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This paper investigates the statistical relationship of the GARCH model
and its diffusion limit. Regarding the two types of models as two statistical
experiments formed by discrete observations from the models, we study
their asymptotic equivalence in terms of Le Cam’s deficiency distance. To
our surprise, we are able to show that the GARCH model and its diffusion
limit are asymptotically equivalent only under deterministic volatility. With
stochastic volatility, due to the difference between the structure with respect
to noise propagation in their conditional variances, their likelihood processes
asymptotically behave quite differently, and thus they are not asymptotically
equivalent. This stochastic nonequivalence discredits a general belief that
the two types of models are asymptotically equivalent in all respects and
warns against the common financial practice that applies statistical inferences
derived under the GARCH model to its diffusion limit.

1. Introduction. There are two relatively independent strands of financial
modeling: continuous-time models typically used in theoretical finance and
discrete-time models favored for empirical work. The continuous-time models are
dominated by the diffusion approach. Most of the discrete-time models are of the
autoregressive conditionally heteroscedastic (ARCH) type. Historically, the two
literatures on the discrete-time and continuous-time models have developed quite
independently. In the early 1990s researchers started to reconcile the two modeling
approaches. Nelson (1990) first established the continuous-time diffusion limit for
the discrete-time generalized ARCH (GARCH) model by showing that GARCH
processes weakly converge to some bivariate diffusions, as the length of the
discrete time intervals goes to zero. Duan (1997) proposed an augmented GARCH
model to unify various parametric GARCH models and derived its diffusion
limit, among others. The existing theory links the two types of models by weak
convergence [Rossi (1996)]. Given that statistical inference is essential for both
types of modeling, this paper investigates the statistical relationship between the
GARCH model and its diffusion limit.
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Since the GARCH model and its diffusion limit share the same parameters, we
naturally treat them as two statistical experiments formed by discrete observations
from the two models and study their asymptotic equivalence by Le Cam’s
deficiency distance. Here “equivalence” means that each statistical procedure for
one model has a corresponding equal-performance statistical procedure for another
model. Surprisingly, it is shown that the GARCH model and its diffusion limit
are asymptotically equivalent under nonstochastic volatility and not otherwise.
Stochastic volatility is the essential characteristic of GARCH modeling. The
GARCH model with nonstochastic volatility is nothing but a regression model
and its diffusion limit is a white noise model. Thus, the stochastic nonequivalence
indicates that Nelson’s weak convergence result has no analog in Le Cam’s
paradigm.

The GARCH and diffusion models are of great interest in finance. It is very
common to hear researchers invoke Nelson’s result to justify the common belief
that both models are “more or less equivalent.” Our results send a warning
against accepting this belief uncritically. The reconciliation of the two modeling
approaches in financial econometrics and financial mathematics is in terms of the
weak convergence results for the distributions of price processes. The statistical
equivalence considered here is essentially determined by the asymptotic behavior
of the likelihoods. Due to the difference between distribution and likelihood, weak
convergence results like Nelson’s do not necessarily imply asymptotic equivalence
of the GARCH and diffusion models viewed as statistical experiments.

There is a great volume of statistical literature on comparison of experiments
[Basawa and Prakasa Rao (1980), Brown and Low (1996), Jacod and Shiryaev
(1987), Le Cam (1986), Le Cam and Yang (1990) and Nussbaum (1996)].
Most of the work on the equivalence of experiments is about diffusions with
known fixed diffusion variance but unknown drift. For the inference of diffusion
drift, the Cameron–Martin–Girsanov theorem gives an explicit form for the
likelihood process of continuous-time observations from a diffusion. Under
Le Cam’s deficiency distance, the continuous-time observations are asymptotically
equivalent to their discretely sampled versions, and they both, in turn, are
asymptotically equivalent to observations from the corresponding discrete-time
model. However, the inference for diffusion variance is intrinsically different
[Florens-Zmirou (1989), Genon-Catalot (1990), Kessler (1997), Prakasa Rao
(1988) and Yoshida (1992)]. For example, singularity may occur for the infinite-
dimensional distributions of continuous-time observations from a diffusion under
different values for the parameters in its diffusion variance, and the diffusion
variance can be perfectly recovered from continuous-time observations. Thus,
it is impossible to have any statistical equivalence between continuous-time
observations and discretely sampled observations.

Our explanation for the unexpected phenomenon is as follows. The GARCH
and diffusion models employ quite different mechanisms to propagate noise in
their conditional variances. In the GARCH framework, the conditional variance is
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governed by the squares of past observational errors, so the likelihood involves
a triple: normal random errors, their squares and the GARCH conditional
variances, where the last two are correlated. While the diffusion model uses an
independent, unobservable white noise to govern its conditional variance, and
thus its likelihood behaves like the conditional expectation with respect to the
unobservable white noise of the GARCH likelihood with the correlated triple
replaced by three uncorrelated random components: normal random errors, their
squares and the diffusion conditional variances. Hence, with stochastic volatility,
the different noise propagation systems in their conditional variances result in
quite different asymptotic likelihoods for the two types of models, and that, in
turn, causes the nonequivalence. With nonstochastic volatility, the two models are
Gaussian and their deterministic conditional variances approach the same limit.
Thus, they are asymptotically equivalent.

The stochastic nonequivalence has an important consequence for statistical
inference in the GARCH and diffusion models, and in particular provides some
theoretical evidence against the practice that applies statistical procedures derived
under the GARCH model to its diffusion limit. In a diffusion model, the
conditional volatility is not observable, the likelihood is extremely hard to obtain
and parameter estimation can be very difficult; while a GARCH model uses past
observations to model the conditional variance, the likelihood has an explicit
expression, and parameters can easily be estimated. This makes the GARCH
approach more attractive for estimation and subsequent statistical inference. With
diffusion modeling being favored over GARCH modeling for option pricing, one
may be tempted to use a diffusion model with parameters estimated by fitting
its corresponding GARCH model, to apply the statistical inference procedures
developed under the GARCH model to the diffusion model and to plug the
set of estimated parameter values from the GARCH model into formulas for
option pricing obtained from the diffusion model. In fact, this naive approach is
enthusiastically advocated in the finance literature and widely used in financial
practice. The usual justification is that weak convergence results like Nelson’s
suggest that parameter estimators obtained by fitting a GARCH model can
consistently estimate the parameters in its diffusion limit. However, due to the
stochastic nonequivalence of the two types of models, estimators and tests derived
under the GARCH model may behave asymptotically quite differently from those
derived under its diffusion limit and can have inferior performance when being
applied to observations coming from its diffusion limit. For modeling stochastic
volatility, if a diffusion model is preferred, it is statistically more efficient to fit
data directly to the diffusion model and carry out the inference [Aït-Sahalia (1996),
Danielsson (1994), Gallant, Hsieh and Tauchen (1997), Gallant and Long (1997),
Gallant and Tauchen (1998) and Jacquier, Polson and Rossi (1994)].

Our approach to proving the results is to follow Le Cam’s principle to study
likelihood processes and derive the limit of the deficiency distance between the
two types of models. The rest of the paper is organized as follows. Section 2
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introduces ARCH models and relates them to diffusions. Section 3 briefly reviews
comparison of experiments and then presents our main results. Sections 4–6 are
devoted to proving the results. The likelihood processes for the models are studied
in Sections 4 and 5, and theorems are proved in Section 6.

2. GARCH models and diffusions.

2.1. GARCH models. Probably the most important innovation in discrete-
time modeling of financial time series is the introduction by Engle (1982) of the
ARCH model. The model makes the conditional variance of a series of prediction
errors equal to some function of lagged errors, time, parameters and predetermined
exogenous and lagged endogenous variables. Specifically, the observed time series
xk, k = 1, . . . , n, is assumed to follow the model

xk = µk + yk, yk = σkεk,(1)

σ 2
k = σ 2(yk−1, yk−2, . . . , k,Ak,α),(2)

where εk is a sequence of i.i.d. standard normal random variables, σ 2
k is the

conditional variance of xk given the information at time k, µk is the drift term
which may depend on k, σ 2

k and xk−1, xk−2, . . . ,α is a vector of parameters, and
Ak is a vector of exogenous and lagged endogenous variables. Any model of the
form (1) and (2) is referred to as an ARCH model. The existing ARCH models
differ in their specification for σ 2

k .
Engle (1982) chose the following function form for σ 2

k :

σ 2
k = α0 +

p∑
j=1

αjy
2
k−j = α0 +

p∑
j=1

αjσ
2
k−j ε2

k−j ,(3)

where αi’s are nonnegative constants. The model specified by (3) is often called
ARCH(p). The appeal of this model lies in the fact that it can capture the tendency
for volatility clustering: large (or small) price changes tend to be followed by other
large (or small) price changes, but of unpredictable sign. In other words, a high
value of y2

k drives up σ 2
k+1, which in turn increases the expectation of y2

k+1 and so
on.

