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AN ANTIPODALLY SYMMETRIC DISTRIBUTION
ON THE SPHERE!

By CHRISTOPHER BINGHAM
The University of Chicago

The distribution ¥(x; Z, M) = const. exp (tr (ZMTxx”M)) on the unit
sphere in three-space is discussed. It is parametrized by the diagonal shape
and concentration matrix Z and the orthogonal orientation matrix M. ¥
is applicable in the statistical analysis of measurements of random un-
directed axes. Exact and asymptotic sampling distributions are derived.
Maximum likelihood estimators for Z and M are found and their asymp-
totic properties elucidated. Inference procedures, including tests for iso-
tropy and circular symmetry, are proposed. The application of ¥ is
illustrated by a numerical example.

1. Introduction. Through an obvious correspondence, a completely specified
direction in 3-space is equivalent to a unit vector X € R;. X in turn defines a
point on the unit sphere S. Thus a probability distribution that describes
random variation in observations of directions can be reduced to a probability
distribution dF(x), with x € S.

DerinNITIONS. A distribution dF(x) on S is said to be circularly symmetric about

axis pp e §if x,"p = x," g implies that dF(x,) = dF(x,). A distribution dF is said
to be antipodally symmetric if dF(—x) = dF(x), all xe S (i.e., opposite points
on S have equal probability).
Many measurements of directions are incomplete in that only an axis is speci-
fied and not a direction along that axis. There is an obvious correspondence
between distributions that may describe random variation of such measure-
ments and antipodally symmetric distributions on S.

The number of probability distributions on the sphere that have been pro-
posed is small—the Fisher—von Mises distribution (Arnold (1941), Fisher (1953)),
the Brownian motion distribution (Arnold (1941), Roberts and Ursell (1960)),
and the girdle distribution described independently by Dimroth (1962, 1963)
and Watson (1965). These are all circularly symmetric about some axis. Only
the Dimroth-Watson distribution is antipodally symmetric, although antipodally
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symmetric relatives of the others (formed by (dF(x) 4 dF(—x)) have been
suggested.

We are concerned here with a generalization of the Dimroth-Watson distribu-
tion. The family to be examined is, in one parametrization,

(1.1) ¥(x) dS/4r = (K(A))™* exp(xTA4x) dS/4= , xesS,

where A is a symmetric 3 by 3 matrix, dS represents Lebesgue (invariant) measure
on S, and K(A) is a normalizing constant. ¥ is antipodally symmetric, but is
not, in general, circularly symmetric about any axis. ¥ can be shown to be
identical to a distribution proposed by Breitenberger (1963) as one analogue on
the sphere of the ordinary normal distribution. We shall see that — 4 can be
assumed to be positive definite. Thus one way of describing ¥ is as the con-
ditional distribution given ||x||* = 1, when x has a trivariate normal distribu-
tion with zero mean and covariance matrix —4A4".

We can rewrite (1.1) as follows. Since 4 is symmetric, 4 = MZM", where
M = [, p,, p;]is orthogonal and Z = diag [{;, {,, {;]. Thenx"4x = tr Axx" =
tr MZMTXX™ = tr ZM7"xx"M = ¥ 3_, {(p,"x)*. We will take the standard form
of ¥ to be

(1.2) W(x; Z, M) dSjAn = (Fye(Z))~* etr (ZMTXX™ M) dSj4r ,

where etr («) = exp(tr (+)). The normalizing constant is independent of M and
has been written as a function of Z, in conformity with the notation in Section
2. For definiteness, subscripts will be assigned to the {’s in such a way that
L6t

The function F,(Z) and related functions are discussed in Section 2. Various
particular and limiting cases are discussed in Section 3. Sections 4 and 5 examine
the exact and asymptotic sampling distributions of various statistics of interest.
In Section 6, maximum likelihood estimators of the parameters are shown to
depend on the eigenvalues and eigenvectors of the cross product matrix XX” of
the observations. These estimators are shown to be asymptotically normal and
their asymptotic covariance structure is derived. Inference procedures, includ-
ing tests of isotropy and circular symmetry as well as confidence regions for
parameters, are developed in Section 7. The application of ¥ is illustrated by
a numerical example in Section 8.

Results concerning asymptotic normality are stated throughout more or less
in the form “As v — oo, T is asymptotically N(6, v~1%),” since this is the form
in which they are likely to be applied. Such statements are, of course, to be
interpreted as “v=#(T — @) converges in distribution to N(0, Z) as v — oo0.” Simi-
larly, statements concerning asymptotic independence of random quantities are
to be interpreted as meaning that the joint distribution of the variates, suitably
normalized, converges to the appropriate product of limiting distributions.

2. The normalizing constant and related functions. The normalizing constant
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is expressible as
2.1) Foo(Z) = (4r)~' (s etr (Zxx7) dS = \F\(3; 3; Z),

where ,F, is a confluent hypergeometric function of matrix argument as de-
fined by Herz (1955) and expanded in zonal polynomials by Constantine (1963).
Fu(Z) is symmetric in the {’s. A particular case is

(2'2) Fooo(diag [£,0,0]) = 1F1(%; %: 0,

where | F, is now an ordinary confluent hypergeometric function (Erdélyi (1953),
page 248). Readily computable power series and asymptotic series for F,, and
its derivatives can be found (Bingham (1964)).

LemMmA 2.1. Let {, be arbitrary and let Z=7_ Co1yy where I, is the identity
matrix. Then

(2.3) Fo(Z) = exp(—Co)Foo(2)
and
(2.4) W(x; Z, M) = W(x; Z, M) .

Proor. Consider the exponent in (1.2): tr ZM x"M = tr ZM"xx"M +
Cotr MTXX™M = tr ZMTXX"M + {||M7x|[* = tr ZM"xx"M + {,, since an or-
thogonal transformation is length preserving. Thus

V(x; Z, M)[Ar = [Fouo( Z)]7" exp(Lo) Foo(Z2)¥ (x5 Z, M)/4r .

Since ¥/4x integrates to unity on both sides, (2.3) and (2.4) follow. []
Lemma 2.1 points up a degeneracy in the specification of ¥. The shape pa-
rameters {; are determined only up to an additive constant. When uniqueness
is convenient we can impose a restraint. For the numerical example in Section
8, {; = 0 is imposed.

We use the following notations for the derivatives of Fy(Z):
(2.5) Fiii(Z) = [115-1(9/98,)'91Foui(Z) »
and, interchangeably,

(2.6) Fiip () = i (008, )1F0(Z) s FO(Z) = Foo(Z) -

ria i
The logarithmic derivatives of Fy,(Z) are denoted by

2.7 Yiu(2) = [115-0(9/3C)5 1Yl Z) »  Yoo(Z) = log Fun(Z)
and, interchangeably,

(2.8) Y (Z) = [IIim QIS )1Y(Z) . YO(Z) = Yo(Z) -

LEMMA 2.2. Let X = [x,, X,, x;]” be distributed according to W(x; Z, I,). Then

(2.9) Figryi( D) Fo( Z) = E[(%°)1(x,")2(x57)'s]
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and

(2.10) Yol Z) = Boa (60 X2 %)

the joint cumulant of order (i, iy, i,) of random vector [x;*, x;}, x;*]".
Proor. From (2.1) and (2.5),

(2.11) Fiii(Z) = (4m)7 g xPx,"x, " etr (Zxx7) dS .

