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CONSERVATIVE CONFIDENCE REGIONS
IN MULTIVARIATE CALIBRATION1

BY THOMAS MATHEW AND WENXING ZHA

University of Maryland Baltimore County

In the multivariate calibration problem using a multivariate linear
model, some conservative confidence regions are constructed. The regions
are nonempty and invariant under nonsingular transformations. Situa-
tions where the explanatory variable occurs nonlinearly in the model are
also considered. Computational aspects of the confidence region and its
practical implementation are discussed. The results are illustrated using
two examples. The examples show that our confidence regions are much
more satisfactory compared to those based on some of the existing proce-
dures. Furthermore, simulation results for the examples reveal that the
coverage probability of the conservative confidence regions are very close
to the assumed confidence level.

1. Introduction. The multivariate calibration problem deals with using
the statistical relationship between a p = 1 response variable y and an
m = 1 explanatory variable x for statistical inference concerning an unknown
value of x, corresponding to a future value of y, using available data on x and
y. The focus of this article is the construction of a confidence region for the
unknown value of x, when the explanatory variable x is assumed to be fixed
Ž .i.e., not random . We shall deal only with the situation when the relationship
between y and x is a multivariate linear model and y follows the multivariate

Ž .normal distribution. Thus y ; N Bx, S , where B is an unknown p = m
parameter matrix and S is an unknown p = p positive definite matrix. If
y , y , . . . , y are N independent observations corresponding to N known1 2 N

Ž .values x , x , . . . , x of the explanatory variable x, writing Y s y , . . . , y1 2 N 1 N
Ž .and X s x , . . . , x , the columns of Y are independent multivariate normal1 N

random variables with

1.1 E Y s BX and Cov Vec Y s I m S ,Ž . Ž . Ž .Ž . N

where the m = N matrix X is assumed to be of rank m. Now consider
another p = 1 normally distributed random vector y corresponding to an

Ž .unknown value u of x and independent of Y in 1.1 . Assuming that the same
w Ž .xmultivariate linear model as in 1.1 holds, we get

1.2 E y s Bu and Cov y s S.Ž . Ž . Ž .
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Our problem is the construction of a confidence region for u . Note that since
Ž .B is a p = m matrix, for the identifiability of u in 1.2 , we need the condition

p G m. This will be assumed throughout this article. As a generalization of
Ž . Ž .the model 1.2 , we also consider models where u in 1.2 is a nonlinear

Ž .function of fewer unknown parameters, denoted by an r = 1 vector j r F m .
Ž .When this is the case, instead of 1.2 , we have the model

1.3 E y s Bh j and Cov y s S ,Ž . Ž . Ž . Ž .
Ž .where h j is an m = 1 vector-valued function of j . The problem how is the

Ž .construction of a confidence region for j . An example where 1.3 is applicable
Ž . Ž .is polynomial regression. The model 1.3 was considered by Oman 1988 and

Ž .a specific application appears in Oman and Wax 1984 . Note that the models
Ž . Ž .1.1 ] 1.3 do not have an intercept term even though in many applications
the means of the y ’s and y will involve a common intercept term. Modelsi
with such an intercept term can actually be reduced to those without the

Ž .intercept; see Remark 2.2 in Mathew and Kasala 1994 . It is also natural to
work with such reduced models, since, when a common intercept term is

Ž . Ž .present, inference concerning u in 1.2 , or j in 1.3 , is invariant under a
common translation of the y ’s and y.i

Several authors have addressed the problem of constructing exact or
Ž .conservative confidence regions for u in the model 1.2 . In this context,

Ž .asymptotic results are due to Fujikoshi and Nishii 1984 , Davis and
Ž . Ž .Hayakawa 1987 and Brown and Sundberg 1987 , while finite sample

Ž . Ž .results have been obtained by Brown 1982 , Oman 1988 and Mathew and
Ž .Kasala 1994 . A review of some of these results is given in the articles by
Ž . Ž . Ž .Osborne 1991 and Sundberg 1994 and in the recent book by Brown 1993 .

The confidence regions that are available for the finite sample case are known
Ž .to have some drawbacks. Brown’s 1982 region can be empty and Oman’s

Ž .1988 region lacks a natural invariance property, namely, invariance under
the action of the group of p = p nonsingular matrices acting on Y and y as
Y ª AY and y ª Ay, where A is a p = p nonsingular matrix. The region

Ž .due to Mathew and Kasala 1994 , though nonempty and invariant, is based
on a pivotal statistic that is a fairly complicated function of u and, hence, it is
difficult to study the shape of the region. It should also be pointed out that

Ž .except Oman 1988 , the other authors have actually considered the model
Ž . Ž . Ž .1.2 , whereas, Oman 1988 considered the more general model 1.3 .

Our concern in this article is to obtain a region that avoids some of the
above drawbacks. However, our region will be only conservative, that is, its
coverage probability is more than the assumed confidence level. The construc-
tion of our region is explained in the next section. We have used several ideas

Ž .from Oman’s 1988 article for the derivation of our region and its practical
Ž . Ž .implementation. We first describe the procedure for the models 1.1 and 1.2 .

Ž .We then extend our procedure to the model 1.3 . Some computational aspects
are discussed in Section 3, and two examples are presented in Section 4. Both
examples are taken from published literature. The first example is based on

Ž .the paint finish data analyzed in Brown 1982 and Brown and Sundberg
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Ž .1987 . For this example, our procedure gave confidence regions that were
slightly wider compared to the likelihood-based confidence region due to

Ž .Brown and Sundberg 1987 . However, it turns out that the coverage proba-
bility of the likelihood-based region can be substantially lower than the
assumed confidence level. Our second example is based on the problem

Ž .considered in Oman and Wax 1984 dealing with the estimation of gesta-
Ž .tional age i.e., week of pregnancy using ultrasound measurements of two

Ž .fetal bone lengths some details are given in Section 4 . Oman and Wax
Ž .1984 modeled the relation between the bone lengths and gestational age
using a model that is quadratic in the gestational age. The problem is to
predict the unknown gestational age corresponding to a measurement of the
bone lengths. For this problem, our results turned out to be very similar to

Ž .those in Oman 1988 with the additional property that our region is invari-
ant. Furthermore, for both the examples, the coverage probabilities of our
conservative regions turned out to be very close to the assumed confidence
level for a variety of parameter values. Some concluding remarks are men-
tioned in Section 5.