Bollerslev (1986) and Engle and Bollerslev (1986) generalized ARCH(p) by
introducing the following specification:

σ 2
k = α0 +

p∑
i=1

αiσ
2
k−i +

q∑
j=1

αp+j y2
k−j

= α0 +
p∑
i=1

αiσ
2
k−i +

q∑
j=1

αp+j σ 2
k−j ε2

k−j ,
(4)



758 Y. WANG

where αi’s are nonnegative constants. This model is referred to as linear
GARCH(p,q). For real financial data it often yields a more parsimonious
representation for σ 2

k as a function of lagged values of σ 2
k ’s and y2

k ’s.
Since σ 2

k is the conditional variance, it clearly must be nonnegative with
probability 1. Linear GARCH models guarantee this by making σ 2

k a positive linear
combination of positive random variables. To ensure nonnegativity of σ 2

k , Geweke
(1986) and Pantula (1986) adopted the following natural device by making logσ 2

k

a linear function of lagged values of logσ 2
k ’s and logy2

k ’s:

logσ 2
k = α0 +

p∑
i=1

αi logσ 2
k−i +

q∑
j=1

αp+j logε2
k−j ,(5)

where αi ’s are constants, and because of logε2
k−j = logy2

k−j − logσ 2
k−j , the right-

hand side of (5) is a linear combination of the lagged values of logσ 2
k ’s and

logy2
k ’s. We refer to this model as multiplicative GARCH(p,q).

Since the GARCH(1, 1) specification has been found to be adequate in
most applications, this paper will confine the analysis to the model with the
GARCH(1, 1) specification and the common financial parameterization of the drift

µk = c0 + c1σ
2
k ,(6)

and leave the generalization to general GARCH(p,q) specifications and other
forms of µk to readers.

For a GARCH model, by a conditional argument we can easily derive its
likelihood function,

n∏
k=1

[
σ−1
k φ({xk −µk}/σk)],(7)

where φ is the density of the standard normal distribution. Because of the relatively
simple likelihood function, statistical inference for the GARCH model can be
carried out. [See Bollerslev, Chou and Kroner (1992) and Gouriéroux (1997).]

2.2. Diffusion processes. In contrast to stochastic difference equations used in
discrete-time models, stochastic differential equations are widely used to describe
continuous-time models in the theoretical finance literature. The stochastic
processes characterized by the stochastic differential equations are continuous-
time diffusions (also referred to as Itô processes), and continuous-time modeling
has made extensive use of Itô stochastic calculus, which provides an elegant
means to analyze the diffusions. Specifically, a continuous-time model assumes
that a security price St obeys the following stochastic differential equation:

S−1
t dSt = νt dt + σt dWt, t ∈ [0, T ],(8)
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where Wt is a standard Wiener process, νt is called (diffusion) drift in probability
or instantaneous mean rate of return in finance and σ 2

t is called diffusion variance
in probability or instantaneous conditional variance (or volatility) in finance. The
celebrated Black–Scholes model corresponds to (8) with constants νt and σt
[Black and Sholes (1973) and Merton (1973)]. However, many econometric studies
have documented that financial time series tend to be highly heteroskedastic.
To accommodate this, we allow σ 2

t to be random and often assume σ 2
t itself

is governed by another stochastic differential equation [see (15) and (17) in
Section 2.3 below]. Such σ 2

t is called a stochastic volatility and the corresponding
model is termed a continuous-time stochastic volatility model. For the continuous-
time model, the “no arbitrage” condition (the fundamental concept in finance,
which is often labeled in plain English as the “no free lunch” condition) can
be beautifully characterized by a martingale measure (or risk-neutral measure in
finance), that is, a probability law under which St is a martingale. Prices of options
and derivatives are then the conditional expectation of certain functionals of S
under this measure. [A derivative is a financial instrument whose value depends on
the values of other, more basic underlying variables such as stocks, interest rates
and currency exchange rates. A call (or put) option is a special derivative which
gives its holder a right, not obligation, to buy (or sell) a security at certain price by
future time. See Hull (1997).] The calculations and derivations can be manipulated
by tools such as the Itô lemma and the Girsanov theorem. [(See Dothan (1990),
Duffie (1992), Harrison and Kreps (1979), Harrison and Pliska (1981), Hull and
White (1987), Ikeda and Watanabe (1989), Karatzas and Shreve (1991), Merton
(1990) and Stroock and Varadhan (1979).]

The log price process Xt = logSt is often used. By the Itô lemma and from (8)
we obtain the diffusion model for Xt ,

dXt = (νt + σ 2
t /2) dt + σt dWt,

where the drift for Xt has a term σ 2
t . GARCH models are used to model

statistically the increments of the log price process, so from the diffusion point
of view, (6) is also a natural parameterization of the GARCH drift µk .

Since the likelihood for discretely sampled observations from a diffusion
defined by nonlinear stochastic differential equations is not available, the statistical
inference for the diffusion model is usually much harder than that for a GARCH
model. Recently some inference methods have been developed for the diffusion
model [Aït-Sahalia (1996), Gallant, Hsieh and Tauchen (1997), Gallant and Long
(1997) and Gallant and Tauchen (1998)].

2.3. Diffusion limits of GARCH models. Divide the time interval [0, T ] into n
subinterval of length sn = T/n and set tk = ksn, k = 0,1, . . . , n. For i.i.d. standard
normal random variables {εk}, let

ξk = κ1(log ε2
k − κ0), ζk = 2−1/2(ε2

k − 1),(9)
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where the generic constants κ0 and κ1 are

κ0 =E log ε2
1 ≈ −1.27, κ1 = {

var(logε2
1)
}−1/2 ≈ 0.45.(10)

The multiplicative GARCH(1, 1) approximating process is defined as follows. For
k = 1, . . . , n, let

Xn,k −Xn,k−1 = (γ0 + γ1σ
2
n,k)sn + σn,ks1/2

n εk,(11)

logσ 2
n,k = β0sn + (1 + β1sn) logσ 2

n,k−1 + β2s
1/2
n ξk−1.(12)

The approximating process (Xn,t , σ 2
n,t ), t ∈ [0, T ], is given by

Xn,t =Xn,k, σ 2
n,t = σ 2

n,k for t ∈ [tk, tk+1), k = 0, . . . , n.(13)

Nelson (1990) showed that as n → ∞, the normalized partial sum process
of (εk, ξk) weakly converges to a planar Wiener process and thus the process
(Xn,t , σ

2
n,t ) converges in distribution to the bivariate diffusion process (Xt , σ 2

t )

governed by the following stochastic differential equation system:

dXt = (γ0 + γ1σ
2
t ) dt + σt dW1,t ,(14)

d logσ 2
t = (β0 + β1 logσ 2

t ) dt + β2 dW2,t , σ 2
0 = eβ3,(15)

where W1,t and W2,t are two independent standard Wiener processes. The
diffusion model described by (14) and (15) [or the process (Xt , σ 2

t )] is referred
to as the diffusion limit of the multiplicative GARCH model (11) and (12).

For the linear GARCH model, everything is the same except for replacement
of (12) and (15), respectively, by

σ 2
n,k = β0sn + σ 2

n,k−1(1 + β1sn + β2s
1/2
n ζk−1),(16)

dσ 2
t = (β0 + β1σ

2
t ) dt + β2σ

2
t dW3,t , σ 2

0 = eβ3,(17)

where W3,t is a standard Wiener process, corr(W2,t ,W3,t ) = corr(ε2
1, logε2

1) ≈
0.64, and W1,t is independent of W2,t and W3,t . [See Duan (1997), Nelson (1990)
and Rossi (1996).]

For simplicity, throughout this paper we assume initial values Xn,0 = X0 and
σ 2
n,0 = σ 2

0 = eβ3 .
Note that the diffusion model is for the log price process and the GARCH model

is for the increments of the log price process. The increments of the GARCH
approximating processes defined by equations (11) and (12) and equations (11)
and (16) obey the GARCH structure of Section 2.1. Indeed, in equation (11),
the term (γ0 + γ1σ

2
n,k)sn is the drift µk [see (1)] of the form specified in (6)

with γ0 and γ1 the rescaled versions of c0 and c1, namely, c0 = γ0sn, c1 = γ1sn.
Using the relationship between (ξk, ζk) and ε2

k given by (9) and (10), we rewrite
equations (12) and (16), respectively, as

logσ 2
n,k = α0 + α1 logσ 2

n,k−1 + α2 log ε2
k−1,(18)
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with

α0 = β0sn − β2s
1/2
n κ0κ1, α1 = 1 + β1sn, α2 = β2s

1/2
n κ1

and

σ 2
n,k = α0 + α1σ

2
n,k−1 + α2σ

2
n,k−1ε

2
k−1,(19)

with

α0 = β0sn, α1 = 1 + β1sn − β2s
1/2
n /21/2, α2 = β2s

1/2
n /21/2.

Comparing (18) and (19) with GARCH specifications (4) and (5), we clearly
demonstrate that model (11) and (12) and model (11) and (16) are multiplicative
and linear GARCH(1, 1), respectively. The parameters γi’s and βi’s are, respec-
tively, the rescaled versions of the drift parameters ci’s [in (6)] and local repara-
meterization of the volatility parameters αi’s [in (4) and (5)] so that the diffusion
limits can be obtained. As option pricing depends on security prices, these weak
convergence results can be used to show that option pricing formulas for GARCH
models agree in the limit with those for their diffusion limits. Also, the results are
very useful for the cases where one may find the distributional results are available
for continuous-time models that are not available for the GARCH models. [See
Duan (1995), Nelson (1990) and Rossi (1996).]