(2.9) now follows from (2.11) and (1.2).
Using (2.2) and Taylor’s theorem, (2.10) follows from

log E[exp (2251 t;x")] = 1og Fou(Z + T)[Fo(Z) = Yyo(Z + T) — Yoi(£)
where T = diag [1,, t,, t,]. [

Lemma 2.3. (a) The following equations are valid:

(2.12) Fivrpi(Z) + Fi iy (Z) + Fi gy i,0(£) = Fiy0(2) 5

(2.13) Y, NZ) = F,;"Z)[F*(Z) >0, Jj=12,3;

(2.14) LY, N2)=1;

(2.15) 2L YP(Z) =0, k=1,2,3;
(b) The matrix [YZ(Z)]; ;<5 is of rank 2 and is nonnegative definite. Moreover

(2.16) YE(Z) = F(Z)FNZ) — Y Z)Y,(Z), i =1,2,3;

and

(2.17) Y@ (Z) >0, j=12,3.

(c) Let Z be as in Lemma 2.1. Then
2.18) YO(Z) = —C, 4+ YO(Z) and YV . (Z) =Y . (Z), k=1.
)

J1dg dg d1dgedg =
Proor. Since x* 4+ x,* 4+ x = 1, (2.12) follows from (2.11). (2.13)is clear.
Dividing (2.12) with i, =i, = i; = 0 by F,(Z) yields (2.14) and then (2.15)
follows by differentiation with respect to {,. Lemma 2.2 and the properties of
covariance matrices imply (b) since the vector [x;?, x%, x,]* lies in a linear
manifold of rank 2. (2.18) follows from (2.3) and the definitions of the Y
functions. []
The proof of the following lemma depends on the power series expansion for
Fy(Z) and will be omitted.

LemMA 2.4, For arbitrary Z = diag [{,, {,, (] and i + J,
(2.19) FYZ) — F;"(Z) =2, — L)FR(Z) .
CoRrOLLARY. When (, + (;,

(2.20) Aiy(2) = 3Y,2(2) = Y2 (D))E - €))
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where

(2.21) A5(Z) = F(Z2)[F(Z)

J

Proor. This follows immediately from (2.19) and (2.13). []

3. Particular and limiting cases. When Z = {,I,, ¥(x; Z, M) = 1 and hence
W dS/4r is the uniform or isotropic distribution on S. In particular this is true
if Z = diag [0, 0, 0].

When {, < ¢, = ;, (2.3) (with {, = ;) and (2.2) imply that ¥ reduces to

3.1 O(x; —&, po) dS[An = F\(}; 3, —&)™  exp(—k(p"x)") dS/4rn ,

where £ = {, — {, = 0 and g = g,. This is the Dimroth-Watson girdle dis-
tribution in the form discussed by Watson (1965). For large « (see Theorem
3.1 below), the latitude of x (taking g as pole) 2 =~ sin 4 = p”x is approximately
N(0, (2£)7%), independently of the longitude which is uniformly distributed on
[0, 27). This is, in fact, essentially the form in which Dimroth (1962) intro-
duced the distribution.

When {, = {, < {,, T reduces to

(3:2) $(x; 7, p1) dS[An = (Fi(3; 35 7)) ™" exp(c(p"X)’) dS[4z

where ¢ = {; — {; = 0 and g = g,. This can be considered to be a polar ver-
sion of the Dimroth-Watson distribution, being concentrated with circular sym-
metry around g and — g. By allowing z in (3.2) (or # in (3.1)) to vary between
— oo and 4 oo, both versions of the Dimroth-Watson distribution are obtained.

When &, =, — {, and «, = {; — {, are large but not equal, ¥ tends to be
concentrated, without circular symmetry, in a “girdle” along the “equator”
orthogonal to g, and is a generalization of the Dimroth-Watson girdle distribu-
tion. When 7, = {; — {, and 7, = {, — {, are large but not equal, ¥ is concen-
trated near g; and — g, and generalizes the polar form of the Dimroth-Watson
distribution.

THEOREM 3.1. Define spherical coordinates t, and t, by X" M = [cos t,, sin t,
COS 1y, sin ¢, sin t,]. Let x be distributed accordingto W . Then, ask = §(k, + &,) — co
while 0 = }(x, — &,) remains bounded, z = cos t, is asymptotically N(0, (2x)7") in-
dependently of t, which has the limiting distribution const exp (0 cos 2t,) dt,.

PRrOOF.
¥(x; Z, M) dS/4r = const exp[(x, cos® 1, + &, sin’ t,) sin’ ¢,] sin ¢, dt, dt,
= const exp(x sin® t,) exp (0 sin® #, cos 2t,) sin ¢, dt, dt,
= const exp(—«z®) dz exp[(1 — 2z)d cos 21,] dt, .

As £ — oo while d remains bounded z* = O,(x~') and hence the factor (1 — 2%
in the exponent may be ignored. The conclusion follows immediately. []

THEOREM 3.2. Lety, = p,"x and y, = p,"X, and let x be distributed according
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to W. Then, as t,— o0, i = 1,2, y, and y, are asymptotically independently
MO, (2¢).

Proor. W(x; Z, M) dS[4r = const exp(—1,y, — 1,0,5)(1 — y,* — y?)~tdy, dy,.
For large 7, and ¢,, y; = O,(r;™"), i = 1,2. Thus the factor (1 — y? — y,»)~
can be ignored without asymptotic error. []

Theorems 3.1 and 3.2 to some extent overlap in their application to finite
values of the {’s, because large 7, and r, can be viewed as large but bounded
7, and 7; — co. This last is equivalent to the conditions of Theorem 3.1. This
relationship reflects the fact that a distribution that is strongly concentrated in
an elliptical pattern near g, and — g, can also be considered to be a girdle dis-
tribution with a high degree of circular asymmetry near the “equator” defined
by g, and ;.

4. Exact sampling distributions. Throughout this and subsequent sections,
we assume that the 3 by n matrix '

(4.1) X =[xy, Xy -+, X,,]
represents a random sample of n > 3 unit vectors x, distributed according to
¥(x; Z, M).

LEMMA 4.1. The sampling distribution of the cross product matrix XXT =
PIIS & FE L
(4.2) dG,(XX"; Z, M) = [Fyy(Z)]™" etr (ZM?XXTM) dH,(XXT)
where dH,(XX") = dG,(XX"; 0, L) is the sampling distribution of XX" in the case of
isotropy.

Proof. The sampling distribution of XX7 is
dG,(XX"; Z, M) = §yur I3 [¥(x;; Z, M) ds;/ar],
where the integral is over the manifold defined by holding XX” fixed. From
(1.2)
72 W(x5; Z, M) = [Fooo(Z)]" exp (X7, tr ZMTx,x,” M)
= [Foo(Z)]~" etr (ZMT XX M).

