance
vector of the linear model (3.1) are generated by the first-order autoregressive scheme

U = pu—1 + e t=2,---,n
where

ul=el/(1—p2)l/2,|p|<l.

Lete= (e, « -, e,), then Tu = e and u = T 'e where
T= a1=-p»"” 0 0 ... 0 0
—p 1 0 0 0
0 - 1 0 0
0 00 ... —p 1

Durbin and Watson (1950) have shown that their statistic d = z'4,z/z'z with c.r. d < do
where

A= 1 -1 0o ... 0
-1 2 -1 0
0 -1 2 0
2 -1
0 0 0 ... -1

is an approximately UMP test of Ho:p = 0 against H,:p < 0 when the column space of X is
spanned by k latent vectors of 4, and Z(e) is N (0, o’I,). Kariya (1977) generalized this result
to g € #1, where g is the pdf of e, and also found that, with the same restriction on the X
matrix, the two-sided Durbin-Watson test is an approximately UMPU test of Ho: p = 0 against
Hi:p # 0 when g € #3 . For general X, Durbin and Watson (1971) have demonstrated that
their one-sided test is locally UMP invariant in the neighbourhood of p = 0.

Suppose g € F; . Then we can write (see Kelker (1970)),

3.D gley=gq(ce), g€ Do
and the pdf of u is given by
h(u) = | T|q (' T’ Tu)
=|Z|7*qW'E'u)
where 7' = (T'T)

=1 - 0 0
-p 1+p -p 0

0 -p 1+ p? 0
L+p° —p

0 0 0 v = 1

= (1=p)’L +pA, +p(1 = p)C
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and
c=[t o ... 0 0
0 0 0 0
00 0 0
00 -« 0 1

Following Durbin and Watson (1950), approximate =" by 27" = (1 — p)’I, + pA,. If we
assume g € ¢, Theorem 4 implies that when the column space of X is spanned by k latent
roots of A, the one-sided Durbin-Watson test is an approximately UMP invariant test of Ho
against H, while the two-sided test is an approximately UMPU invariant test of H, versus
H. For general X, that the one-sided Durbin-Watson test is approximately locally best
invariant in the neighbourhood of p = 0 follows from Theorem 5. Note that for a given value
of p, the distribution of d is independent of the form of ¢ in (5.1) and hence can be calculated
assuming Z(e) is N(0, ¢°I).

Application of Theorem 4 and Theorem 5 will yield similar results for the higher-order
Durbin-Watson type statistics studied by Wallis (1972), Vinod (1973) and King and Giles
(1977).
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