3. Statistical equivalence and nonequivalence.

3.1. Comparison of experiments. A statistical problem E consists of a sample
space $, a suitable σ -field F , and a family of distributions Pθ indexed by
parameter θ which belongs to some parameter space ', that is, E = ($,F ,
(Pθ , θ ∈ ')). E is referred to as a statistical experiment. Le Cam’s deficiency
distance is often used to compare statistical experiments.

Consider two statistical experiments with the same parameter space ', Ei =
($i,Fi, (Pi,θ , θ ∈ ')), i = 1,2. Denote by A a measurable action space, let
L :'×A → [0,∞) be a loss function, and set ‖L‖ = sup{L(θ, a) : θ ∈', a∈A}.
In the ith problem, let δi be a decision procedure and denote by Ri(δi,L, θ) the
risk from using procedure δi when L is the loss function and θ is the true value of
the parameter. Le Cam’s deficiency distance ,(E1,E2) between E1 and E2 is the
maximum of δ(E1,E2) and δ(E2,E1), where

δ(E1,E2)= inf
δ1

sup
δ2

sup
θ∈'

sup
L : ‖L‖=1

|R1(δ1,L, θ)−R2(δ2,L, θ)|

is called the deficiency of E1 with respect to E2. Two experiments E1 and E2 are
called equivalent if ,(E1,E2)= 0. Equivalence means that each procedure δ1 in
problem E1 has a corresponding procedure δ2 in problem E2 with the same risk,
uniformly over θ ∈' and all L with ‖L‖ = 1, and vice versa. Two sequences of
statistical experiments En,1 and En,2 are said to be asymptotically equivalent if
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,(En,1,En,2)→ 0, as n→ ∞. Thus, any sequence of procedures δn,1 in problem
En,1 has a corresponding sequence of procedures δn,2 in problem En,2 with risk
differences tending to zero uniformly over θ ∈ ' and all L with ‖L‖ = 1. The
procedures δn,1 and δn,2 are said to be asymptotically equivalent. [See Le Cam
(1986), Le Cam and Yang (1990) and Strasser (1985).]

3.2. Main results on GARCH and diffusion experiments. Denote by β =
(β0, β1, β2, β3) and γ = (γ0, γ1) the vectors of variance (or volatility) parameters
and drift parameters in the GARCH and diffusion models defined in Section 2.3,
respectively. Let θ = (β,γ) = (β0, β1, β2, β3, γ0, γ1) be the vector of all six
parameters and the parameter space ' consist of θ with γi and βi belonging
to bounded intervals. Denote by Pn,θ the distribution of the approximating
process Xn,tk , k = 1, . . . , n, defined by the stochastic difference equations (11)
and (12) for the multiplicative GARCH model [or (11) and (16) for the linear
GARCH model], and denote by Qn,θ the distribution of the discrete samples at
tk , k = 1, . . . , n, of the diffusion limit Xt governed by the stochastic differential
equations (14) and (15) for the multiplicative GARCH case [or (14) and (17) for the
linear GARCH case, respectively]. Define the GARCH and diffusion experiments,
respectively, by

En,1 = (
R
n,B(Rn), (Pn,θ, θ ∈')),

En,2 = (
R
n,B(Rn), (Qn,θ,θ ∈')).(20)

We emphasize that, as in the standard financial setting, volatility processes σ 2’s
are latent, and processes X’s are observable and samples in both GARCH and
diffusion experiments are taken from processes X’s only. Also as pointed out in
Section 1, paragraph 4, the infinite-dimensional distributions of continuous-time
observations, {Xt, t ∈ [0, T ]}, from the diffusion limit under different values for
the variance parameter β are mutually singular, and the volatility process σ 2

t can be
exactly recoverered by the quadratic variation process of {Xt, t ∈ [0, T ]}. For these
reasons, the diffusion experiment En,2 considers discretely sampled observations,
with Qn,θ for the finite-dimensional distribution of the discrete samples.

We have the following theorems whose proofs are given in Sections 4–6.

THEOREM 1. The experiments En,1 and En,2 are not asymptotically equiva-
lent.

As a comparison, we define corresponding experiments with nonstochastic
volatility which corresponds to β2 = 0. Denote by '′ the subset of ' consisting
of all θ with β2 = 0. Treating '′ as the parameter space for (β0, β1, β3, γ0, γ1) in
five dimensions, we define

E
′
n,1 = (

R
n,B(Rn), (Pn,θ,θ ∈'′)

)
, E

′
n,2 = (

R
n,B(Rn), (Qn,θ,θ ∈'′)

)
.

THEOREM 2. The experiments E
′
n,1 and E

′
n,2 are asymptotically equivalent.
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3.3. Heuristic explanation of the main results. As we explained in Section 1,
paragraph 5, Theorem 1 is due to the different noise propagation systems that the
GARCH model and its diffusion limit utilize in their conditional variances. The
following heuristic comparison of two simple models offers genuine insight into
the phenomenon.

For each GARCH model we discretize its diffusion limit and obtain a corre-
sponding discrete model, which is called a discrete stochastic volatility model in
financial econometrics. The multiplicative GARCH(1, 1) model,

yk = µ+ σkεk, logσ 2
k = α0 + α1 logσ 2

k−1 + α2κ1(logε2
k−1 − κ0),

(21)
k = 1, . . . , n,

has the following discrete counterpart:

yk = µ+ σkzk, logσ 2
k = α0 + α1 logσ 2

k−1 + α2δk, k = 1, . . . , n,(22)

where εk , zk and δk are independent standard normal random variables, and
κ0 and κ1 are constants defined in (10). Obviously model (22) has the same
diffusion limit as model (21), but unlike the GARCH model, its likelihood also
mimics that of the diffusion limit.

For model (21), the distribution of (yk, σ 2
k )k≥1 is determined by (εk, logε2

k)k≥1,
while its likelihood function given by (7) depends on (εk, logε2

k , ε
2
k)k≥1. The cor-

responding distribution and likelihood for model (22) are obtained, respectively,
by first replacing (εk, logε2

k)k≥1 with (zk, δk)k≥1 in the GARCH distribution and
substituting (εk, logε2

k , ε
2
k)k≥1 with (zk, δk, z2

k)k≥1 in the GARCH likelihood, and
then taking the conditional expectation with respect to δk’s.

As ε2
k and log ε2

k are correlated but both are uncorrelated with εk , the
normalized partial sum processes for (εk, log ε2

k, ε
2
k) converge in distribution to

three-dimensional Brownian motion (W1,t ,W2,t ,W3,t ), where W2,t and W3,t are
correlated but both are independent of W1,t . With the independence between
zk and δk , the weak limit of the normalized partial sum processes for (zk, δk, z2

k) is
three independent Brownian motions (W1,t ,W2,t ,W4,t ). Thus for both models, the
asymptotic distributions of the partial sum processes for (yk, σ 2

k ) are determined
by the same stochastic differential equation system governed by two independent
Brownian motions (W1,t ,W2,t ), but the asymptotic likelihoods for models (21)
and (22) are related in a similar fashion to three correlated Brownian motions
(W1,t ,W2,t ,W3,t ) and three independent Brownian motions (W1,t ,W2,t ,W4,t ),
respectively. As a result, under stochastic volatility, the two models have the same
asymptotic distributions but different asymptotic likelihoods, and consequently
they are not asymptotically equivalent [Le Cam and Yang (1990), Section 2.2
of Chapter 2, or Le Cam (1986), Proposition 8 and its remark in Section 4
of Chapter 6, pages 93–95]. With nonstochastic volatility, the deterministic
conditional variances don’t depend on log ε2

k or δk , and the two likelihood
processes asymptotically depend on only either (W1,t ,W3,t ) or (W1,t ,W4,t ). As
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(W1,t ,W3,t ) and (W1,t ,W4,t ) are identically distributed, asymptotically the two
models have the same statistical behavior and thus are equivalent.

3.4. Numerical evidence for the main results. Empirical work suggests
great differences in statistical inference between the GARCH and discrete
stochastic volatility models. Hsieh (1991) and Jacquier, Polson and Rossi (1994)
reported substantial differences in likelihood, parameter estimation, forecasting
and autocorrelation when fitting the two models to simulated data and real financial
data. For each model their simulations indicate that the likelihood-based methods
can very accurately estimate parameters (with root mean squared error ranging
from 0.02 to 0.05 for sample size 2000). Here we conducted a simulation to
evaluate the numerical performance of the MLE derived under the linear GARCH
model when being fed with data coming from its corresponding discrete stochastic
volatility model. In the simulation we took n = 2000, µ= 0, α0 = 0.5, α1 = 0.3
and α2 = 0.6. A sample from each model was simulated. Using the Splus GARCH
module we calculated the MLE and its estimated asymptotic standard error (a.s.e.)
by fitting the GARCH model to the sample generated from the GARCH model and
then repeated the calculation by replacing the GARCH sample with data coming
from the volatility model. The whole procedure was repeated 100 times. From the
100 repetitions, we calculated the average estimated values and a.s.e., and their
standard errors (s.e.). Results for α1 and α2 are listed in Table 1.