Ž .2. The confidence regions. We shall first consider the models 1.1 and
Ž .1.2 and work with the following canonical form derived in Mathew and

Ž .Kasala 1994 . Let

y1r2 y1Y s YX9 XX9 , S s Y I y X 9 XX9 X Y 9,Ž . Ž .Ž .1
2.1Ž .

1r2 y1r2B s B XX9 , u s XX9 u .Ž . Ž .1 1

Then

2.2 Y ; N B , I m S , y ; N B u , S , S ; W S , N y m ,Ž . Ž . Ž . Ž .1 1 m 1 1 p

where we assume N y m G p. Furthermore, Y , y and S are independently1
Ž .distributed. 2.2 is the canonical form that we shall work with. Once we

Ž .obtain a confidence region for u , the transformation in 2.1 can be used to1
obtain a confidence region for u .

The confidence region that we shall construct will be based on the statistic

y1X Xy1 y1 y1y y Y u 9S Y Y S Y Y S y y Y uŽ . Ž .Ž .1 1 1 1 1 1 1 1
2.3Ž .

ˆ X y1 ˆs u y u 9Y S Y u y u ,Ž . Ž .1 1 1 1 1 1

ˆ X y1 y1 X y1Ž . Ž .where u s Y S Y Y S y. Clearly, it is reasonable to use 2.3 to1 1 1 1
Ž .obtain a confidence region for u . The possibility of using 2.3 is mentioned in1

Ž . Ž .Williams 1959 and Wood 1982 . The asymptotic results in Fujikoshi and
Ž . Ž . Ž .Nishii 1984 and Davis and Hayakawa 1987 are based on 2.3 . These

Ž .authors have derived the conditional distribution of the statistic in 2.3 ,
w y1 y1 Ž X y1 .y1 X y1 x wconditionally given Y and y9 S y S Y Y S Y Y S y see1 1 1 1 1
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Ž . Ž .Fujikoshi and Nishii 1984 , Theorem 3, and Davis and Hayakawa 1987 ,
xpage 145 . They have shown that if

N y p y m q 1
U u sŽ .1 m

=

y1X Xy1 y1 y1y y Y u 9S Y Y S Y Y S y y Y uŽ . Ž .Ž .1 1 1 1 1 1 1 1
,y1X Xy1 y1 y1 y11 q y9 S y S Y Y S Y Y S yŽ .1 1 1 1

2.4Ž .

w y1 y1 Ž X y1 .y1 X y1 xthen, conditionally given Y and y9 S y S Y Y S Y Y S y,1 1 1 1 1

2.5 U u ; F L B , u ,Ž . Ž . Ž .Ž .1 m , Nypymq1 1 1

Ž .the noncentral F distribution with degrees of freedom m, N y p y m q 1
Ž .and noncentrality parameter L B , u given by1 1

y1X X Xy1 y1 y1u B y Y 9S Y Y S Y Y S B y Y uŽ . Ž .Ž .1 1 1 1 1 1 1 1 1 1
2.6 L B , u s .Ž . Ž .1 1 y1X Xy1 y1 y1 y11 q y9 S y S Y Y S Y Y S yŽ .1 1 1 1

The pivot that we shall use in order to construct our confidence region will
Ž . Ž . Ž .be U u in 2.4 . However, the distribution of U u depends on both B and1 1 1

u and hence an exact confidence region for u cannot be obtained using1 1
Ž . Ž .U u . We shall proceed as follows. Let a B , u be such that1 a 1 1

2.7 P U u F a B , u s 1 y a .Ž . Ž . Ž .1 a 1 1

� Ž . Ž .4 Ž .In other words u : U u F a B , u is a 100 1 y a % confidence region for1 1 a 1 1
Ž .u . Of course, this confidence region cannot be computed since a B , u1 a 1 1

Ž .depends on the nuisance parameter B . We shall obtain two quantities b u1 a 1
Ž . Ž .and c u , which depend on u but not on B , satisfyinga 1 1 1

2.8 b u F a B , u F c uŽ . Ž . Ž . Ž .a 1 a 1 1 a 1

for all B . We then have1

P U u F b u F P U u F a B , uŽ . Ž . Ž . Ž .1 a 1 1 a 1 1

F P U u F c u .Ž . Ž .1 a 1

2.9Ž .

Ž . Ž .From 2.7 and 2.9 , we get

2.10 P U u F c u G 1 y a .Ž . Ž . Ž .1 a 1

In other words, the region

2.11 u : U u F c u� 4Ž . Ž . Ž .1 1 a 1

is a conservative confidence region for u with coverage probability at least1
Ž . Ž .1 y a . Note that, even though c u depends on u , the region in 2.11 cana 1 1

Ž .be obtained once the functional form of c u is known. This is the idea useda 1
Ž .in Oman 1988 to obtain a conservative confidence region. Note that the

ˆ X y1 y1 X y1Ž . Ž .value u s Y S Y Y S y always belongs to the confidence region 2.11 .1 1 1 1
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Thus the region is nonempty. It is clearly invariant under the transformation
Ž .Y ª AY and y ª Ay or equivalently Y ª AY , S ª ASA9 and y ª Ay ,1 1

Ž .where A is a p = p nonsingular matrix, since U u is an invariant statistic.1
Ž . Ž .The construction of c u in 2.11 is based on the following theorem, whicha 1

is our main result.

Ž . Ž . Ž .THEOREM 1. Consider the model 2.2 and let U u be as defined in 2.4 .1
Ž . Ž .Let f ? and g ? , respectively, denote the probability density functions of aq r , s

central chi-square random variable with q degrees of freedom and a central F
Ž . Ž .random variable with r, s degrees of freedom. Also let F and F g ,r , s r , s

respectively, denote a central F random variable and a noncentral F random
variable with noncentrality parameter g , both having degrees of freedom
Ž .r, s . Then, for any a ) 0,

P F F am , Nypymq1

G P U u F aŽ .1

X
` ` u u v1 1G P F F aH H m , Nypymq1 ž /1 q p y m wr N y p q 1Ž . Ž .0 02.12Ž .

