The Annals of Statistics
1973, Vol. 1, No. 2, 356-358

DISCRETENESS OF FERGUSON SELECTIONS!

By DAavID BLACKWELL
University of California, Berkeley

In a fundamental paper on nonparametric Bayesian inference, Ferguson [1]
associated with each probability measure @ on a set S and each positive number
c a way of selecting a probability measure on S at random. One of his interesting
results is that his method selects a discrete distribution with probability 1.
Ferguson’s proof uses an explicit representation of the gamma process; we present
here a quite different and perhaps simpler proof.

THEOREM 1 (Ferguson). Let S be a nonempty Borel subset of a complete separable
metric space and let B,, B,, - - . be Borel subsets of S that form a separating sequence,
i.e. for any two distinct points s, and s, of S there is an n for which & ,(s;) # §,(5),
where &, is the indicator of B,. For any finite sequence t = (&,, « - -, ¢,) of 0’s and
1I’s, denote by B(t) the set of all s for which (&, -+ -, &§,) = t; for the empty sequence
e, put B(e) = S. Forany probability measure a on the Borel sets of S and any posi-
tive number c, if we select a function y from the set T of all finite sequences of 0’s
and 1’s to the unit interval [0, 1] so that the y(t) are independent and y(t) has a beta
distribution with parameters u(t) and v(t), where

u(t) = ca(B(t1))
v(t) = ca(B(10))

then, with probability 1, there will be a unique probability distribution p on the Borel
sets of S such that

(1) Pl =1y -+, 6) =1 = y() forall teT.
Moreover, with probability 1, p will be discrete.

The beta distribution for ¥ > 0, v = 0 is concentrated at 1 and for u = 0,
v > 0 is concentrated at 0; its definition for ¥ = v = 0 is irrelevant. Uniqueness
of p is clear, since given y we can calculate p(B(f)) for all ¢ and, since § =
(615 €25 - - ) is separating, any two p’s that agree on all B(r) are identical.

It will be seen that what forces discreteness is convergence of Y, Ey(f)(1 — y(1)).
To get this convergence we shall use Theorem 2.

THEOREM 2. Put x(t) = a(B(t)). Then
(@) Xsa X(10)x(21) = 3(1 — D,), where |t| denotes the length of t and D, =

2iwi=nt1 X(W).
(b) X, x(t0)x(11) = (1 — D), where D = 3, a*(s) is the sum of the squares of
the probabilities of all points of S that have positive probability.
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Proor oF THEOREM 2. Select two points ¢, and ¢, independently in S with
distribution « and denote by F, the event &;(a,) = &,(0,) for i < k, £,(a)) = O,
§i(d;) = 1. The left and right sides of (a) are easily seen to be the probability
of i+ F,, and the left and right sides of (b) are easily seen to be the probability
of Uy F,.

To prove Theorem 1 we first check that, with probability 1, there will be a p
related to y by (1). Any y determines a (unique) probability measure g on the
space Q of infinite sequences of 0’s and 1’s such that

g(w begins with t1|w begins with ) = y(7) for all r.

Any p that makes § = (§,, §,, - - -) have distribution ¢ will satisfy (1) and there
will be such a p if (and only if) ¢(£S) = 1 (£S is Borel, being the 1 — 1 Borel
measurable image of S.) As noted by Ferguson, if y is selected as in Theorem 1,

2) Eq(w begins with 1) = a(B(1)) forall ¢.

Now Eg(A) and a(§7'4) are probability measures on Q and (2) says they agree
on sets of the form “w begins with #.” So they agree for all Borel sets. In par-
ticular for 4 = £S we get Eq(§S) = 1, so that ¢(£S) = 1 with probability 1.

To see that p is discrete with probability 1, for any probability distribution p
on S and any s € S, say that S conforms to p at stage k + 1 (k = 0) if

Sen() =1 and (&), -+ 6uls) = % or
Sia() =0 and  p(6i(s), -+, 6ul(9) < &

i.e.if§,,, hasits more probable value given the previous §;, with equality resolved
(arbitrarily) in favor of 1. Say that s ultimately conforms to p if it conforms to
patall but a finite number of stages. For any p, there are only countably many
ultimately conforming s. We show that if p is selected as in Theorem 1 and then
s is selected according to p, the probability that s ultimately conforms to p is 1.

The probability that s fails to conform to p at stage k + 1, given &, .-, §,
and y(¢) for |t < k is

w, = min y(&;, -+, &), I —y¢n 560,

so that the probability that s fails to conform to p at step k + 1 is Ew,, and s
will ultimately conform to p with probability 1 if

2. Ew, converges.

Now E(w,| (&1, «+ -, &) = t) = m(t), where m(f) = Emin (8, 1 — B)and 8 has
a beta u(r), v(¢) distribution, so that

E(w,) = 2= P(B()m(?) -
But, from (2), P(B(t)) = a[B(f)], so that
Ewy) = =i [u()) + v()]m(t)/c .
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To complete the proof, use min (8,1 — 8) < 28(1 — B)for0 < 8 < 1toobtain
(suppressing ¢ for the moment)

mSZ[ u u(u + 1) ] 2zw,
u+v (WH+v)u+v4+1) u+v

IA

so that
E(we) = 2 2=, #(1)v(0)]c -
Since u(t) = cx(t1) and v(f) = cx(¢0), we obtain, from Theorem 2,
2L Ew) =<l —D),

where D is the sum of the squares of the probabilities that a assigns to points.
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