Since dH,(XXT) = (yyr [17-,[dS;/4x], the result follows. []
The exact form of dH,(XX7) is unknown, although Stephens (1965) has inves-
tigated the distribution of the diagonal elements of XX7.

With probability one, the symmetric matrix XX7 is positive definite and can
be factored as
(4.3) XXT = MOMT ,
where M = [4,, £,, f2,] is orthogonal, Q = diag [w,, w,, ®;], and 0 < o, < @, <
o, < n. Equivalently

(4.4) Q = MTXX'M .
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The columns £, of M are the eigenvectors of XX” with eigenvaluesw,,i = 1,2, 3,
and are uniquely determined (with probability one) up to multiplication by =+1.
When convenient we may assume that A represents a proper rotation, i.e.,

The following identity will be useful:

(45) trQ = §»=1 w; =n.
LEMMA 4.2. In the isotropic case (Z = 0), M and Q are independent. In faci
dH (XXT) = dF,(Q; 0)(8z*)~YdM)* ,
where (8%~ (dM)* is the invariant (Haar) probability measure on the group O*(3)
of proper orthogonal matrices (James (1954)), and dF,(Q; 0) defines a probability
measure on the space
(4.6) {Q = diag [, 0,, 05], 0 < 0, < 0, < @;, 0; + @, + 0, = n}.

Proor. Isotropy implies that both the marginal distribution of A7 and its
distribution conditional on Q are invariant under M — H”M, H ¢ 0*(3). Thus
both distributions must be (87%)~}(dM)* (James (1954)). This implies independ-
ence. The indicated decomposition follows immediately. []

THEOREM 4.1. The joint distribution of Q and M is
4.7 [Foo(Z)]7™ etr (ZM™MQM?™ M) dF,(Q; 0)(8z*)~(dM)* ,
where dF, and (dM)* are as in Lemma 4.2.

Proor. The theorem follows directly from Lemmas 4.1 and 4.2. ]

CoOROLLARY. The marginal distribution of Q is
(4.8) dF,(@; Z) = [FuoZ)]™" Fs(Z, Q) dF,(2; 0) ,
and the conditional distribution of M given Q is
(4.9) O(M; MZM" | Q)(8x?)~Y(dM)+

= [,Fy®(Z, Q)] ! etr (ZM*MQM" M)(8x*)~Y(dM)* ,
where
(4.10) o Z, Q) = (87%)7 (44, etr (ZHQHT )(dH)*
is a generalized hypergeometric function of two matrix arguments (Jaines (1964)).

PRrOOF. (4.8) follows from (4.7) and (4.10) by making a change of variables

from M to H = M"M. (4.9) is then obvious. []
A zonal polynomial expansion for ,F® was given by James (1960 and 1964).
It enters as a factor in the distribution of the eigenvalues of a Wishart dis-
tributed matrix. ® can be considered to be an analogue of ¥ on 0*(3), and is,
after suitable identification of parameters, the distribution of the eigenvectors

of a Wishart distributed matrix conditional on its eigenvalues. Anderson (1965)
gives an asymptotic series for (F,® that is valid for large values of nA,;, where

(4.11) A = = ) — o)/n, 1Si<js3.



1208 CHRISTOPHER BINGHAM

Bingham (1972) has conjectured a series of products of confluent hypergeometric
functions. Although the factor dF,(Q; 0) is unknown, likelihood inference pro-
cedures derived from (4.8) are possible since the factor depending on Z is known.

5. Asymptotic sampling theory. The results in this section are largely based
on the following theorem.

THEOREM 5.1. Let X be as in (4.1). Define x,;(M) by
(5.1) MTXX™M = [p" XXTp;); <5 = [Xi;(M)]; j<s -
Then as n — oo, the vector
(5-2) T(M) = n7'[x,(M), xp5(M), x35(M), X1o(M), x,5(M), x59(M)]"

is asymptotically normal with expectation and covariance matrix

(5.3) E[T(M)] = [Y,'"2(2), Y,V (2), Y,'*(Z), 0,0, 0]",

(5.4) Cov [T(M)] = n~'T'(Z) = n~*block diag [T'\(Z), I'y(Z)],

where

(5.5) T(Z) = [Y2(D)]: 50

(5.6) I'(Z) = diag [4,(Z), A(Z), An(Z)], A (Z) asin (2.21).

ProOF. Since MTXX"M = ¥ »_, (M7x;x,;”M), T(M) = t(M) is the average
of n bounded i.i.d. random vectors t;(M) where t; (M) is related to M"x,x;”M
in a similar way as T(M) is to M"XX"M. By the Central Limit Theorem, T(M)
is asymptotically N(E[t;(M)], n=* Cov [t;(M)]). When x = [x;, x,, x,]” is dis-
tributed according to W(x; Z, M), M"x is distributed according to W(x; Z, ).
By symmetry, when M = I, E[x,x;] =0, i # j, and E[x,x;x,x,] =0, when
only one pair of subscripts are the same. The remainder of the result then
follows from Lemma 2.2. []

COROLLARY. Let Z = 0 (isotropy), M e O*(3) arbitrary, and T(M) defined by
(5.2). Then as n — oo, T(M) is asymptotically normal with

(5.7) E[T(M)] = [}, %,50,0,0]",
(5.8)  Cov[T(M)] = n—'T(0)
' = (45n)~* block diag [6], — 2117, 31}], 1=10[1,1,1].

ProoF. When Z = 0, (5.3) and (5.4) reduce to (5.7) and (5.8). [J
THEOREM 5.2. Define
(5.9) X2 = (15/2n) tr (XX — (n/3)1,)* = (15/2n) Y33_, (w; — n/3)*.

Then when Z = 0, as n — co, X,? is asymptotically distributed as y*(5) (chi-squared
on 5 degrees of freedom).

ProoF. A generalized inverse (see Rao (1965), page 20) to I'(0) in (5.8) is
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'~ = (15/2) block diag [];, 21,]. Using the preceding corollary and Rao (1965,
page 443), letting T = T(L,), n(T — E[T])*T'~(T — E[T]) is asymptotically x*(5)
since I'(0) has rank 5. Putting x,; = x,;(1,), this is (15/2n) >32_, (x,, — n/3)* +
(15/n) Sie; x35 = (15/2n) tr (XX7 — (n3)LY. [

Theorem 5.2 can also be proved directly from the asymptotic distribution for
Q when Z = 0, as given by Anderson and Stephens (1973).

Lemma 5.1. Let {, = {, < {, (circular symmetry about p,). Then as n — co,
7Y (xy (M) — x,(M)) and n='x,,(M) are asymptotically independent N(0, n='A,,(Z))
and independent of n~'x;,(M) which is N(Y,""(Z), n='Y$(Z)). A similar result holds
when £, < §, = (,.