=f v g w dv dwŽ . Ž .p pym , Nypq1

`
XG P F u u v F a f v dv.Ž . Ž .H m , Nypymq1 1 1 p

0

Ž .PROOF. From Fujikoshi and Nishii 1984 and Davis and Hayakawa
Ž .1987 , it follows that conditionally given Y ,1

N y p q 1 y1X Xy1 y1 y1 y12.13 y9 S y S Y Y S Y Y S y ; F l ,Ž . Ž .Ž .1 1 1 1 pym , Nypq1p y m

where
y1X X X Xy1 y1 y1 y1l s u B S y S Y Y S Y Y S B u .Ž .1 1 1 1 1 1 1 1

w y1 y1 Ž X y1 .y1 X y1 xWe note that the quantity y9 S y S Y Y S Y Y S y, which ap-1 1 1 1
Ž .pears on the left-hand side of 2.13 is the quantity R considered in Fujikoshi

Ž . Ž . y1and Nishii 1984 and Davis and Hayakawa 1987 . Since S G
y1 Ž X y1 .y1 X y1S Y Y S Y Y S , we have the following inequality concerning the1 1 1 1

Ž . Ž .numerator of L B , u in 2.6 :1 1

y1X X Xy1 y1 y1u B y Y 9S Y Y S Y Y S B y Y uŽ . Ž .Ž .1 1 1 1 1 1 1 1 1 12.14Ž .
F u X B y Y 9Sy1 B y Y u .Ž . Ž .1 1 1 1 1 1

Also, given Y , the noncentral F random variable1

y1y1 Xy1 y1 y1 y1N y p q 1 p y m y9 S y S Y Y S Y S Y yŽ . Ž . Ž .1 1 1 1
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is stochastically larger than the central F random variable F . Thispym , Nypq1
Ž . Ž . Ž . Žfact, along with 2.14 , shows that L B , u in 2.6 satisfies conditionally1 1

.given Y1

u X B y Y 9Sy1 B y Y uŽ . Ž .1 1 1 1 1 1
2.15 L B , u F ,Ž . Ž .1 1 st 1 q p y m wr N y p q 1Ž . Ž .

Ž .where w denotes a central F random variable with p y m, N y p q 1
degrees of freedom and F denotes stochastically smaller. The first inequal-st

Ž . Ž . w Ž . xity in 2.12 follows from 2.5 using the fact that P F g F a is a decreas-r , s
Ž . Ž .ing function of g . Furthermore, this property, along with 2.5 and 2.15 ,

gives the following inequality, conditionally given Y :1

P U u F aŽ .1

X y1
` u B y Y 9S B y Y uŽ . Ž .1 1 1 1 1 1G P F F aH m , Nypymq1 ž /1 q p y m wr N y p q 1Ž . Ž .0

2.16Ž .

= g w dw.Ž .pym , Nypq1

Ž . Ž .Using the distribution of Y given in 2.2 , it follows that B y Y u ;1 1 1 1
Ž Ž X . .N 0, u u S . Hence1 1

u X B y Y 9Sy1 B y Y uŽ . Ž .1 1 1 1 1 1 22.17 v s ; x ;Ž . X pu u1 1

Ž . Ž . Ž .2.16 and 2.17 together give the second inequality in 2.12 . The last
Ž .inequality in 2.12 follows by noting that

u X u v1 1 XF u u v1 11 q p y m wr N y p q 1Ž . Ž .
w Ž . xand P F g F a is a decreasing function of g . This completes the proof ofr , s

the theorem. I

Ž1.Ž X . Ž2.Ž X .Suppose c u u and c u u satisfya 1 1 a 1 1
X

` ` u u v1 1
P FH H m , Nypymq1 ž /1 q p y m wr N y p q 1Ž . Ž .0 0

XŽ1.F c u uŽ .a 1 1

2.18Ž .

=f v g w dv dw s 1 y a ,Ž . Ž .p pym , Nypq1

`
X XŽ2.2.19 P F u u v F c u u f v dv s 1 y a .Ž . Ž . Ž . Ž .H m , Nypymq1 1 1 a 1 1 p

0

Ž . Ž .If F m, N y p y m q 1 denotes the 100 1 y a th percentile of Fa m , Nypymq1
Ž . Ž .and if a B , u is as in 2.7 , we get the following inequality, using thea 1 1

theorem:

2.20 F m , N y p y m q 1 F a B , u F cŽ1. u X u F cŽ2. u X u .Ž . Ž . Ž . Ž . Ž .a a 1 1 a 1 1 a 1 1
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Ž . Ž . Ž . Ž i.Ž X . ŽThus we can take b u s F m, N y p y m q 1 and c u s c u u i sa 1 a a 1 a 1 1
. Ž .1, 2 in 2.8 . Clearly,

XŽ i.2.21 P U u F c u u G 1 y a , i s 1, 2,Ž . Ž . Ž .1 a 1 1

and we have the following conservative confidence regions for u , for i s 1, 2:1

2.22 u : U u F cŽ i. u X u .Ž . Ž . Ž .� 41 1 a 1 1

Ž i.Ž X .The computation of c u u is discussed in the next section. Note thata 1 1
w Ž . xTheorem 1 also gives an upper bound for P U u F a , namely,1

w xP F F a . In practice, this upper bound will not be useful to obtainm , Nypymq1
a confidence region for u .1

We shall now briefly describe the construction of a confidence region for
Ž . Ž .the parameter j in the model 1.3 . Recall that h j is an m = 1 vector and j

is an r = 1 vector, r F m. Our problem now is the construction of a confidence
Ž . Ž .region for j using Y in 1.1 and y in 1.3 . We shall use the following
Ž .canonical form, similar to 2.2 :

Y ;N B , I mS , y;N B h j , S ,Ž .Ž . Ž .1 1 m 1 1

S;W S , Nym ,Ž .p

2.23Ž .

where

y1r22.24 h j s XX9 h jŽ . Ž . Ž . Ž .1

Ž . Ž .and the other quantities in 2.23 are defined in 2.1 . We shall assume that
Ž . w Ž .xthe components of h j and hence those of h j are differentiable func-1

Ž .tions of j . Let H j be the p = r matrix defined as

­ h jŽ .1
2.25 H j s Y .Ž . Ž . 1 ­j

Ž .In our derivation that follows, we require the assumption that H j have
Ž . wŽ . xrank r with probability 1 ; see the assumption in Oman 1988 , page 179 .