The simulation results show dramatic differences between the GARCH and
volatility samples. When fitting the GARCH model to the GARCH data, the MLE
performs extremely well, with negligible bias, small s.e. and a.s.e. close to the
actual s.e. While for the volatility samples, the same MLE produces a very poor
estimator, with huge bias, large s.e. and a.s.e. far off the target. To rule out the
possibility that the bias is caused by the fact that the gradient search algorithm
used by Splus in the MLE computation was stuck by local maxima, we have set
the true parameter values as initial values and found little difference in the outcome
values for the MLE. We have tried to reduce the huge bias by increasing sample
size up to 105 but failed to achieve even a small amount of reduction. Also we
have tested various values for αi and found out that for volatility samples, the
MLE tends to overestimate α1 and underestimate α2, and the amounts over and

TABLE 1
The average values of the GARCH MLE of (α1, α2) and its a.s.e., with their s.e. (in parentheses) for

GARCH and volatility data

GARCH sample Volatility sample

Parameter Estimate a.s.e. Estimate a.s.e.

α1 0.2958 (0.0371) 0.0348 (0.0037) 0.5292 (0.1015) 0.0281 (0.0093)
α2 0.5998 (0.0475) 0.0476 (0.0028) 0.2837 (0.0782) 0.0200 (0.0049)
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under estimated tend to get smaller as α2 decreases. As α2 gets close to zero,
the bias approaches the level for GARCH data. The numerical findings are very
much in agreement with the theoretical results described in Theorems 1 and 2 and
reinforce the point in paragraph 6 of Section 1 that the nonequivalence result has
an important consequence for the statistical inference of the GARCH and diffusion
models.

3.5. Proofs of the main results. Our approach to proving the theorems is based
on the following principle described in Le Cam (1986), Le Cam and Yang (1990)
and Nussbaum (1996). For two experiments Ei = ($i,Fi , (Pi,θ , θ ∈')), i = 1,2,
assume there is some θ∗ ∈' such that all the Pi,θ are dominated by Pi,θ∗ , i = 1,2,
and form

/i(θ)= dPi,θ

dPi,θ∗
.

Treating /i = (/i(θ), θ ∈ ') as stochastic processes indexed by θ given on
the probability space ($i,Fi , Pi,θ∗), we call them the likelihood processes of the
experiments Ei . If there are versions /∗

i of /i defined on a common probability
space ($,F ,P), then on the common probability space /∗

i generate equivalent
versions of the experiments, and

,(E1,E2)≤ sup
θ∈'

EP|/∗
1 −/∗

2| ≤ 2 sup
θ∈'

H
(
/∗

1(θ),/
∗
2(θ)

)
,(23)

where H(/∗
1(θ),/

∗
2(θ)) = EP([/∗

1(θ)]1/2 − [/∗
2(θ)]1/2)2 is Hellinger distance.

Hellinger distance can easily handle normal distributions and distributions of
product forms.

Specifically, Sections 4 and 5 derive likelihood processes for the GARCH
model and its diffusion limit and study their asymptotic distributions in a local
neighborhood. Section 6 proves nonequivalence under stochastic volatility by
showing different limiting distributions for the two likelihood processes and
equivalence under nonstochastic volatility by proving the convergence of Hellinger
distance to zero.

4. Likelihood processes for GARCH models.

4.1. Notation and conventions. To track complex processes under different
circumstances and manage long technical arguments, we fix the following notation
and conventions.

CONVENTION 1. It is often necessary to put processes and random variables
on some common probability spaces. At such occasions, we often automatically
change probability spaces and consider versions of the processes and the random
variables on new probability spaces, without altering notation. Because of this
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convention and Skorohod’s theorem, we often switch between “convergence in
probability” and “convergence in distribution.” Also because of the convention,
when no confusion occurs, we try to use the same notation for random variables
or processes with identical distribution. For the sake of simplicity, we take T = 1
and sn = 1/n. All O’s and o’s hold uniformly over t ∈ [0,1].

NOTATION 2. For a fixed β∗, let θ∗ = (β∗,0) and define a local neighborhood
around θ∗,

'n,c(β
∗)= {

θ = (β,γ) ∈' :β = β∗ + n−1/2ϕ, |ϕ| ≤ c}⊂',(24)

and the corresponding local experiments

En,1(β
∗)= (

R
n,B(Rn), (Pn,θ,θ ∈'n,c)),

En,2(β
∗)= (

R
n,B(Rn), (Qn,θ,θ ∈'n,c)).(25)

Also introduce notation θ+ = (β∗ +n−1/2ϕ,0) to denote parameter θ ∈'n,c(β∗)
with drift component γ = 0.

The shrinking in 'n,c is only for β, because γ and β are the drift and variance
parameters, respectively. As discussed in paragraph 4 of Section 1, for drift, the
likelihood processes have nondegenerate limiting distributions over all γ; while
for variance, we need to localize β in a n−1/2-shrinking neighborhood and derive
nondegenerate limiting distributions for the likelihood processes.

CONVENTION 3. For θ = (β∗ + n−1/2ϕ,γ) ∈'n,c(β∗), define ϑ = (ϕ,γ).
Then there is a one-to-one correspondence between θ and ϑ. When no confusion
occurs, for convenience we use ϑ to index 'n,c(β

∗) and write 'n,c(β
∗) as

'n,c for short. For example, under this convention, ϑ∗ = (0,0) and ϑ+ = (ϕ,0)
correspond to θ∗ and θ+, respectively.

CONVENTION 4. Our notation must keep track of three distinct kinds of
processes defined in Section 2.3 under two circumstances:

1. the sequence of the discrete-time processesXn,k and σ 2
n,k that depend both on n

and on the discrete time index k, k = 0, . . . , n;
2. the sequence of the continuous-time processesXn,t and σ 2

n,t formed as random
step functions from the discrete time processes in (1) using equation (13);

3. the limiting diffusion process (Xt , σ 2
t ) with initial values Xn,0 = X0 and

σ 2
n,0 = σ 2

0 , and as n→ ∞, (Xn,t , σ 2
n,t )⇒ (Xt , σ

2
t ).

Each kind of process occurs under two circumstances, that the parameter
ϑ = (ϕ,γ) [or θ = (β∗ + n−1/2ϕ,γ)] and ϑ = ϑ∗ ≡ (0,0) [or θ = θ∗ ≡
(β∗,0)]. To distinguish the latter from the former, we add a subscript “0” to
the processes to denote that they are under the condition ϑ = ϑ∗. For example,
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σ 2
n,t and σ 2

n,t,0 denote the GARCH volatility process under the conditions that ϑ =
(ϕ,γ) and ϑ = ϑ∗, respectively, and σ 2

t,0 denotes the diffusion volatility process
with ϑ = ϑ∗.

NOTATION 5. Define

Vn,t = n1/2
(

1 − σ 2
n,t,0

σ 2
n,t

)
, Hn,t = n

(
1 + log

σ 2
n,t,0

σ 2
n,t

− σ 2
n,t,0

σ 2
n,t

)
,(26)

Vt =
3∑
i=0

ϕi
∂ logσ 2

t,0

∂β∗
i

.(27)

All processes depend on the parameter ϑ and the dependence is not often explicitly
given in process notation. For example, we may write Vt as Vt(ϑ) to mark the
dependence clearly.

NOTATION 6. Define partial sum processes

W
(n)
1,t = n−1/2

[nt]∑
j=1

εj , W
(n)
2,t = n−1/2

[nt]∑
j=1

ξj , W
(n)
3,t = n−1/2

[nt]∑
j=1

ζj ,(28)

where εj are standard normal random errors, and ξj and ζj are defined in (9).
From the modulus of continuity of Wiener process [Karatzas and Shreve (1991),
Chapter 2] and strong approximation [Komlós, Major and Tusnády (1975) and
Tusnády (1977)] we have that on some probability spaces there exist three standard
Wiener processes W1,t ,W2,t ,W3,t with W1,t independent of W2,t and W3,t , and
corr(W2,t ,W3,t )= corr(ε2

1, log ε2
1)≈ 0.64 (see also Section 2.3), such that

sup
0≤t≤1

{|W(n)
1,t −W1,t | + |W(n)

2,t −W2,t | + |W(n)
3,t −W3,t |}=Op(n

−1/2 log2 n).(29)

4.2. Asymptotics of likelihood processes. Denote by Ln,1(ϑ) the likeli-
hood function of the GARCH approximating process Xn,tk and let /n,1(ϑ) =
Ln,1(ϑ)/Ln,1(ϑ

∗) be its likelihood process under Pn,ϑ∗ . We will show below that
/n,1 (ϑ) has a limit /1(ϑ) defined by

log/1(ϑ)= 1√
2

∫ 1

0
Vt dW3,t − 1

4

∫ 1

0
V 2
t dt +

∫ 1

0
σ−1
t,0 (γ0 + γ1σ

2
t,0) dW1,t

− 1

2

∫ 1

0
σ−2
t,0 (γ0 + γ1σ

2
t,0)

2 dt.