Proor. By symmetry, when {, = {,, the joint distributions of (x,,(M), x,(M))
and (x,(M), x;,(M)) are identical. This implies that E[x;,(M) — x,(M)] =0
and Cov [x,,(M) — x,(M), x;5(M)] = 0. By Theorem 5.1 Var[{(x,(M) —
Xpo(M))] = I(YP(Z) + YE(Z) — 2Y((Z)). When {, = (, thisis in(YP(Z) —
Y@(Z)) = 4n(F(Z) — FR(Z))/FO(Z) = JnE[(s"X)" — (s"X)(pe"x)]. Tt s
easily checked that when (, ={,, E[("x)!] = 3E[(g,"x)*(&,"x)*]. Thus
Var [3(xu(M) — xu(M))] = nE[("X)'(e,"X)"] = nF(2)|F"(Z) = nA(Z). By
Theorem 5.1, n='x,,(M) is N(0, n='A4,,(Z)) and is uncorrelated with x,,(M), x,,(M),
and x,,(M). ]

Note that when {, = {;, i # j, g, and g; are not well defined. However, they
may be assigned in any way that does not depend on the data to make M
orthogonal.

THEOREM 5.3. Let w,(p,) and w,(pe,) be the eigenvalues of the two by two sub-
matrix [x,;(M)]; ;<,- Then when {, = {, < ;, as n — oo,

(5.10) X'(#ts) = (4nAy(2)) No)(pts) — o0u(tts))’

is asymptotically distributed as y*(2) and is asymptotically independent of x,,(M) =
1" XX . A similar result holds when {; < {, = {;. Note that w,(p;) i = 1, 2,
depend only on p, and not on p, and p,.

Proor. By the preceding lemma, asn — oo, (4n4,,(Z))[(x,(M) — x,(M))* +
4xi,(M)] is asymptotically x*(2) independently of x,(M). But (x,(M) —
Xp(M))" + 4x3,(M) = (tr[x,;,(M)], ;)" — 4det[x;;(M)]; ; <, = (0,(#5) + 0u(pt5))* —
4oy (p)0,( ) = (01(ft5) — (). U

The asymptotic distribution of Q is also of some interest. The distribution
in the isotropic case is given by Anderson and Stephens (1973). When {, <
{y < &, [0y, 0y, 0,]" has essentially the same asymptotic distribution as [x,,(M),
Xy5(M), x35(M)]", although correction terms for the mean and covariance matrix
can be found. This is made more precise in the following theorem.

THEOREM 5.4. Let { <, <, Then as n— oo, W = nY o, 0,, 0,]" is
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asymptotically normal with
(5-11) E[n7'o,] = YP(Z) + 4171 2 (G — €)™
+ 307" Ziwa (G — CHALIT + O,

(5.12)  Var[n7lo,] = n7YE(Z) — 307 X (G — §) 70 + O(n7Y),
(5.13) Cov[n o, n7'w;] = n7'YE(Z) + 4n7 %L, — C) P4+ O0(n™%), i#j,
where
(5.14) Al = (G — )Y (2) — Y;(2)) .

Proor. Using the corollary to Theorem 4.1, it may be shown that the cumu-
lant generating function of [x,,(M), x,,(M), x;(M)]” conditional on Q is

log E[etr (TM”XX* M) | Q] = log (,F,*(Z + T, Q)/,F*(Z, Q)) ,

where T = diag |1, t,, ;]. From Anderson’s (1965) asymptotic expansion one
finds

Elo, — x,(M)|Q] = § X0 (G — )7+ 307 Liwa (G0 — €)A55) 7" + O(07?),
Var [o; — x,(M)|Q] = Var [x,(M)|Q] = § X, (& — &)7*
3 B (G — £ + O,
Cov [0, — x (M), w; — x;;(M) Q] = Cov [x,(M), x;;(M) | Q]
= HE = G — B — )
+ O(07), i,

where A;; is as in (4.11). By the usual relationship between conditional and
unconditional means, and E[A;!] = (A%)~* 4+ O(n~?), we have
(3:15)  Elo; — xi(M)] = § 20550 (G — €))7 + 417" Ly (G — AL
+ O(n™*) = 0(1),

proving (5.11). Similarly, the unconditional variance of w, — x, (M) is O(1).
Thus, by Chebyshev’s inequality, plim,_,»n ¥, — x,(M)) =0, i = 1,2, 3.
Theorem 5.1 then implies asymptotic normality. Now nY{?(Z) = Var[x,(M)] =
E[Var[x,(M)|Q]]+ Var[E[x,,(M)|Q]]. Itisreadily shown that Var[ E[x,,(M)|Q]]=
Var [o;] + O(n™").  Thus by (5.15), nY{(Z) = § X% (C — §)* + O(n7") +
Var [w;] + O(n™"). (5.12) then follows immediately. (5.13) is established
analogously. [] .

Although n~tw, and n~tx,,(M) are asymptotically equivalent, we can say some-
thing about their differences.

THEOREM 5.5. Let {; < {, < {,. Define
(5.16)  R*=2(tr ZQ — tr ZM*XX"M) = 2[3_, L(w; — x;,(M))] -
Then, as n — co,
(5.17) R} =[1 — (6n)™ 3, .; A7}]R* = R* 4 O (n7?)
is distributed asymptotically as y*(3).
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PROOF. As in the proof of Theorem 5.4, the cumulant generating function
for R?, conditional on Q, can be shown to be

log E[exp(tR?) | Q] = 2t tr ZQ + log [F,¥((1 — 20)Z, Q) — log ,F,¥(Z, Q) .

A direct calculation based on Anderson’s (1965) asymptotic series for F,®
shows that, conditional on Q, R;® has the same cumulants as y*(3), except for
terms that are O(w~?). Since w, = O,(n), the unconditional distribution of R,
is also asymptotically that of ¥*(3). [

The three degrees of freedom in the preceding result can be isolated asymp-
totically in several ways. The following seems to be helpful from a standpoint
of interpretation. We require a suitable parametrization of M = M”M in the
three dimensional manifold O*(3). Every matrix M e O*(3) can be expressed as

(5.18) M = [cos t,v, + sin t,v,, —sin 1, + cos t,v,, v,],
where
v, = [cos ty;, —sin #; sin t,,, —sin t;; cos 1,,]”
(5.19) v, = [0, cos t,;, —sin t,]”
v, = [sin t;, COS ¢, Sin t,,, COS #}, COS #,5]7 ,
with ¢, e (—=, 7], t,;€[—4~, 3n], ty€ (—x, x]. The identity matrix /; corre-
sponds to t,, = t,; = t,; = 0. Lety, #,, and #, be these coordinates for . When
f;; is small, it is approximately the angle of deviation of £, and £&; from g, and
#; rotating around the remaining column of M. It can be shown, using the
methods of James (1954), that with this parametrization of O*(3), the invariant
probability measure on 0*(3) is
(5.20) (87*)~Y(dM)* = (8a%)~Y(cos iy,) diy, diy, diy .
Algebraic expansion of the conditional distribution @ of M given Q (4.9), yields
O(M; MZM™ | Q)(dM)*/(8?)
(5.21) = [8x’etr (— ZQ) F¥(Z, Q)] ' exp(—n 3 ,<; Ay, 1)
X [1 4 O(#) + O(F)O0(0)] 11:<; dt;

and R? = R* 4 O0,(n7") = R, + O,(n"*) where
(5.22) R*=2n3,.,4A;1;.
Anderson’s (1965) series for (F,*(Z, Q) shows that 87* etr (— ZQ) F\*(Z, Q) =
7 [[,c; (nA;))"H[1 + O(0~Y)]. Thus, (5.21) implies that, conditional on Q,
(2nA;;)¥,;, 1 £ i < j < 3 are asymptotically independent N(0, 1) and thus also
have this distribution unconditionally. (5.22) provides the desired partition of
Z'(3)-