Ž . Ž .Similar to U u in 2.4 , define1

N y m y p q 1 y1y1 y1U j s y y Y h j 9S H j H j 9S H jŽ . Ž . Ž . Ž . Ž .1 1r

y1= H j 9S y y Y h jŽ . Ž .1 12.26Ž .
y1y1y1 y1 y1 y1= 1 q y9 S y S H j H j 9S H j H j 9S yŽ . Ž . Ž . Ž .½ 5



T. MATHEW AND W. ZHA714

Ž .Following the arguments in the proof of Theorem 1 that lead to 2.12 , we get
the following inequality, for any a ) 0:

P F F aŽ .r , Nymypq1

G P U j F aŽ .Ž .
` ` h j 9h j vŽ . Ž .1 1G P F FaH H r , Nymypq1 ž /1q pyr wr Nymypqrq1Ž . Ž .0 02.27Ž .

=f v g w dv dwŽ . Ž .p pyr , Nymypqrq1

`

G P F h j 9h j v F a f v dv.Ž . Ž . Ž .Ž .H r , Nymypq1 1 1 p
0

Ž . Ž . Ž i.Ž Ž . Ž ..The notations in 2.27 are similar to those in 2.12 . Defining c h j 9h ja 1 1
Ž i.Ž X . Ž . Ž .similar to c u u in 2.18 and 2.19 , we get the following conservativea 1 1

Ž .confidence regions for j , analogous to 2.22 :

2.28 j : U j F cŽ i. h j 9h j , i s 1, 2.Ž . Ž . Ž . Ž .� 4Ž .a 1 1

Ž .Note that the regions in 2.28 are nonempty, since they contain values of
Ž Ž .. y1Ž Ž ..j minimizing y y Y h j 9S y y Y h j . Such values of j satisfy1 1 1 1

Ž . y1Ž Ž ..H j 9S y y Y h j s 0.1 1

REMARK 2.1. As already pointed out, our methodology in this article is
Ž . Ž .similar to that in Oman 1988 . As in Oman 1988 , we have constructed a

pivot statistic that is a projection, essentially discarding the ancillary infor-
mation provided by the distance being projected. Our model is an example of
a curved exponential family and the invariant unconditional analysis that we
have carried out could be thought unsatisfactory. In this context, see the

Ž .discussion at the end of Section 5.3 in Brown 1993 .

3. Computation of the confidence region. In order to compute
Ž1.Ž X . Ž2.Ž X . Ž . Ž .c u u and c u u satisfying 2.18 and 2.19 , respectively, or to com-a 1 1 a 1 1

Ž i.Ž Ž . Ž .. Ž . Ž .pute c h j 9h j in 2.28 , we proceed as in Oman 1988 . We shall firsta 1 1
Ž . Ž . Ž .represent the integrals on the left-hand sides LHS of 2.18 and 2.19 as

two infinite series and then approximate it using a finite number of terms.
Ž i.Ž X .This finite sum will then be equated to 1 y a in order to compute c u u .a 1 1

We shall first give an infinite series representation for the integral on the
Ž .LHS of 2.19 . This is given by

1
LHS of 2.19 sŽ . pr2Xu u q 1 G pr2Ž . Ž .1 1

XŽ2.` 1 mc u uŽ .a 1 1
= P F FÝ mq 2 j , sj! m q 2 jŽ .js0

3.1Ž .

jXp u u1 1
=G q j ,Xž / ž /2 u u q 11 1
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Ž .where s s N y p y m q 1. The algebraic computations leading to 3.1 are
Ž . Ž .very similar to those that yielded equation 3.12 in Oman 1988 , and hence

are omitted. A similar calculation gives
XŽ1.`1 1 mc u u pŽ .a 1 1 jXLHS of 2.18 s P F F G q j u uŽ . Ž .Ý mq 2 j , s 1 1ž /G pr2 j! m q 2 j 2Ž . Ž .js0

pr2
` 1 q p y m wr N y p q 1Ž . Ž .Ž .

=H pr2qjX
0 u u q 1 q p y m wr N y p q 1Ž . Ž . Ž .Ž .1 1

3.2Ž .

= g w dw.Ž .pym , Nypq1

X Ž . Ž .For each specified value of u u , the expressions in 3.1 and 3.2 can be1 1
Ž .evaluated numerically by truncating the summation. The integral in 3.2 has

to be numerically evaluated as well. However, in order to implement the
confidence regions in Section 2, it is necessary to know the forms of the

Ž1.Ž X . Ž2.Ž X . Ž . Ž .functions c u u or c u u satisfying 2.18 and 2.19 , respectively.a 1 1 a 1 1
Ž i.Ž X . Ž .Clearly, the functional forms of c u u i s 1, 2 cannot be obtained analyt-a 1 1

ically. To overcome this difficulty, we proceed as follows. Note that in practi-
Žcal applications, very often an upper bound and perhaps a lower bound as

. Xwell is available on u u , say,1 1

3.3 u X u F d .Ž . 1 1

We then have the following three approaches in order to practically imple-
ment the confidence regions in Section 2.

Ž i.Ž X . Ž . Ž .1. Compute c u u using 3.1 or 3.2 , with the sums suitably truncated,a 1 1
X w xfor a grid of values of u u in the interval 0, d . Once the data are1 1

Ž .available, the confidence region can be determined by computing U u1
w Ž .x Ž . Ž i.Ž X .using 2.4 and verifying whether U u F c u u for a grid of values of1 a 1 1

Ž .u satisfying 3.3 .1
X Ž . Ž . Ž i.Ž .2. Replace u u in 2.18 or 2.19 by the bound d , compute c d and obtain1 1 a

the confidence region

3.4 u : U u F cŽ i. d .Ž . Ž . Ž .� 41 1 a

Ž i.Ž . Ž .As already mentioned, c d i s 1, 2 can be numerically evaluated,a

Ž . Ž .using the representations 3.1 and 3.2 , by truncating the summation in
Ž .the infinite series. Clearly, 3.4 is quite different from the conservative

Ž .confidence region 2.22 . It should be noted that the coverage probability of
Ž . Ž .3.4 is at least 1 y a and one should feel comfortable using 3.4 if the