(30)

From (6), (7), (11), (12), (13) and (16), we obtain that

logLn,1(ϑ)= −
n∑
j=1

(
Xn,tj −Xn,tj−1 − sn(γ0 + γ1σ

2
n,tj

))2(
2snσ

2
n,tj

)−1

−
n∑
j=1

logσn,tj − (n/2) log(2πsn)
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and thus

log/n,1(ϑ)=
n∑
j=1

(logσn,tj ,0 − logσn,tj )

+ (2sn)−1
n∑
j=1

σ−2
n,tj ,0

(
Xn,tj ,0 −Xn,tj−1,0

)2

− (2sn)−1
n∑
j=1

σ−2
n,tj

{
Xn,tj ,0 −Xn,tj−1,0 − sn(γ0 + γ1σ

2
n,tj

)}2

= 1

2

n∑
j=1

(
1 −

σ 2
n,tj ,0

σ 2
n,tj

)
(ε2
j − 1)

+ 1

2

n∑
j=1

(
1 + log

σ 2
n,tj ,0

σ 2
n,tj

−
σ 2
n,tj ,0

σ 2
n,tj

)
(31)

+ s1/2
n

n∑
j=1

(
γ0 + γ1σ

2
n,tj

)
σn,tj ,0σ

−2
n,tj
εj

− sn

2

n∑
j=1

(
γ0 + γ1σ

2
n,tj

)2
σ−2
n,tj

= 1√
2

∫ 1

0
Vn,t dW

(n)
3,t + 1

2

∫ 1

0
Hn,t dt

+
∫ 1

0
(γ0 + γ1σ

2
n,t )σn,t,0σ

−2
n,t dW

(n)
1,t

− 1

2

∫ 1

0
(γ0 + γ1σ

2
n,t )

2σ−2
n,t dt,

where the second equality is from (11), and the third equality is due to the
definitions of Vn,t andHn,t in (26), and the piecewiseness of σ 2

n,t andW(n)
i,t defined

in (13) and (28), respectively.

PROPOSITION 1.

Vn,t = Vt +Op(n−1/2 log2 n),

where Vn,t and Vt are defined in (26) and (27), respectively.

Proposition 1 will be proved in Sections 4.3 and 4.4 where Lemmas 1 and 4
indicate that Vt smoothly depends on W2,t or W3,t .
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PROPOSITION 2.

Hn,t = −V 2
t /2 +Op(n−1/2 log2 n),

where Hn,t and Vt are defined in (26) and (27), respectively.

PROOF. Note that Hn,t = n{n−1/2Vn,t + log(1 − n−1/2Vn,t )} and as x → 0,
x + log(1 − x)= −x2/2 +O(x3). In view of Proposition 1, we have that

Hn,t = n
{−(n−1/2Vn,t )

2/2 +Op(n−3/2)
}= −V 2

t /2 +Op(n−1/2 log2 n). �

PROPOSITION 3.

/n,1(ϑ)=/1(ϑ)+Op(n−1/2 log2 n),

where/1(ϑ) is defined in (30).

PROOF. Comparing Lemma 3 (or Lemma 6) with Lemma 1 (or Lemma 4, re-
spectively) in Sections 4.3 and 4.4 below and using the strong approximation (29)
we easily conclude that both σ 2

n,t and σ 2
n,t,0 converge in probability to σ 2

t,0 with er-

ror rate n−1/2 log2 n. Then by (26), (27), the strong approximation (29) and Propo-
sitions 1 and 2, we can show that the integrals in /n,1(ϑ) given by (31) converge
in probability to the corresponding integrals in /1(ϑ) defined in (30) with errors
of order n−1/2 log2 n. This completes the proof. �

PROPOSITION 4. Assume that ϑ = ϑ+ ≡ (ϕ,0) (i.e., γ = 0) and
Novikov’s condition [i.e., E exp{1

4

∫ 1
0 V

2
t dt} <∞] is satisfied. Then as n → ∞,

E|/n,1(ϑ+)−/1(ϑ
+)| → 0.

PROOF. Since ϑ = ϑ+ means that the drift parameter γ = 0, substituting γ

by zero in /1(ϑ) defined in (30), we obtain that Novikov’s condition ensures
E/1(ϑ

+) = 1 and thus E[/1(ϑ
+)|W2,u,W3,u, u ≤ t] = exp{ 1√

2

∫ t
0 Vs dW3,s −

1
4

∫ t
0 V

2
s ds} is a martingale [Ikeda and Watanabe (1989) and Karatzas and Shreve

(1991), Section 3.5]. As 1 − σ 2
n,j,0/σ

2
n,j < 1, it is easy to check that as a likelihood

process, E/n,1(ϑ
+)= 1. Now the proposition is a consequence of Proposition 3

and the Scheffé theorem. �

REMARK 4.1. Since V 2
t is of order W 2

2,t or W 2
3,t , we can show that there

exists a constant δ > 0 depending only on time interval [0,1] such that Novikov’s
condition holds for all ϕ with ϕ2

2 ≤ δ. For example, for the multiplicative GARCH
case with β∗

0 = β∗
1 = 0, Vt = ϕ2W2,t . The Karhunen–Loève expansion of W2,t ,

t ∈ [0,1], is given by

W2,t =
∞∑
j=0

21/2π−1(j + 1/2)−1 sin{π(j + 1/2)t}zj ,
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where zj are i.i.d. standard normal random variables. Then we have
∫ 1

0 W
2
2,t dt =∑∞

j=0π
−2(j + 1/2)−2z2

j , and for ϕ2
2 < δ = π2/4,

E exp
(

1
4

∫ 1

0
V 2
t dt

)
=

∞∏
j=0

E exp
{
π−2ϕ2

2(2j + 1)−2z2
j

}

=
∞∏
j=0

{
1 − 2π−2ϕ2

2(2j + 1)−2}−1/2

∼ exp

{
π−2ϕ2

2

∞∑
j=0

(2j + 1)−2

}
<∞.

4.3. Proof of Proposition 1 for the multiplicative GARCH model.

LEMMA 1. The solution of (15) is given by

logσ 2
t = eβ1t

{
β3 + β2

∫ t

0
e−β1s dW2,s + β0

∫ t

0
e−β1s ds

}
.

PROOF. Applying the Itô lemma [Ikeda and Watanabe (1989) and Karatzas
and Shreve (1991)] to the process given by the lemma, we have

d logσ 2
t = β1e

β1t dte−β1t logσ 2
t + eβ1t {β2e

−β1t dW2,t + β0e
−β1t dt}

= (β0 + β1 logσ 2
t ) dt + β2 dW2,t . �

LEMMA 2. The process defined in (12) has the expression

logσ 2
n,k = αk−1

1 logσ 2
0 + (α2/α1)

k−1∑
j=1

α
k−j
1 ξj + (α0/α1)

k−1∑
j=1

α
k−j
1 ,

with logσ 2
0 = β3, α0 = snβ0, α1 = 1 + snβ1 and α2 = s

1/2
n β2.

The lemma is easily proved by applying (12) recursively.

LEMMA 3.

logσ 2
n,t = eβ1t

{
β3 + β2

∫ t

0
e−β1s dW

(n)
2,s + β0

∫ t

0
e−β1s ds

}
+Op(n−1).

REMARK 4.2. As Vn,t relates to Vt through the n−1/2 order term in the
expansion of logσ 2

n,t − logσ 2
n,t,0, in order to prove Proposition 1 we need to keep

the approximation to be of order higher than n−1/2. Since the strong approximation
has error of order lower than n−1/2, we can not replace W(n)

2 by W2 at this point.
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PROOF OF LEMMA 3. First note that uniformly for k = 1, . . . , n,

(1 + β1/n)
k = exp{k log(1 + β1/n)} = exp{k[β1/n+O(n−2)]}
= eβ1k/n +O(n−1).

Now Lemma 2 implies that

logσ 2
n,k = (1 + β1/n)

k−1β3

+ β2(1 + β1/n)
−1

k−1∑
j=1

(1 + β1/n)
k−j [W(n)

2,j/n −W(n)
2,(j−1)/n

]

+ β0(1 + β1/n)
−1

k−1∑
j=1

(1 + β1/n)
k−j /n

= eβ1k/nβ3 +β2

∫ k/n

0
eβ1(k/n−s) dW(n)

2,s +β0

∫ k/n

0
eβ1(k/n−s) ds+Op(n−1).

The lemma is easily proved by combining the above result with (13). �

PROOF OF PROPOSITION 1. Note from Convention 4 in Section 4.1 that for
σ 2
n,t and σ 2

t , β = β∗ + n−1/2ϕ, β∗ = (β∗
0 , β

∗
1 , β

∗
2 , β

∗
3 ) and ϕ = (ϕ0, ϕ1, ϕ2, ϕ3);

and for σ 2
n,t,0 and σ 2

t,0, β = β∗. Then by Lemmas 1 and 3 we obtain

log
σ 2
n,t

σ 2
n,t,0

= n−1/2ϕ3e
β∗

1 t + n−1/2ϕ1te
β∗

1 t β∗
3

+ n−1/2
∫ t

0
eβ

∗
1 (t−s){ϕ2 + ϕ1β

∗
2 (t − s)

}
dW

(n)
2,s

+ n−1/2
∫ t

0
eβ

∗
1 (t−s){ϕ0 + β∗

0ϕ1(t − s)}ds +Op(n−1)

= n−1/2Vt +Op(n−1 log2 n)

and thus

Vn,t = n1/2{1 − exp
(−n−1/2Vt +Op(n−1 log2 n)

)}
= Vt +Op(n−1/2 log2 n). �

4.4. Proof of Proposition 1 for the linear GARCH model.

LEMMA 4. The solution of (17) is given by

σ 2
t = exp{β1t + β2W3,t − β2

2 t/2}

×
{

exp(β3)+ β0

∫ t

0
exp(−β1s − β2W3,s + β2

2s/2) ds
}
.
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PROOF. Applying the Itô lemma to the process given by the lemma, we have

dσ 2
t = σ 2

t d(β1t + β2W3,t − β2
2 t/2)+ (β2

2/2)σ
2
t dt + β0 dt

= (β0 + β1σ
2
t ) dt + β2σ

2
t dW3,t . �

LEMMA 5. The process defined by (16) has the expression

σ 2
n,k =

k−1∏
j=1

(α1 + α2ζj )

{
σ 2

0 + α0

k−1∑
i=1

i−1∏
j=1

(α1 + α2ζj )
−1

}
,

with σ 2
0 = eβ3 , α0 = snβ0, α1 = 1 + snβ1 and α2 = s

1/2
n β2.