6. Estimators of M and Z and their properties. The log likelihood function
based on a random sample of size n from ¥ is
6.1) L(M, Z) = —nlog4r — nY'"(Z) + X7, tr ZM"x;x,"M

= —nlogdr — nY"(Z) + tr ZM"XX"M .
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Lemma 4.2 and (2.18) imply that L(M, Z — {,I,) = L(M, Z) for all {,, and thus
all inference procedures based on L are invariant under Z — Z — {,I;. In par-
ticular, if Z maximizes L(M, Z), then so does Z — {,1,.

LeEMMA 6.1. Forarbitrary Z = diag [{,, (5, G, G S G S 6o tr ZMTXXTM is
maximized by M = [f2,, fos, fi5], where g, is the eigenvector of XXT associated with
eigenvalue w;, with 0, < 0, < ;.

Proor. This follows from a result of von Neumann (1937). [
LEMMA 6.2. For any M, L(M, Z) is maximized by any Z that satisfies the equations
(6.2) Y,0(2) = n7'x;(M) j=123.

Proor. By the remark above, we may impose the restriction {; = ¢ =o.
From (6.1) we have (9/d()L(M, Z) = —nY,*(Z) + x,(M), i=1,2, and
(8*/9C; 3C;)L(M, Z) = —nY(N(Z), i,j=1,2. The positive definiteness of
[Y®(Z)],.;¢; (Lemma 2.2) implies that L(M, Z) is maximized by Z = diag [{,,
¢,, 0], where Z satisfies (6.2), and that this solution is unique. Also Lemma
2.4 implies that x, (M) — x,;(M) = nY,*(Z) — nY;(Z) has the same sign as
¢, — &, If Z = diag [C,, {,, {;] maximizes L(M, Z), then so does Z — {, I, which
must thus be Z and satisfies (6.2). The invariance of Y,"'(Z) under Z — Z — {,/;
then implies that Z also satisfies (6.2). ]

The preceding lemmas immediately yield the following theorem.

THEOREM 6.1. Assume throughout that Z = diag [{;, {5, §;], 6 = 6 = G

(a) When Z is known, a maximum likelihood estimator (MLE) of M is the matrix
of eigenvectors M = [£,, fis, fi;] of XXT with associated eigenvalues o, < 0, < .
When {, = &, (resp. {, = {;) a MLE of the single well-defined column of M is £,
(resp. fy).

(b) When M is known, then

1. If xy(M) < x55(M) < x5(M), a MLE of Z is any diagonal matrix Z satisfy-
ing (6.2);

2. If xuy(M) < x,,(M), a MLE of Z is any matrix of the form
Z = diag 18, 8,8], satisfying (6.2) for j=3 only, if xu(M)=n/3,

=diag[C,, 8], if xu(M)<n/3;

3. If xu(M) = max {x,,(M), x,(M)}, then a MLE of Z is any matrix of the form
Z = diag [, &, &),  satisfying (6.2) for j=1 only, if xy(M)<n/3

=diag[, &, 8], if xu(M)>n/3.

(c) When neither M norZ is known, joint MLE’s of M and Z are M and any Z
that satisfies
(6.3) Y, %(Z) = nt;, j=1,2,3.

(d) Under the assumption of circular symmetry around e, (resp. p,), @ MLE of
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2, (resp. ) is (resp. f,) and a MLE of Z is any Z, that satisfies
(6.4) Y, 0(Zp) = ey,  Z=diag[{, & G
(resp. Y,V(Z,) = n'w,, Z, = diag [£,, §,, §,]) -

Proor. (a)and (bl) follow directly from Lemmas 6.1 and 6.2, as does (c)
after observing that x;;(M) = w; by (4.4). (b2) and (b3) are straightforward
extensions considering maxima on the boundaries of the permissible region. (d)
can be proved using Lemma 6.1 and an obvious modification of Lemma 6.2. []

Another approach to estimation of Z when there is no prior knowledge of
M, is maximum likelihood estimation based on the marginal distribution of Q.
In analogous situations (e.g., Anderson (1965), or the estimation of ¢* from a
normal sample), the resulting estimators are more nearly unbiased than maxi-
mum likelihood estimators based on the joint distribution of the sample. Since
in a certain sense (Barnard (1963)), Q contains all the available information con-
cerning Z, it seems plausible that inference concerning Z should be based only
on the marginal distribution of Q. From the corollary to Theorem 4.1, the
marginal likelihood function for Z is

(6.5) Ly(Z) = —nY"(Z) + log ,F,*(Z, Q) + 9(Q),

where g(Q) does not depend on Z. Let Z = diag [£,, ,, &,] maximize Ly(Z)
subject to the restriction that {; < {, < {;. Then, since Ly(Z), like L(M, Z),
is invariant under Z — Z — {1, Z— Col, also maximizes Ly(Z). It can be
shown using Anderson’s (1965) asymptotic series for ,F,¥(Z, Q) that, if Z maxi-

mizes L(M, Z), then approximately

(6.6) Z = Z 4 diag[6,, 8,, 3,]

maximizes Lo(Z), where

(6.7) 0, = B2 YR2) i G =8t i=1,2,3 % k#i
and

(6.8) B(Z) = YR(2)YR(Z) — (YP(2))

= YR (2)YR(Z2) + YR(2)YR(Z2) + YR(2)YR(Z) .
It can further be shown that the use of Z does, in fact, correspond to removing
part of the O(n~") bias of Z.

The structure of the parameter space makes discussion of the properties of
estimators somewhat awkward. The invariance of ¥ under Z — Z — {,/,and/or
u; — +p;, j=1,2,3, means that such properties as bias and variance are un-
defined without some constraints to enforce uniqueness. The circularly sym-
metric case has been considered by Watson. Hence here we will assume the
following constraints on Z and M = [z,,]; ;<5

(6-9) L<L<LG=0

and
(6.10) 2y >0, U >0 and Me0+(3).
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When g, = 0 or p,, = 0, (6.10) is not sufficient to determine M and in that
case we could choose a different restriction. Z and M will also be assumed to
satisfy (6.9) and (6.10). With these restrictions, the standard results concerning
maximum likelihood estimators hold for Z and M, when suitably parametrized.