Ž .coverage probability of 3.4 is close to 1 y a . We would also like to add
Ž .that Oman 1988 implemented his conservative confidence region for the

example discussed in his paper using a bound of u X u .1 1
Ž i.Ž X . X w x3. Compute c u u for a range of values of u u in the interval 0, d . Thea 1 1 1 1
Ž i.Ž X .values of c u u so obtained can be plotted and the possibility of fitting aa 1 1

suitable function to the plotted values can be explored. This will give, at
Ž i.Ž X .least approximately, the functional form of c u u . It is this approacha 1 1

that we have followed for the examples in the next section.
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Ž2.Ž X .Clearly, it is computationally advantageous to obtain c u u satisfyinga 1 1
Ž . Ž1.Ž X . Ž . � Ž .3.1 compared to c u u satisfying 3.2 . However, the region u : U u Fa 1 1 1 1
Ž1.Ž X .4 � Ž .c u u will have a smaller volume compared to the region u : U u Fa 1 1 1 1
Ž2.Ž X .4 Ž1.Ž X . Ž2.Ž X . Ž .c u u . This follows from the fact that c u u F c u u ; see 2.20 .a 1 1 a 1 1 a 1 1

� Ž . Ž2.Ž X .4Nevertheless, in practice one can use the region u : U u F c u u if its1 1 a 1 1
coverage probability is close to 1 y a in the parameter region of interest.

So far in this section, our discussion has been on the practical implementa-
Ž .tion of the confidence region 2.22 . Similar observations are also applicable

Ž .for the implementation of the confidence region 2.28 .
The following lemma shows how the distribution of the pivotal statistics in

Section 2 depend on B and S.1

Ž . Ž . Ž . Ž .LEMMA 1. The distributions of U u in 2.4 and U j in 2.26 depend on1
B and S only through BX

Sy1B .1 1 1

Ž .PROOF. Since the distribution of U u is invariant under the transforma-1
Ž X y1 .tion Y ª AY , y ª Ay and S ª ASA9, and since B S B , u is a maximal1 1 1 1 1

Ž .invariant parameter, the lemma follows for the distribution of U u . The1
Ž .proof for U j is similar. I

The observation in Lemma 1 can be useful for simulating the coverage
probabilities of the confidence regions in Section 2. We have indeed used the
above lemma in our first example in the next section.

4. Two examples. Our first example is based on the paint finish data
Ž . Ž .analyzed in Brown 1982 and Brown and Sundberg 1987 . In this example,

x is a scalar representing viscosity of the paint samples and y is a bivariate
observation vector consisting of two measurements on certain optical proper-

wŽ . xties of the samples; see Brown 1982 , page 301 for details. Even though
Ž .data on some other variables are available in Brown 1982 , we shall use the

data on y and the viscosity in our analysis, following Brown and Sundberg
Ž .1987 . In Brown’s data, given in Table 2 of his paper, the viscosity of each
paint sample was one of three different values and these will be coded as y1,

Ž .0 and 1, as done in Brown and Sundberg 1987 . Twenty-seven observations
were available for calibration, and if y denotes the observation correspondingi

Ž .to a known viscosity x , the model used by Brown and Sundberg 1987 isi

4.1 y ; N a q b x , S ,Ž . Ž .i i

where a and b are unknown 2 = 1 parameter vectors and S is an unknown
2 = 2 positive definite matrix. The problem is to construct a confidence region
for the unknown viscosity, say u , corresponding to a measurement y, where

4.2 y ; N a q bu , S .Ž . Ž .
Before applying our procedure for constructing a confidence region for the

Ž . Ž .unknown viscosity u , we shall first reduce the models 4.1 and 4.2 to models
without the intercept term a and then reduce it further to the canonical form
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Ž . Ž . Ž . Ž .2.2 . Writing Y s y , y , . . . , y and x9 s x , x , . . . , x , 4.1 can be1 2 27 1 2 27
expressed as

4.3 Y ; N a1X q bx9, I m S ,Ž . Ž .27 27

where 1 is a 27 = 1 vector of ones. Among the 27 observations used for27
calibration, there were 9 each corresponding to viscosity values y1, 0 and 1.
Hence
4.4 1X x s 0 and x9x s 18.Ž . 27

Ž .Using the computations in Remark 2.2 in Mathew and Kasala 1994 , along
Ž . Ž . Ž .with 2.1 and 4.4 , the canonical form 2.2 can be obtained by defining

271 27 1'y s Y x, b s 18 b, y s y y y ,( ÝŽ1. 1 0 iž /' 28 2718 is1
4.5Ž .

27 1 1
Xu s u , S s Y I y 1 1 y xx9 Y 9.(1 27 27ž /18 = 28 27 18

Then

4.6 y ; N b , S , y ; N b u , S , S ; W S , 25 .Ž . Ž . Ž . Ž .Ž1. 1 0 1 1 2

Ž .Using the 27 y values used by Brown and Sundberg 1987 , we computedi
Ž .confidence regions for u in 4.6 for a few of the remaining y values in1 i

wŽ . xBrown 1982 , Table 2 . The confidence level was chosen to be 95% and we
Ž . 2 Ž .used 2.19 to compute the confidence region. Writing d s u and using 4.5 ,

X 2 Ž . Ž . Ž .we note that u u s 27u r 28 = 18 s 27dr 28 = 18 . Following 2.19 , we1 1
Ž .computed c d satisfying

` 27
4.7 P F d = v F c d f v dv s 0.95,Ž . Ž . Ž .H 1, 24 2ž /28 = 180

Ž . Ž2. Ž X . w Ž2. Ž Ž . .xwhere c d is used to denote c u u s c 27r 28 = 18 d . Even though0.05 1 1 0.05
the viscosity assumed only three values in the data given in Table 2 of Brown
Ž . Ž .1982 , coded as y1, 0 and 1 in Brown and Sundberg 1987 , it is possible

w xthat the parameter space for u is larger than y1, 1 . For the evaluation of
Ž .c d , it is necessary to specify a possible range of values for u , and in our

w xanalysis, we have considered the interval y2, 2 for u . Larger intervals can
certainly be considered; see Remark 4.1 below. Since d s u 2, it is clearly
enough to consider only nonnegative values of u for the numerical evaluation