The lemma is proved by using (16) recursively.

LEMMA 6.

σ 2
n,t = exp

{
β1t + β2W

(n)
3,t − β2

2 t

2

}
×
{

exp(β3)+ β0

∫ t

0
exp

(
−β1s − β2W

(n)
3,s + β2

2s

2

)
ds

}
+Op(n−1).

REMARK 4.3. For the reason discussed in Remark 4.2, we cannot substitute
W
(n)
3 by W3 now.

PROOF OF LEMMA 6. An application of the Doléans–Dade formula [Jacod

and Shiryaev (1987)] implies that
∏[nt]
j=1(α1 + α2ζj ) is an exponential

semimartingale, which converges weakly to the exponential semimartingale
exp{β1t + β2W3,t − β2

2 t/2}. Moreover,

[nt]∏
j=1

(α1 + α2ζj )= exp

{ [nt]∑
j=1

log(1 + snβ1 + s1/2
n β2ζj )

}

= exp
(
β1t + β2W

(n)
3,t − β2

2 t/2
)+Op(n−1),

and hence

α0

[nt]∑
i=1

i−1∏
j=1

(α1 + α2ζj )
−1

= snβ0

[nt]∑
i=1

exp
{−β1(i−1)/n−β2W

(n)
3,(i−1)/n+β2

2 (i−1)/(2n)
}+Op(n−1)

=
∫ t

0
exp

(−β1s − β2W
(n)
3,s + β2

2s/2
)
ds +Op(n−1).

Now the lemma is a consequence of Lemmas 4 and 5. �
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PROOF OF PROPOSITION 1. Note from Convention 4 in Section 4.1 that for
σ 2
n,t and σ 2

t , β = β∗ + n−1/2ϕ, β∗ = (β∗
0 , β

∗
1 , β

∗
2 , β

∗
3 ) and ϕ = (ϕ0, ϕ1, ϕ2, ϕ3),

and for σ 2
n,t,0 and σ 2

t,0, β = β∗. By Lemmas 4 and 6 we obtain σ 2
n,t − σ 2

n,t,0 =
D1 +D2, where

D1 = n−1/2 exp
{
β∗

3 + β∗
1 t + β∗

2W
(n)
3,t − (β∗

2 )
2t/2

}{
ϕ3 + ϕ1t + ϕ2W

(n)
3,t − ϕ2β

∗
2 t
}

+Op(n−1)

= n−1/2 exp
{
β∗

3 + β∗
1 t + β∗

2W3,t − (β∗
2 )

2t/2
}{
ϕ3 + ϕ1t + ϕ2W3,t − ϕ2β

∗
2 t
}

+Op(n−1 log2 n),

D2 = n−1/2
∫ t

0
exp

{
β∗

1 (t − s)+ β∗
2 (W

(n)
3,t −W(n)

3,s )− (β∗
2 )

2(t − s)/2}
× {
ϕ0 + ϕ1β

∗
0 (t − s)+ ϕ2β

∗
0 (W

(n)
3,t −W(n)

3,s )− ϕ2β
∗
0β

∗
2 (t − s)

}
ds

+Op(n−1)

= n−1/2
∫ t

0
exp

{
β∗

1 (t − s)+ β∗
2 (W3,t −W3,s)− (β∗

2 )
2(t − s)/2}

× {
ϕ0 + ϕ1β

∗
0 (t − s)+ ϕ2β

∗
0 (W3,t −W3,s)− ϕ2β

∗
0β

∗
2 (t − s)

}
ds

+Op(n−1 log2 n).

Finally,

Vn,t = n1/2{1 − (σ 2
n,t,0 +D1 +D2)

−1σ 2
n,t,0

}
= n1/2(D1 +D2)σ

−2
t,0 +Op(n−1/2 log2 n)= Vt +Op(n−1/2 log2 n). �

5. Likelihood process for diffusion models. For discrete observations Xtk
from (14), k = 1, . . . , n, we have

Xtk −Xtk−1 =
∫ tk

tk−1

(γ0 + γ1σ
2
s ) ds +

∫ tk

tk−1

σu dW1,u

= γ0sn + γ1snσ̄
2
n,tk

+ {
snσ̄

2
n,tk

}1/2
zk,

(32)

where

σ̄ 2
n,t = s−1

n

∫ t

t−sn
σ 2
u du, zk = {

snσ̄
2
n,tk

}−1/2
∫ tk

tk−1

σu dW1,u.(33)

From (14), (15) and (17), we have that conditioning on W2 and W3,
∫ tk
tk−1

σu dW1,u
are independent and follow normal distributions with mean zero and variances
snσ̄

2
n,tk

, and thus zk are i.i.d. standard random variables.
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Keep in mind the notation and conventions specified in Section 4.1. In particular,
use ϑ = (ϕ,γ) for θ = (β∗ +n−1/2ϕ,γ) ∈'n,c(β∗) and denote the processesX
and σ 2 under ϑ = ϑ∗ by adding a subscript “0” to the processes.

Denote by EW23 the expectation taken with respect to W2 andW3. Conditioning
on σ̄ 2

n,tj
we obtain the joint conditional density of Xt1, . . . ,Xtn ,

n∏
j=1

[(
snσ̄

2
n,tj

)−1/2
φ
({
Xtj −Xtj−1 − sn(γ0 + γ1σ̄

2
n,tj

)}(
s1/2
n σ̄n,tj

)−1)]
,

where φ is the density of the standard normal distribution. Averaging out σ̄ 2
n,tk

,
k = 1, . . . , n, in the conditional density, we get the joint density function and have
the likelihood

Ln,2(ϑ)= EW23 exp

(
−

n∑
j=1

(
2snσ̄

2
n,tj

)−1{
Xtj −Xtj−1 − sn(γ0 + γ1σ̄

2
n,tj

)}2

−
n∑
j=1

log σ̄n,tj − (n/2) log(2πsn)

)
,

and thus the likelihood process under Qn,ϑ∗ ,

/n,2(ϑ)= Ln,2(ϑ)/Ln,2(ϑ
∗)

= EW23 exp

(
−

n∑
j=1

(
2snσ̄

2
n,tj

)−1{
Xtj ,0 −Xtj−1,0 − sn(γ0 + γ1σ̄

2
n,tj

)}2

−
n∑
j=1

log σ̄n,tj

)

×
{
EW23 exp

(
−

n∑
j=1

(
2snσ̄

2
n,tj ,0

)−1(
Xtj ,0 −Xtj−1,0

)2
−

n∑
j=1

log σ̄n,tj ,0

)}−1

= EW23

[
Bn exp

{
1

2

n∑
j=1

(
1 −

σ̄ 2
n,tj ,0

σ̄ 2
n,tj

)
(z2
j − 1)

+ 1

2

n∑
j=1

(
1 + log

σ̄ 2
n,tj ,0

σ̄ 2
n,tj

−
σ̄ 2
n,tj ,0

σ̄ 2
n,tj

)
(34)

+ s1/2
n

n∑
j=1

(
γ0 + γ1σ̄

2
n,tj

)
σ̄n,tj ,0σ̄

−2
n,tj
zj

− sn

2

n∑
j=1

(
γ0 + γ1σ̄

2
n,tj

)2
σ̄−2
n,tj

}]
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= EW23

[
Bn exp

{
1√
2

∫ 1

0
�Vn,t dW(n)

4,t + 1

2

n∑
j=1

�Hn,t/n

+
∫ 1

0
(γ0 + γ1σ̄

2
n,t )σ̄n,t,0σ̄

−2
n,t dW

(n)
1,t

− sn

2

n∑
j=1

(
γ0 + γ1σ̄

2
n,tj

)2
σ̄−2
n,tj

}]
,

where the third equation is due to (32),

Bn =
{
EW23 exp

(
−

n∑
j=1

log σ̄n,tj ,0

)}−1

exp

(
−

n∑
j=1

log σ̄n,tj ,0

)
,(35)

�Vn,t = n1/2
(

1 − σ̄ 2
n,t,0

σ̄ 2
n,t

)
, �Hn,t = n

(
1 + log

σ̄ 2
n,tj ,0

σ̄ 2
n,tj

−
σ̄ 2
n,tj ,0

σ̄ 2
n,tj

)
(36)

and

W
(n)
1,t = n−1/2

[nt]∑
k=1

zk, W
(n)
4,t = (2n)−1/2

[nt]∑
k=1

(z2
k − 1).(37)

Note that by Convention 1 in Section 4.1 we use the same notation W(n)
1,t here

for normalized partial sum processes zk (in the diffusion model) as that for εk
[in the GARCH model; see (28)], because they have the same distribution, are
uncorrelated with other processes and play an identical role in the corresponding
likelihood processes. However, a notation W(n)

4,t different from W
(n)
3,t is introduced

to denote the normalized partial sum process for z2
k . This is because, unlike the

GARCH case where ε2
k ’s are correlated with the conditional variances σ 2

n,t , in the
diffusion model z2

k’s are independent of the conditional variances σ̄ 2
n,t , and thus

jointly (ε2
k , σ

2
n,t ) and (z2

k, σ̄
2
n,t ) are not identically distributed, although marginally

ε2
k ’s and z2

k’s are. In fact, this is a key point for the difference between the two
likelihoods.