LEMMA 6.3. Let t = [t, t,, t;] be a parametrization of O*(3) that is regular ina
neighborhood of M. Then

(6.11) (3/1,) tr ZMTXXTM = 2 tr ZMTXXTMD,
=2 X5 408 — C)xi(M)
where D, = [d¥], ;s = MT(3/0t,)M is skew symmetric.

3

Proor. Since MM = I,, we have 0 = (d/0t,)M"M = D,” + D,, showing
that D, is skew symmetric. Also (9/dt,)tr ZM" XXM = tr ZD,"M"XX"M +
tr ZMTXX"MD, = 2 tr ZM"XX"MD,. []

THEOREM 6.2. Let Z and M satisfy (6.9) and (6.10). Let Z and M be MLE’s
also satisfying (6.9) and (6.10). Let t and t represent a regular parametrization of
M and M as in Lemma 6.3, and let 7z = [£ 6] Z2 = [ﬁl, iz]T. Then as n — oo,
0 = (47, t7]7 is asymptotically normal with expectation 8 = [z”, t*]" and covari-
ance matrix

(6.12) Cov [0] = n~! block diag [C,(Z), C(Z, M)],
where

_ g Yz) —YR(2) ; :
(6.13) C(Z) = B (Z)l:_yg)(z) Yﬁ’(Z)]’ B(Z) asin (6.8);
(6.14) Cy(Z, M) = YD(M)T)~ diag [1/A%, 1/A%, 1/A5]D(M)~,

dy dy dy
D(M) = |d? dP d@|, d® asin Lemma 6.3,
dy dy dgj
and AY; as in (5.14).
Proor. Since ¥ is an exponential family on a compact set, regularity con-
ditions (Wilks (1963), Section 12.7) for the consistency and asymptotic nor-
mality of maximum likelihood estimators are easily verified. Thus @ is asymp-

totically normal with expectation # and covariance matrix .# where .#~! =
Cov [(9/00)L(M, Z)]. But(3/0(;,)L(M, Z)'= —nY;Y(Z) + x,;(M),j = 1,2, and,

by Lemma 6.3,
(o Cz)xu(M)
(9[ot)L(M, Z) = 2D(M) | (&, — Cs)xla(M)} .
&y — &o)xys(M)
Theorem 5.1 then implies that Cov [(3/0z)L(M, Z)] = n[Y®(Z)], ;<0
Cov [(0/0t)L(M, Z)]
= 4D(M) diag [(, — )" 4i(Z), (& — $)*Ai(Z), (Lo — L) An(Z2)]1D(M)T
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and that (8/0t)L(M, Z) is uncorrelated with (d/0z)L(M, Z). But by the corol-
lary to Lemma 2.4 and (5.14), 2({, — §;)’4,,(Z) = (§; — §;)(Y,(Z) — Y,;0(2)) =
AY;. Thus #~! = n~'block diag [C,(Z), Cy(Z, M)]. [
Theorem 6.2 can also be shown to hold when Z satisfies (6.2).

When we use the parametrization t = [¢,,, t;3, #,;]” introduced in (5.18) and
(5.19), we find that

—1 0 0
D(M) = 0 COSs 1y, —sin ¢,
sint,, sint,cost, COst,COst,

If the coordinates of M and M are taken relative to the columns of M, r,, =
iy =ty = 0, 7,; is identical to 7,; in Section 5, and D(M) = diag[—1, 1, 1].
This leads to the following:

COROLLARY. Assume that{, < {, < (s Lett = [f12> t13» 133]7 be the parametriza-
tion of M = M™M by (5.18) and (5.19). Then, as n — oo, t is asymptotically
normal with E[t] = 0, and

(6.15) Cov [t] = (2n)~* diag [1/A%, 1/A%, 1/A%] .

This corollary implies that the (2nAY;)¥,; are asymptotically independent N(0, 1).
This result differs from that at the end of Section 5 only in the substitution of
Y,(Z) for o, = Y,;(Z).

7. Statistical inference. Examination of the likelihood function (6.1) makes
clear that the elements of XX” are jointly sufficient for M and Z. Hence in-
ferences concerning the parameters should depend only on these statistics. We
consider here only those problems that arise in the analysis of a single random
sample. The problems become clearer if we think of Z as a shape parameter
and M as a generalized location parameter.

Two important practical questions in analyzing orientation data are the fol-
lowing: (a) Is there evidence that the data do not come from a uniform (iso-
tropic) distribution (Z = 0)? and (b) Is there evidence of lack of circular symmetry
of the distribution about some axis? If the answer to (a) is “No”, then further
analysis is not meaningful. If (b) can be answered negatively, then the simpler
Dimroth-Watson distribution (in either polar or girdle form) is adequate. One
approach would be direct use of likelihood ratio tests based on ¥. We prefer
here tests whose application does not require computation of an unrestricted Z.

THEOREM 7.1 (Test of isotropy). Let H,: Z = 0 be the hypothesis of isotropy.
Then the procedure: Reject H if X;* > yi_.(5), where X? is defined by (5.9), isa
test of H, of asymptotic size a as n — oo.

Proor. This follows directly from Theorem 5.2. []
When H), is true, it can be shown that, for large n, X;* is asymptotically equiva-
lent to —2 log 4, where 4, is the likelihood ratio statistic for testing H,, against
general ¥. The conditions for a »*(5) approximation to —2log 4, hold here,
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thus providing another method of proving Theorem 5.2. Anderson and Stephens
(1973) have considered a similar test of isotropy with the Dimroth-Watson
distribution as alternative. By Monte Carlo simulation they show that its
asymptotic distribution (not ¥?) is approached rapidly as n — co. A similar
situation is conjectured for X’

There are two essentially different forms of circular symmetry—polar:
H,,(( =, < {;)and girdle: H,({; < {, = ;). Often the choice between these
is clear and we assume that such a choice has been made. For definiteness we
consider the test of H,.

Lack of circular symmetry around g, in the sample will be reflected by the
departure of w,(g,) and w,(g,) from equality where w,(g;), i = 1, 2 are as defined
in Theorem 5.3. Thus a measure of sample non-circularity about g, is (,(g;) —
w,(#t,))*, and when Z and g, are known, X *(¢;) (5.10) is a plausible test criterion
for H,,. In practice these parameters are not known. However, it can be shown
that for large nand {; = {, < {;

n7 (@n(pts) — 0y(pt))* = n7 (@0 — @y)* + O (n7h)
To the same order we can substitute for Z in A,(Z) either a maximum likeli-

hood estimate Z,, satisfying (6.4) or an unrestricted maximum likelihood estimate
Z satisfying (6.3). Thus asymptotically, under H,,, X,*(g,) is equivalent both to

(7.1) X = (4”’412(20))_1((91 — )’
and to
(7.2) X2 = (4nAy(2)) (o, — ,)*.