Ž . Ž . Ž .of c d . In our analysis, we have evaluated c d satisfying 4.7 for a few
w x Ž .values of u in the interval 0, 2 . Equation 3.1 was used in the computation

Ž . Ž .and truncating the summation in 3.1 to eight terms i.e., j s 0]7 turned
Ž . Ž .out to be quite accurate for computing c d . Table 1 gives the values of c d

for a few values of d.
Ž . Ž .A plot of the above values of c d showed that c d is very close to being

w Ž . x Ž .linear in d see Zha 1995 for more details . The fitted line by least squares
has the equation

4.8 c# d s 4.26311 q 0.44711d ,Ž . Ž .
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TABLE 1
Ž . Ž .Values of c d satisfying 4.7

2d s u 0 0.5 1 1.5 2 2.5 3 3.5 4

Ž .c d 4.2600 4.4871 4.7127 4.9366 5.1585 5.3785 5.5967 5.8132 6.0279

Ž . Ž . Ž .where c# d denotes values on the line. From 4.7 , we note that c 0 is the
Ž .95th percentile of the central F distribution with degrees of freedom 1, 24 ,

Ž .which is 4.26. The intercept of the line in 4.8 is slightly larger than this
value, due to the fact that the line did not fit exactly. The confidence region
for u is thus given by

27
24.9 u : U u F c# u ,Ž . Ž .(½ 5ž /28 = 18

Ž 2 . Ž . Ž .where c# u s c# d is given by 4.8 .
Ž .Table 2 gives the classical interval due to Brown 1982 , the likelihood-

Ž . Ž .based interval due to Brown and Sundberg 1987 and our region 4.9 for
wŽ .four y values. The first three of these values are taken from Brown 1982 ,

x wTable 2 and they correspond to true viscosity values y1, 0 and 1. Note that
Ž .Brown’s 1982 Table 2 has 36 observations and only 27 were used to obtain

Ž .y and S in 4.6 . The first three y values in Table 2 are from among theŽ1.
xremaining seven values. The fourth y value in Table 2 corresponds to an

unknown viscosity and this value is also considered in Brown and Sundberg
wŽ . x wŽ . x1987 , page 56 . We recall from Brown and Sundberg 1987 , Section 4 that
the likelihood-based region is implemented using a chi-square approximation
to the distribution of the relevant statistic.

We see from Table 2 that the likelihood-based region due to Brown and
Ž . Ž .Sundberg 1987 is the shortest, followed by our region 4.9 and Brown’s

Ž . Ž .1982 region in cases where it is nonempty . Note that Brown’s region is
exact and hence its coverage probability is the assumed confidence level of

Ž .95%. Our confidence region 4.9 will have coverage probability 95% or more;

TABLE 2
Ž . Ž .95% confidence regions for u in the models 4.2 and 4.3

Likelihood-based
Classical interval interval due

True value due to Brown to Brown and The interval
( ) ( ) ( )y of u 1982 Sundberg 1987 4.9

Ž . Ž . Ž . Ž .1.78, 38.73 9 y1 y1.65, 0.92 y1.27, 0.57 y1.41, 0.67
Ž . Ž . Ž . Ž .1.79, 39.83 9 0 y1.93, 0.57 y1.60, 0.27 y1.76, 0.37
Ž . Ž . Ž . Ž .1.52, 35.65 9 1 0.39, 3.12 0.71, 2.68 0.61, 2.97
Ž . Ž . Ž .1.94, 34.09 9 Unknown Empty set y1.34, 1.16 y1.39, 1.23
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see Table 3. We also simulated the coverage probabilities of the likelihood-
Ž .based region due to Brown and Sundberg 1987 . It turns out that the

coverage probability of the likelihood-based region can be much lower than
Ž .95%. We simulated the above coverage probability for the models 4.2 and

Ž . Ž .4.3 using the following parameter values: a s 0, S s I and b s h 1, 0 9, for2
wvarious values of h such choices of the parameter values were also made for

Ž . xsimulating the coverage probabilities of 4.9 , which is explained below . For
u s 1, the coverage probabilities of the likelihood-based confidence region for
values of h s 1, 100, 10,000, 50,000, 100,000 and 200,000 turned out to be

Ž0.363, 0.377, 0.387, 0.529, 0.744 and 0.967, respectively. This is based on
.10,000 simulations. The coverage probabilities are significantly below the

assumed confidence level of 95%, except at a very large value of h, that is, a
very large value of b. This can be explained based on the chi-square approxi-

wŽ . xmation described in Brown and Sundberg 1987 , page 55 . This chi-square
approximation is valid only when S ª 0. In our simulation we chose S s I .2
This amounts to making the transformation b ª Sy1r2 b, which ª ` as
S ª 0. In other words, with S s I , the coverage probability of the2
likelihood-based confidence region will be close to the assumed confidence
level only for very large values of b}a fact that showed up in our simulation.

Ž .Table 3 gives the simulated coverage probabilities of the interval 4.9 for
Ž . Ž .the models 4.2 and 4.3 , for a s 0, S s I and for various values of b and u .2

Ž .We note that the confidence region 4.9 is translation invariant and also
invariant under a nonsingular transformation and hence we can choose a s 0

Žand S s I without loss of generality see the last part of the first paragraph2
.in the Introduction . The values of b were chosen based on the fact that the

Ž .coverage probability of the confidence region 4.9 depends on b only through
Ž .b9b since S s I ; see Lemma 1. Thus, for the simulation, we have chosen2
Ž .b s h 1, 0 9, for several values of h. For a few values of h and u , the coverage

Ž .probability of 4.9 was computed based on 100,000 simulations. The coverage
probability turns out to be the same at u and yu , and hence negative values

wof u are not included in Table 3. Even though we chose values of the

TABLE 3
Ž .Simulated coverage probabilities of the interval 4.9 , based on 100,000 simulations, for the

Ž . Ž . Ž .models 4.2 and 4.3 , for a s 0, S s I and b s h 1, 0 9 for different values of h and u2

h

2( )u c# u 0.001 0.01 1 10 100

0 4.2631 0.950 0.950 0.950 0.950 0.950
0.5 4.3749 0.950 0.950 0.951 0.952 0.952
1 4.7102 0.950 0.950 0.952 0.955 0.955
1.5 5.2691 0.950 0.951 0.955 0.960 0.960
2 6.0516 0.952 0.952 0.957 0.965 0.965
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Ž . Ž .parameters in the models 4.2 and 4.3 for the simulation, one can also use
Ž . xthe canonical form 4.6 .