By strong approximation [Komlós, Major and Tusnády (1975)] there exists
a standard Brownian motion W4,t independent of W1,t , W2,t , W3,t such that

sup
0≤t≤T

{|W(n)
1,t −W1,t | + |W(n)

4,t −W4,t |}=Op(n
−1/2 logn).(38)

LEMMA 7. For the average volatility process σ̄ 2
n,t defined in (33), we have

σ̄ 2
n,t = σ 2

t

∫ 1

0
exp

(
−β2s

1/2
n

∫ u

0
eβ1v dW̃2,v

)
du+Op(n−1)
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for the multiplicative GARCH case, and

σ̄ 2
n,t = σ 2

t

∫ 1

0
exp

(−β2s
1/2
n W̃3,u

)
du+Op(n−1)

for the linear GARCH case, where W̃i,u = s
−1/2
n (Wi,t − Wi,t−snu) are rescaled

Brownian motions.

REMARK 5.1. Because of stationarity and the rescaling property of Brownian
motions Wi , W̃i are Brownian motions whose distributions are independent of t .
Because of Convention 1 in Section 4.1, we do not keep track of t . Also both∫ 1

0 exp(−β2s
1/2
n

∫ u
0 e

β1v dW̃2,v) du and
∫ 1

0 exp(−s1/2
n β2W̃3,u) du are of order 1 +

Op(n
−1/2). For the reason discussed in Remark 4.2, we can not replace them by 1

here.

PROOF OF LEMMA 7. For the multiplicative GARCH case, from the defini-
tion of σ̄ 2 in (33) and Lemma 1 we have

σ̄ 2
n,t =

∫ 1

0
exp

(
e−β1snu logσ 2

t

− eβ1(t−snu)
{
β2

∫ t

t−snu
e−β1h dW2,h + β0

∫ t

t−snu
e−β1h dh

})
du

= σ 2
t

∫ 1

0
exp

(
−β2s

1/2
n

∫ u

0
eβ1v dW̃2,v

)
du+Op(sn).

Similarly, for the linear GARCH case, by Lemma 4 we get

σ̄ 2
n,t = σ 2

t

∫ 1

0
exp

{−sn(β1 − β2
2/2)u− s1/2

n β2W̃3,u
}
du

− β0

∫ 1

0
du

∫ t

t−snu
exp

{
(β1 − β2

2/2)(t − snu− h)

+ β2(W3,t−snu −W3,h)
}
dh

= σ 2
t

∫ 1

0
exp

(−s1/2
n β2W̃3,u

)
du+Op(sn). �

LEMMA 8.
�Vn,t = Vt +Op(n−1/2),

where Vt and �Vn,t are defined in (27) and (36), respectively.

PROOF. Thanks to Lemma 7, we can now easily show that for both
multiplicative and linear GARCH cases,

σ̄ 2
n,t,0

σ̄ 2
n,t

= σ 2
t,0

σ 2
t

+Op(n−1).(39)
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Because of similarity, we prove (39) only for the multiplicative GARCH case.
Note from Convention 4 in Section 4.1 that for σ 2

t , β = β∗ + n−1/2ϕ, β∗ =
(β∗

0 , β
∗
1 , β

∗
2 , β

∗
3 ) and ϕ = (ϕ0, ϕ1, ϕ2, ϕ3); and for σ 2

t,0, β = β∗. By Lemma 7 we
can derive

σ̄ 2
n,t = σ 2

t

∫ 1

0
exp

(
−β∗

2 s
1/2
n

∫ u

0
eβ

∗
1 v dW̃v

)
du+Op(n−1)

= σ̄ 2
n,t,0(σt/σt,0)

2 +Op(n−1),

which proves (39).
From Lemmas 1 and 4 we get that σ 2

t depends on β smoothly. Expanding σ 2
t

at β∗ and using the definition of Vt we get

logσ 2
t = logσ 2

t,0 + n−1/2Vt +Op(n−1).

Finally, combining the above equation with (39) we arrive at

�Vn,t = n1/2{1 − exp(−n−1/2Vt)+Op(n−1)
}= Vt +Op(n−1/2). �

LEMMA 9.

�Hn,t = −V 2
t /2 +Op(n−1/2),

where Vt and �Hn,t are defined in (27) and (36), respectively.

PROOF. The lemma is easily proved by Lemma 8 and the same argument for
proving Proposition 2. �

There is great difficulty in handling /n,2(ϑ). First, it is generally impossible
to derive an explicit and tractable form for /n,2(ϑ). Second, the factor Bn in
/n,2(ϑ) converges in probability to zero but it is unbounded, because EBn = 1,
and its first factor [see (35)] has an exponent of order n2 var(

∫ 1
0 logσ 2

t dt)/8. Thus
we cannot do the usual asymptotics by exchanging the limit “n→ ∞” and the
expectationEW23 . To get around this difficulty and prove the theorems, we consider
the likelihood process in a local neighborhood around β∗ = (β∗

0 , β
∗
1 , β

∗
2 , β

∗
3 ) with

β∗
2 = 0. In this case σ̄ 2

n,t,0 is deterministic but both σ̄ 2
n,t and Vt are stochastic,

since β = β∗ + n−1/2ϕ. Also for simplicity, we take γ = 0. Thus, θ∗ = (β∗,0)
and θ = (β,0), or equivalently by Convention 3 in Section 4.1, ϑ∗ = (0,0) and
ϑ = ϑ+ = (ϕ,0).

PROPOSITION 5. Suppose β∗ = (β∗
0 , β

∗
1 ,0, β

∗
3 ) and define

/2(ϑ
+)=EW23 exp

{
1√
2

∫ 1

0
Vt dW4,t − 1

4

∫ 1

0
V 2
t dt

}
,(40)

where Vt and W4,t are given by (27) and (38), respectively. Then as n → ∞,
E|/n,2(ϑ+)−/2(ϑ

+)| → 0.
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PROOF. Since β∗
2 = 0, σ 2

t,0 is deterministic, and then (35) implies Bn = 1.
Taking Bn = 1 and γ = 0 in (34) we get

/n,2(ϑ
+)=EW23 exp

{
1

2

∫ 1

0
�Vn,t dW(n)

4,t + 1

2

n∑
j=1

�Hn,t/n
}
.(41)

It is easy to check that as a likelihood process, E/n,2(ϑ
+)= 1.

The process Vt is a continuous functional of W2 or W3 and has a.s. con-
tinuous sample paths, so conditional on W2 and W3,

∫ 1
0 V

2
t dt is a.s. finite.

As W1,t , {W2,t ,W3,t}, W4,t are independent but W2,t and W3,t are corre-
lated, we have that conditioning on W2 and W3, Novikov’s condition (i.e.,
E[exp{∫ 1

0 V
2
t dt/4}|W2,W3] < ∞) holds, and thus the exponential martingale

exp{ 1√
2

∫ t
0Vs dW4,s− 1

4

∫ t
0V

2
s ds} is indeed a martingale, andE[exp{ 1√

2

∫ 1
0 Vt dW4,t

− 1
4

∫ 1
0 V

2
t dt}|W2,W3] = 1. [See Ikeda and Watanabe (1989) and Karatzas and

Shreve (1991), Section 3.5.] Therefore,

E/2(ϑ
+)= EW4EW23 exp

{
1√
2

∫ 1

0
Vt dW4,t − 1

4

∫ 1

0
V 2
t dt

}

= EW23E

[
exp

{
1√
2

∫ 1

0
Vt dW4,t − 1

4

∫ 1

0
V 2
t dt

}∣∣∣W2,W3

]
= 1.