THEOREM 7.2. Assume that {, < {, < {;. Then the procedure: Reject H, if
X2 > 713 .(2) (or reject Hyp if X2 > y2_.(2)) is a test of H,, of asymptotic size a,
as n-— oo.

Proor. This follows from the preceding discussion and Theorem 5.3. []

Using special properties of univariate confluent hypergeometric functions, it
can be shown that if Z, = diag [0, 0, {,], £, = 0, satisfies (6.4), then

(7.3) 441(Z0) = 1/(280) + @n)7 (o + @)1 = 3/2L0) -
Also, by Lemma 2.4, when Z satisfies (6.3) and o, # o,

(7.4) 44,(2) = 2n" Yo, — w,)/(C, — L)) .

From (7.4) we find a particularly simple form for X, 2

(7-5) Xt = J(or — )6~ L)

Analogous results to the foregoing can be stated for H, by substituting sub-
scripts 2 and 3 for 1 and 2 throughout.

X.* has the advantage of not requiring the computation of any quantities not
needed for applying the Dimroth-Watsondistribution. Under the null hypothesis,
both X,* and X,* can be shown to be asymptotically equivalent to —2 log 4,
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where 4, is the likelihood ratio statistic for testing H,, (or H,;) against unre-
stricted W. More precisely it can be shown that when {, = {, < {,, X;* — X, =
n0((¢, — &,)% and both X,? and X,? are = —2log 4, + nO((&, — §,)*).

When neither isotropy nor circular symmetry are plausible possibilities, the
point estimates of Section 6 should be supplemented by some form of regional
estimation of Z. Following Bartlett (1953a, 1953b), a confidence region for
an unknown vector parameter # can be based on a quadratic form in the score
vector s = dL/06@ where L is the log likelihood. The same considerations that
make plausible the use of the “marginal” maximum likelihood estimator Z sug-
gest that the appropriate log likelihood function is Ly(Z) given by (6.4). Define

(7.6) I(Z) = (0/9L,)Lo(Z) , i=1,2,3,
(1.7) 14(Z) = (*)(9C,00,))Lo( Z) , ij=1,23.
Then E,[I(Z)] = 0 and

(7.8) Li[(Z) = Cov, [I(2), 1(2)] = —E,[L,(Z)],

where E, and Cov, represent expectation and covariance when Z is the true
parameter. The asymptotic normality of [,(Z) implies that, when Z is the
population parameter,

(7.9) XZ) = 2 Ziiss L(2)(2)1(2Z)
is approximately y*(2), where the matrix [L?(Z)], ,<; is any generalized inverse
(Rao (1965)) to [L,;(Z)]; ;<s- This provides a basis for a confidence region for Z.

THEOREM 7.3. When {, < {, < ;, as n — oo, the region defined by
(7.10) {Z|X%(2) = 7-.(2))
is asymptotically a confidence region for Z with confidence coefficient 1 — a, where

—l~,23(Z)ZIZ(Z) - z’la(Z)i22(Z) _ ilz(Z)i32(Z)

I PO L D02 + LA DL 2) + L D)Lk 2)

(7.12) I(Z) = 0; = nY;"Z) — § Ty (C; — S

(7.13) Lij(Z) = nY(Z) + (& — )7, i#j-
Proor. Employing Anderson’s (1965) asymptotic series, it can be shown that

(7.14) L(Z) = o, — EJo] + 0,(n}) = [(Z) + 0,(n™)

and

(7.15) Li(Z) = Cov, [0, ;] + O(n™") = L(Z) + O(n™?).

The last equalities in (7.14) and (7.15) follow from Theorem 5.4. Since
.1 L;j(Z) = 0, a generalized inverse to [L;;(Z)]; ;< is
[L(Z)]i 550 = (L D) Li(Z) + LifZ)Lo( Z) + Li(Z)Loy(Z))
X diag [ — Ly(Z), —Ly(Z), —Ly(Z)] .
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By (7.14) and (7.15), this implies that X*(Z) = X*(Z) 4 O0,(n™"), and hence X*(Z)
is also asymptotically y*(2) when Z is the true parameter. The conclusion is
now immediate. []

By Bartlett (1953b), (7.10) is asymptotically equivalent to the confidence
region based on the “marginal” likelihood ratio:

(7.16) {Z12(La(2) — Lo(2)) = 23-o(2)} »

where Ly(Z) is given by (6.5). This can be usefully determined from a contour
plot of Ly(Z). Another confidence region that is asymptotically equivalent to
(7.10) is one based on the asymptotic normality of Z (Theorem 6.2). Substituting
Z for Z in the covariance matrix of Z does not affect the asymptotic validity.

These considerations yield the following region with asymptotic confidence
coefficient 1 — a:

(7.17) {ZIn T Fses (G — QE = 6)YRP) < -0}

This (along with the preceding regions) is valid for any choice of restrictions
applied to both Z and Z to obtain uniqueness. Under the constraint {, = g =0,
(7.17) defines an ellipse in the ({,, {,)-plane.

When M is the true orientation matrix, (6.1) shows that the diagonal elements
x,;,(M) of MTXX"M are jointly sufficient for Z. Hence the conditional distribu-
tion of the x,;(M), i < j, given x,(M), i = 1,2, 3, does not depend on Z and
could provide a basis for inference concerning M. Theorem 5.2 implies that
the x,;(M) are asymptotically independent of the x,,(M)’s and that the condi-
tional and unconditional distributions of the x,;(M)’s are asymptotically inde-
pendent N(0, nA,;(Z)). Also, E[x,;(M)] =0, all i <j, if and only if M is the
true orientation matrix. This motivates the use of

(7.18) X{(M) = 17 5,5 A (Z)x(M)

as a test criterion for the hypothesis H,: M is the true orientation matrix.
THEOREM 7.4. Assume {;, < {, < {;. Let

(7.19) X(M) =2 Fies (0 = 0)7(E = E)xti(M)

Then the procedure: Reject H, if and only if X*(M) > y2_,(3) is a test of H, with
asymptotic size a, as n — co.

Proor. The preceding discussion shows that the conclusion is valid for X*(M)
in place of X*(M). But Lemma 2.4 shows that when Z satisfies (6.2), X(M) is
obtained from X* M) by substituting Z for Z in A,(Z). For large n, 4,(2) =
A (Z) + O0,(n?), and, under H,, n~'x?;(M) = O, (1), i <j. Thus X*(M) =
X M) + O,(n~%) implying that X*(M) and X*(M) have the same asympotic
distribution. []

COROLLARY. Asn — oo, the region
(7.20) {M|X(M) < 13-o(3)}

represents a region with asymptotic confidence coefficient 1 — a.
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A more readily understood approximate confidence region for M can be ex-
pressed in terms of the parametrization t of M near M described in the corollary
to Theorem 6.2. The vector t can be considered as a random parametrization
of M in the vicinity of M.