From the results in Table 3, it is clear that the simulated coverage
probabilities are close to the assumed 95% confidence level. Table 3 gives the

< <indication that the coverage probability is an increasing function of both u
5 5and b .

REMARK 4.1. In our calculations for Example 1, we restricted u to lie in
w xthe interval y2, 2 . It is possible to use wider or narrower intervals depend-

ing on the available information on u . We did calculate and plot values of
Ž . Ž 2 . w xc d where d s u for several values of u outside y2, 2 , that is, values of

d greater than 4. The linear fit, which was quite satisfactory for the values in
Table 1, turns out to be unsatisfactory for higher values of d. In fact, it turns

Ž . Ž . Ž .out that c d - c# d for values of d ) 4, where c# d is obtained using
Ž . Ž .4.8 . Consequently, 4.9 will give a conservative confidence region even if the

Ž .true value of u is greater than 2. It may be possible to approximate c d
using a suitable nonlinear function of d when it is known that the parameter

w xspace for u is larger than y2, 2 . This will of course give a more satisfactory
Ž . Ž .i.e., narrower confidence region compared to 4.9 . We did not pursue this
mainly because none of the observations used to set up the calibration curve

w xcorresponds to values of u outside y1, 1 . Hence it is reasonable to assume
that the calibration curve will be used to predict values of u within or

w x w xsomewhat closer to y1, 1 . Consequently, the region y2, 2 was deemed
satisfactory.

Ž .REMARK 4.2. The numerical computations including the simulations for
the above example, as well as for the next example, were carried out using

Ž . Ž .SAS. As already pointed out, c d satisfying 4.7 was computed using the
Ž .infinite series representation 3.1 retaining seven terms in the summation.

Ž . Ž . Ž . Ž .Since c d ) c 0 s 4.26 for the above example , for any given d, c d can be
Ž .computed by considering increments of c 0 and evaluating the expression in

Ž . Ž .3.1 each time, until the numerical value of 3.1 is close to 0.95, up to a
Ž .desired level of accuracy. Once c d is thus calculated for a given value of d,

Ž .the computation of c d for any other value d ) d can be accomplished by1 1
Ž . Ž . Ž . Ž .considering increments of c d instead of c 0 . This is so because c d ) c d1

whenever d ) d. We followed the above approach in order to arrive at Table1
1. These observations apply to our next example as well.

Ž .Our second example deals with a situation where the model 2.23 is
Ž .applicable; it is taken from Oman and Wax 1984 . The same example is also

Ž . Ž .discussed in Oman 1988 and in what follows, we shall use Oman’s 1988
Žnotation. The problem deals with estimating gestational age i.e., week of

.pregnancy using ultrasound measurements on two fetal bone lengths: the
Ž . Ž .femur length F and the biparietal diameter BPD . If j represents the
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Ž . Ž . wgestational age in weeks and y s F, BPD 9, the model is see Oman and
Ž .xWax 1984

j
4.10 y ; N a q Bh j , S , where h j s ,Ž . Ž . Ž .Ž . 2ž /j

where a is a 2 = 1 intercept vector, B is an unknown 2 = 2 matrix and S is
an unknown 2 = 2 positive definite matrix. The analysis in Oman and Wax
Ž . Ž . Ž .1984 and Oman 1988 is based on the F, BPD measurements for 1114
women whose gestational age j was precisely known for values of j satisfy-
ing 14 F j F 41. The problem is that of constructing a confidence region for

Ž .the unknown gestational age corresponding to various F, BPD measure-
ments.

Ž .Let Y denote the 2 = 1114 matrix of F, BPD 9 values for the 1114 women
Ž .and let y denote the F, BPD 9 value for a woman whose gestational age j is

unknown. Then y and the columns of Y are independent multivariate normal
random vectors with

E Y s a1X q BX , Cov Vec Y s I m S ,Ž . Ž .Ž .1114 11144.11Ž .
E y s a q Bh j , Cov y s S ,Ž . Ž . Ž .

Ž 2 .where the ith column of X is j , j 9, j being the known gestational age fori i i
Ž .the ith woman. We shall first obtain the canonical form 2.24 . For this, we

Ž .shall use the computations in Remark 2.2 in Mathew and Kasala 1994 and
proceed as in our previous example. Let n s 1114 and let Z be an n = n y 1

'ŽŽ . .matrix such that 1r n 1 : Z is an orthogonal matrix. Definen

y1r21 1
Y s YZ, X s XZ, y s 1 q y y Y 1 ,0 0 0 nž / ž /n n

4.12Ž .
y1r21 1

h j s 1 q h j y X1 .Ž . Ž .0 nž / ž /n n

We note that Y is a 2 = n y 1 matrix. Writing N s n y 1, we note that the0
Ž .quantities N, m, p and r occurring in 2.27 have values N s 1113, m s 2,

Ž .p s 2 and r s 1. Similar to 2.1 , now define

y1r2 y1X X X X XY s Y X X X , S s Y I y X X X X Y ,Ž . Ž .Ž .1 0 0 0 0 0 0 0 0 0 0
4.13Ž .

1r2 y1r2X XB s B X X , h j s X X h j .Ž . Ž . Ž . Ž .1 0 0 1 0 0 0

Then

4.14 Y ; N B , I m S , y ; N B h j , S , S ; W S , 1111 .Ž . Ž . Ž . Ž .Ž .1 1 2 0 1 1 2

wŽ . x Ž . Ž .Y and S are essentially given in Oman 1988 , page 182 . H j in 2.25 is1
given by

1y1r2X4.15 H j s Y X X .Ž . Ž . Ž .1 0 0 ž /2j
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Let

4.16 d s h j 9h j .Ž . Ž . Ž .1 1

Note that in order to compute d, we need the value of the matrix X X X and0 0
Ž . Ž . Ž . Ž .the vector 1rn X 1 n s 1114 ; see the definition of h j in 4.13 andn 1

Ž . Ž .h j in 4.12 . These can be computed using the data in Oman and Wax0
Ž .1984 and are given by