As in Section 4.2, by strong approximation (38) and Lemmas 8 and 9 we obtain
that the process inside EW23 in the expression (41) of /n,2(ϑ

+)

exp

{
1√
2

∫ 1

0
�Vn,t dW(n)

4,t + 1

2

n∑
j=1

�Hn,t/n
}
,(42)

converges in probability to

exp
{

1√
2

∫ 1

0
Vt dW4,t − 1

4

∫ 1

0
V 2
t dt

}
,(43)

which is the process inside EW23 in the expression (40) of/2(ϑ
+). Both processes

are nonnegative and have expectation 1, so applying the Scheffé theorem, we have
that the expectation of the absolute difference between (42) and (43) converges to
zero. That in turn implies E|/n,2(ϑ+)−/2(ϑ

+)| → 0. �

REMARK 5.2. As we mentioned in Section 2.2 and discussed before the
proposition, the likelihood process for a diffusion model is generally not available.
Even for the limit of the multiplicative GARCH model (40) with β∗

0 = β∗
1 = 0,

we will show that its explicit form is too complicated to be useful. In this case, as
shown in Remark 4.1, we have Vt = ϕ2W2,t , and the Karhunen–Loève expansion
of W2,t ,

W2,t =
∞∑
j=0

21/2π−1(j + 1/2)−1 sin{π(j + 1/2)t}zj ,
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where zj are i.i.d. standard normal random variables. Then∫ 1

0
W2,t dW4,t =

∞∑
j=0

π−1(j + 1/2)−1wjzj ,

∫ 1

0
W 2

2,t dt =
∞∑
j=0

π−2(j + 1/2)−2z2
j ,

where the Fourier coefficients wj = ∫ 1
0

√
2 sin{(j + 1/2)πt}dW4,t are i.i.d.

standard normal random variables and independent of zj . Finally,

/2(ϑ
+)=

∞∏
j=0

Ezj exp
{

ϕ2wjzj√
2π(j + 1/2)

− ϕ2
2z

2
j

4π2(j + 1/2)2

}

= exp

{ ∞∑
j=0

ϕ2
2w

2
j

2π2(j + 1/2)2 + ϕ2
2

} ∞∏
j=0

{
ϕ2

2

2π2(j + 1/2)2
+ 1

}−1/2

.

The nonrandom product series converges, and the exponent of the random part is
a positive linear combination of the squared Fourier coefficients of W4,t .

6. Proof of Theorems.

6.1. Proof of Theorem 1: nonequivalence under stochastic volatility. If
,(En,1,En,2) → 0, as n → ∞, Propositions 4 and 5 imply that with β∗ =
(β∗

0 , β
∗
1 ,0, β

∗
3 ), for all ϑ+ = (ϕ,0), /1(ϑ

+) and /2(ϑ
+) must have the same dis-

tribution [Le Cam (1986), Proposition 8 and its remark in Section 4 of Chapter 6,
pages 93–95; Le Cam and Yang (1990), Section 2.2 of Chapter 2]. However,W1,t ,
{W2,t ,W3,t},W4,t are independent butW2,t andW3,t are correlated, and from (27),
Lemmas 1 and 4, we can see that Vt strongly depends onW2,t orW3,t , so Vt is cor-
related with W3,t and independent of W4,t . Thus,

∫ 1
0 Vt dW3,t and

∫ 1
0 Vt dW4,t can

not have the same distribution. With β∗ and ϑ+ given above, from (30) and (40),
we get the following expressions for /i(ϑ

+):

/1(ϑ
+)= exp

{
1√
2

∫ 1

0
Vt dW3,t − 1

4

∫ 1

0
V 2
t dt

}
,

/2(ϑ
+)= EW23 exp

{
1√
2

∫ 1

0
Vt dW4,t − 1

4

∫ 1

0
V 2
t dt

}
.

We now easily conclude the contradiction that /1(ϑ
+) and /2(ϑ

+) can not be
identically distributed. Indeed, for example, for the multiplicative GARCH case,
from (27), (30) and Lemma 1 we obtain

Vt
∣∣
ϕ=0 = 0, /1(ϑ

+)
∣∣
ϕ=0 = 1
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and

∂Vt

∂ϕ2

∣∣∣∣
ϕ=0

= ∂ logσ 2
t,0

∂β∗
2

= exp(β∗
1 t)

∫ t

0
exp(−β∗

1 s) dW2,s.

Thus,

∂/1(ϑ
+)

∂ϕ2

∣∣∣∣
ϕ=0

= 1√
2

∫ 1

0

∂Vt

∂ϕ2

∣∣∣∣
ϕ=0

dW3,t

= 1√
2

∫ 1

0
exp(β∗

1 t)

∫ t

0
exp(−β∗

1 s) dW2,s dW3,t ,

which is a double Itô integral and has mean zero and variance

1
2

∫ 1

0
exp(2β∗

1 t)

∫ t

0
exp(−2β∗

1 s) ds dt

= {
exp(2β∗

1 )− 2β∗
1 − 1

}{
8(β∗

1 )
2}−1 ≥ 1/4.

However, because of the independence of W2 and W4, a similar calculation leads
to

∂/2(ϑ
+)

∂ϕ2

∣∣∣∣
ϕ=0

= EW23

∫ 1

0

∂Vt

∂ϕ2

∣∣∣∣
ϕ=0

dW4,t

= 1√
2

∫ 1

0
exp(β∗

1 t)EW23

{∫ t

0
exp(−β∗

1 s) dW2,s

}
dW4,t = 0.

Therefore, /1(ϑ
+) and /2(ϑ

+) cannot be identically distributed. �

6.2. Proof of Theorem 2: equivalence under nonstochastic volatility. Because
of similarity, we give the arguments only for the multiplicative GARCH case.
With deterministic volatility, the two models become a regression model with
independent normal errors and the white noise model. Both the GARCH
observations Xn,tk [defined in (11)] and the discrete diffusion observations Xtk
[given by (32)] have independent increments, and both increments Xn,tk −Xn,tk−1

and Xtk −Xtk−1 follow normal distributions with means ν1,n,k = (γ0 + γ1σ
2
n,tk
)sn

and ν2,n,k = (γ0 + γ1σ̄
2
n,tk
)sn, and variances τ 2

1,n,k = σ 2
n,tk
sn and τ 2

2,n,k = σ̄ 2
n,tk
sn,

respectively. Therefore, we calculate the Hellinger distance, H(Pn,θ,Qn,θ),
between the distribution Pn,θ of Xn,tk , k = 0, . . . , n, and the distribution Qn,θ
of Xtk , k = 0, . . . , n, as follows:

H 2(Pn,θ,Qn,θ)

=H 2

(
n∏
k=1

N(ν1,n,k, τ
2
1,n,k),

n∏
k=1

N(ν2,n,k, τ
2
2,n,k)

)

= 2 − 2
n∏
k=1

{
1 −H 2(N(ν1,n,k, τ

2
1,n,k),N(ν2,n,k, τ

2
2,n,k)

)
/2
}

(44)
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= 2 − 2
n∏
k=1

({
2τ1,n,kτ2,n,k

τ 2
1,n,k + τ 2

2,n,k

}1/2

exp
{
−(ν1,n,k − ν2,n,k)

2

τ 2
1,n,k + τ 2

2,n,k

})

= 2 − 2
n∏
k=1

{
2σn,tk σ̄n,tk
σ 2
n,tk

+ σ̄ 2
n,tk

}1/2

exp

{
−

n∑
k=1

γ 2
1 sn(σ

2
n,tk

− σ̄ 2
n,tk
)2

σ 2
n,tk

+ σ̄ 2
n,tk

}

= 2 − 2
n∏
k=1

{
1 − (σn,tk − σ̄n,tk )2

σ 2
n,tk

+ σ̄ 2
n,tk

}1/2

exp

{
−

n∑
k=1

γ 2
1 sn(σ

2
n,tk

− σ̄ 2
n,tk
)2

σ 2
n,tk

+ σ̄ 2
n,tk

}
,

where the second equality is by the Hellinger distance property for independent
distributions [Le Cam (1986), Chapter 4; Le Cam and Yang (1990), Section 3.2],
the third equality is from the expression for Hellinger distance between two
univariate normal distributions obtained by direct calculations [see also Brown
and Low (1996), equation (3.7)] and the fourth equality is because of substitutions
of ν’s and τ 2’s by σ 2’s.

Since β2 = 0, Lemma 1 shows that for the deterministic diffusion volatility
process σ 2

t ,

logσ 2
t = eβ1t

{
β3 + β0

∫ t

0
e−β1u du

}
.(45)

Taking β2 = 0 and dropping all random terms in Lemmas 2 and 3, we obtain that
for the deterministic GARCH volatility process σ 2

n,t ,

logσ 2
n,t = (1 + snβ1)

[nt]−1β3 + (snβ0)/(1 + snβ1)

[nt]−1∑
j=1

(1 + snβ1)
[nt]−j

= eβ1t

{
β3 + β0

∫ t

0
e−β1s ds

}
+O(n−1)= logσ 2

t +O(n−1).

(46)

As deterministic σ 2
t given by (45) is smooth in t and σ̄ 2

n,t = s−1
n

∫ t
t−sn σ

2
u du

is the average of σ 2
t over an interval of length sn, simple calculations show

σ̄ 2
n,t = σ 2

t + O(n−1). This result together with (46) implies that uniformly over
all β0, β1, β3 and t ∈ [0,1],

σ̄ 2
n,t = σ 2

n,t +O(n−1).(47)

Plugging (47) into (44) we conclude that uniformly over all θ = (β0, β1,0,
β3, γ0, γ1) ∈ '′, H 2(Pn,θ,Qn,θ) is of order n−1. Finally we complete the proof
by applying (23). �
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