THEOREM 7.5. Let t = [F135 T35 153]" be the parametrization of M in terms of M
described in the corollary to Theorem 6.2, considered as functions of M. Then, when

<<, asn— oo,

(7'21) {Ml 2n Zi<] Az] tzj = Xl a(3)}
is a confidence region for M with asymptotic confidence coefficient 1 — a, where
(1.22) B =no,— )& -

Proor. By the corollary to Theorem 6.2, when M is the true orientation
matrix, 2n )3, ; Aj; #; is asymptotically x2(3) where A} is as in (5.14). By (6.3),

i5°ig

Ku is obtained from AY; by substituting Z for Z. Thus A” = Al 4 0, (n7}),
i < j and the asymptotic distribution is still ¥*(3). The conclusion is now
immediate. []

One difficulty in the preceding results is the problem of picturing confidence
regions on O*(3). One solution is to seek separate confidence regions R; on the
unit sphere for each column g, of M, i = 1, 2, 3. Then one can have confidence
atleast 1 — 3athat g, e R,,i = 1,2,3. Moreover, for some purposes, confidence
regions for the g, separately are desirable. Such R; could be defined analogously
to Theorem 7.4. However, the following, more closely related to Theorem 7.5,

appears easier to use.

THEOREM 7.6. Let {, < {, < {,. For each fixed vector p € S, define (random)
matrices M, = M,(g) € O*(3) with random coordinates t), ¥, and t{) relative to
M, i=1,2,3, such that the ith column of M, is p, and t} =0, i ==j <k #i.
Define

(7.23) XAy =2 D By, np =1 ifi<j.
Then as n — oo, the regions
(7.24) R, = {p| X} (#) = x1-.(2)}

are confidence regions for p, with asymptotic confidence coefficients 1 — a.

Proor. We consider the case i = 1. Let i;,j < k, be the (random) coordi-
nates of true orientation matrix M relative to M. Then, it can be shown that
when g is the first column of M, the coordinates ¢} and #} for g satisfy
M= by 4 O,(n), j=2,3. Thus X(g) = 2n(Bu7, + By + 0,(n™) =
2n(A, 1, + AY13,) + O,(n%). The corollary to Theorem 6.2 then implies that
X.*(g2) is asymptotically y*(2) whenever g is the first column of M. Similarly
X(p) is asymptotically x*(2) when g is the ith column of M, i = 2,3. The
conclusion is now immediate. []
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When the (n,;)~* are small, the regions R, are approximately ellipses centered
at &, with axes of lengths (Xf_a(Z)/(Znﬁij))i in the directions (on the sphere) of
A ] # 1.

8. A numerical example. A sample of 150 measurements on the ¢ axis of
calcite grains from the Taconic Mountains of New York state (Hansen (1963))
was analyzed using ¥. The data are determinations of undirected axes imply-
ing that an analysis based on antipodal symmetry is in order. Figure 1 is an
equiareal projection onto the horizontal plane of the data, represented as points
in the upper hemisphere. Observe that a “neighborhood” of a point near the
circumference includes points near the antipodal point of the circumference.

The cross product matrix XX7, the orthogonal matrix M of its eigenvectors,
and its eigenvalues w, are displayed in Table 1. Table 2 contains the unrestricted
maximum likelihood estimate Z (6.3), the maximum “marginal” likelihood esti-
mate Z (6 6), the estimated covariance matrix of ¢, and ¢, (6. 12) (this also ap-
plies to ¢,and ), and the estimated standard deviations ,; = = (2nh,;)~* of rotation
of each pair of eigenvectors around the third (6.15), expressed in degrees. These
last have been used to plot Figure 1 the approximate 959, confidence regions
for each g; that are defined in Theorem 7.6. Table 3 displays values of various
test criteria for uniformity and circular symmetry. X,* X.?, and X, are de-
fined by (5.9), (7.1), and (7.2), respectively. 1, and 2, are the usual likelihood
ratio test criteria for uniformity and circular symmetry.

The observations have been replotted in Figure 2, which represents a hemi-
sphere centered at &, projected on the (4, /)-plane. The original horizon is
drawn as a dashed line with the cardinal compass points identified. The rough
elliptical scatter about £, suggests that ¥ may be appropriate. Examination of
Table 2 confirms that there are significant departures from both uniformity and
circularity as would have appeared likely from inspection of Figure 2. The
three test criteria for circularity have y*(2) as a null distribution, and the isotropy
criteria are both approximately y*(5). Non-circularity and non-uniformity are
also evidenced by the relatively small size of the confidence regions for the g;
in Figure 1.

A contour diagram of the “marginal” likelihood function for Z (6.5) is in
Figure 3 (with the constraint that {; = 0). Superimposed is the boundary of
the approximate 959, confidence region for , and ¢, defined by (7.17). This
can be compared with the contour 3.841/2 = 1.921 down from the maximum
of Ly(Z), which is the boundary of (7.16).
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Cross product matrix XXT, with eigenvectors [fu, ftz, f1s] = M and eigenvalues oy < w2 < w3
derived from N = 150 measurements of the c axis of calcite grains from limestone

in the Taconic Mountains of New York (Hansen (1963))

Xxr

o e s i
E-W N-S Vert
E-W 76.5575 18.2147 12.2406  —0.1723 —0.4439  0.8794  23.43215
N-S 18.2147 46.7740 6.8589  —0.1516 0.8940  0.4216 38.19628
Vert 12.2406 6.8589 26.6670 0.9733 0.0606  0.2213 88.37007

TABLE 2

Maximum likelihood estimates Z, maximum marginal likelihood
estimates Z with their estimated covariance matrix, and
standard deviations in degrees of the components
of rotation of the orientation matrix M for
the data summarized in Table 1

A

z Z Cov(Z)=Cov(Z) i J &
& —3.518 —3.434 0.17624 0.02003 1 2 8.44°
€3 —1.956 —1.954 0.02003 0.09389 1 3 2.68°
Cs 0 0 2 3 4.09°
TABLE 3
Test statistics for circular symmetry and isotropy for

the data summarized in Table 1

Polar Girdle
A:cz 11.058 44.743 Xt 115.872
Xc? 11.531 49.060 —2log v 111.697

—2log ¢ 11.294 46.794
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F1G. 1. Orientations of the ¢ axis of 150 calcite grains from limestone from the Taconic
Mountains of New York (Hansen (1963)) in an equiareal projection on the horizontal
plane. Also plotted are maximum likelihood estimates 21 (V), Z2 (A), and fes () for
five subsamples (a, b, ¢, d, e) and for the entire sample (T), together with approximate
95% confidence regions for g1, g2, and g3 (dashed lines).
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FiG. 2. Data of Figure 1, plotted in an equiareal projection on the plane determined
by 74 (right) and g (top). The dashed line represents the horizontal plane with the
N (= S) and E (= W) points labelled.
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Fi1G. 3. Contour plot of the log likelihood function L(Z, 0) based on the marginal dis-
tribution of Q for the data in Figure 1, using the convention that {1 < (e < {3=0.
The contour L = 45.044 represents the boundary of the 95% confidence region based on
the (marginal) likelihood ratio. The dashed Line is ihe boundary of a 95% confidence
region based on the asymptotic normality of {; and {,.
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