152,877.52 2,878,329 28.410233X4.17 X X s and X1 s .Ž . 0 0 nž / ž /2,878,329 15,914,978 854.607720n

Ž . Ž .In view of 2.27 , in order to implement the confidence region 2.28 with
Ž .a s 0.05, we need to compute c d satisfying

`

4.18 P F d = v F c d f v dv s 0.95.Ž . Ž . Ž . Ž .H 1, 1110 2
0

Ž .In order to evaluate c d for various values of d, an infinite series represen-
Ž .tation similar to 3.1 was used with the summation truncated at eight terms.

w xFor a few values of j in the interval 14, 41 , Table 4 gives the values of d
Ž . Ž . Ž . Ž .and c d , where d is obtained using 4.16 and c d satisfying 4.18 was

numerically obtained.
Ž .A plot of the values in Table 4 showed that c d is linear in d; see Zha

Ž .1995 for details. The line is given by

4.19 c# d s 3.849868 q 7.688439d ,Ž . Ž .
Ž . Ž .where c# d denotes values on the line. Using the definition of d in 4.16 , we

see that the confidence region for j is given by

4.20 j : U j F 3.849868 q 7.688439h j 9h j .� 4Ž . Ž . Ž . Ž .1 1

Ž .For a few arbitrarily chosen values of y s F, BPD 9, Table 5 gives the
confidence regions for j . Comparing the results in Table 5 with Figure 2 in

Ž .Oman 1988 , we see that our confidence intervals have essentially the same
Ž .length as those obtained by Oman. We noted the same for several F, BPD

TABLE 4
Ž . Ž . Ž .Values of d satisfying 4.16 and c d satisfying 4.18 for different values of j

( )j d c d

14 0.010332 3.92943
18 0.002574 3.86975
22 0.000967 3.85733
26 0.001020 3.85771
30 0.000733 3.85547
34 0.000594 3.85439
38 0.003576 3.87734
41 0.011055 3.93481
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TABLE 5
Ž . Ž . Ž .The confidence region 4.20 for j in the model 4.11 using Oman and Wax 1984 data,

for a few values of y

( ) ( ) ( ) ( ) ( ) ( )y9 s F, BPD 14, 27 32, 47 45, 62 56, 75 65, 85

Confidence Ž . Ž . Ž . Ž . Ž .13.03, 15.95 18.52, 21.89 23.11, 27.03 27.64, 32.30 31.88, 37.64region

Ž .values from the range of values in Figure 2 in Oman 1988 and hence have
reported only a few values in Table 5. We would also like to point out that the
Ž .F, BPD values given in Table 5 are all very close to the average of several
Ž . Ž .F, BPD values given in Table 1 in Oman and Wax 1984 . The true
gestational ages corresponding to these averages are 14, 20, 25, 30 and 35
weeks. It is interesting to note that these gestational age values belong to the
respective confidence intervals in Table 5.

Ž .Table 6 gives the simulated coverage probability of the region 4.20 . We
Ž .have used the canonical form 4.14 for the simulation with S s I , B s hI2 1 2

Ž .h s 0.001, 0.01, 1, 10 and 100 and for a few values of j in the interval
w x14, 41 .

The simulated coverage probabilities in Table 6 turn out to be very close to
the 95% confidence level. Thus, for the two examples presented in this
section, the approach described in this article turns out to be quite satisfac-
tory for obtaining confidence regions.

Ž .5. Concluding remarks. In calibration problems where the models 1.1
Ž . Ž . Ž .and 1.2 or the models 1.1 and 1.3 are applicable, we have derived some

Ž .conservative confidence regions for the parameter u in 1.2 or the parameter
Ž .j in 1.3 . Our regions have many desirable features. They are applicable to

finite samples and they possess a natural invariance property. Furthermore,

TABLE 6
Ž .Simulated coverage probabilities of the region 4.20 , based on 100,000 simulations, for the model

Ž .4.14 , for S s I , B s hI for different values of h and j2 1 2

h

j 0.001 0.01 1 10 100

14 0.950 0.950 0.952 0.953 0.954
19 0.950 0.950 0.950 0.950 0.051
23 0.950 0.950 0.951 0.952 0.952
28 0.950 0.950 0.950 0.950 0.951
31 0.950 0.950 0.950 0.950 0.950
33 0.950 0.950 0.951 0.951 0.951
38 0.951 0.951 0.950 0.950 0.950
41 0.950 0.950 0.951 0.951 0.952
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the pivotal quantity that we have used to construct the confidence regions is
w Ž .xa natural choice this should be clear from 2.3 . In general, it is not possible

to get an exact confidence region based on the pivot that we have used since
Ž .its distribution depends on the unknown parameter matrix B in 1.1 . It is

our attempt to take care of this difficulty that resulted in the conservatism of
our region. It must be pointed out that the practical implementation of our
confidence region requires a certain amount of computational effort, since the

Ž i.Ž X . Ž .functional form of c u u in 2.22 has to be numerically obtained bya 1 1
X wcomputing and plotting its values for various choices of u u . The same1 1

Ž i.Ž Ž . Ž .. Ž . xobservation also applies to the computation of c h j 9h j in 2.28 . Thea 1 1
numerical computations can be drastically reduced by using an upper bound

X Ž i.Ž .d on u u and computing the confidence region using c d , at the cost of1 1 a

Ž .increasing the volume of the region. The classical region due to Brown 1982
Ž .and the region derived in Mathew and Kasala 1994 are computationally

simple and are applicable to finite samples. The drawbacks of these regions
have already been pointed out in this article. The likelihood-based region due

Ž .to Brown and Sundberg 1987 , though it requires numerical evaluation of
the maximum likelihood estimator, is simpler to compute compared to our
regions in Section 2. However, the relevant statistic in the likelihood-based
confidence region has a distribution that depends on the nuisance parame-
ters, and the asymptotic chi-square approximation derived in Brown and

Ž .Sundberg 1987 is valid only under a condition that is parameter dependent.
Before recommending the likelihood-based confidence region in practice, it
may be necessary to simulate its coverage probability and be convinced that
the coverage probability is close to the assumed confidence level. We already
saw that this need not be the case; see the discussion following Table 2. On
the other hand, our confidence regions are applicable without any further
conditions, as long as the assumed models are valid.
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