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APPROXIMATION PRICING AND THE VARIANCE-OPTIMAL
MARTINGALE MEASURE1

BY MARTIN SCHWEIZER

Technische Universitat Berlin¨

Let X be a semimartingale and let Q be the space of all predictable

X-integrable processes q such that Hq dX is in the space SS
2 of semi-

martingales. We consider the problem of approximating a given random
2Ž .variable H g LL P by the sum of a constant c and a stochastic integral

T 2Ž .H q dX , with respect to the LL P -norm. This problem comes from0 s s

financial mathematics, where the optimal constant V can be interpreted0

as an approximation price for the contingent claim H. An elementary

computation yields V as the expectation of H under the variance-optimal0

˜ ˜signed Q-martingale measure P, and this leads us to study P in more
˜detail. In the case of finite discrete time, we explicitly construct P by

˜backward recursion, and we show that P is typically not a probability, but

only a signed measure. In a continuous-time framework, the situation
˜becomes rather different: we prove that P is nonnegative if X has

continuous paths and satisfies a very mild no-arbitrage condition. As

an application, we show how to obtain the optimal integrand j g Q

in feedback form with the help of a backward stochastic differential

equation.

Ž .Introduction. Let X s X be a semimartingale on a filtered probabil-t

Ž .ity space V, FF, F, P , let 0 - T - ` be a fixed time horizon and let Q be the

space of all predictable X-integrable processes q such that the stochastic
Ž . 2Ž .integral process G q s Hq dX is a semimartingale in SS P . For a given

2Ž .random variable H g LL FF , P , we consider the optimization problemT

2
I.1 minimize E H y c y G q over all c, q g R = QŽ . Ž . Ž .Ž .T

Ž .and denote its solution by V , j if it exists. This problem arises naturally in0

Ž .financial mathematics where X describes the discounted price of a risky
Ž .asset, H is a contingent claim due at time T and G q gives the cumulative

trading gains associated with the self-financing portfolio strategy determined

by q . The constant V is then that initial capital which allows the best0

Ž .approximation of H by the terminal wealth c q G q achievable by aT

trading strategy q and thus can be interpreted as an approximation price for

H. If H is attainable, V is the usual arbitrage-free price of H; hence our0
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method provides a consistent extension of the familiar pricing concept from a

complete to an incomplete market.

The first approaches of this kind are due to Follmer and Sondermann¨
Ž . Ž .1986 and Bouleau and Lamberton 1989 , who considered the special case

where X is a martingale with respect to P. Extensions to the general
Ž .semimartingale case were later discussed by Duffie and Richardson 1991 ,

Ž . Ž .Schweizer 1992 and Hipp 1993 for a geometric Brownian motion, Schal¨
Ž . Ž . Ž .1994 and Schweizer 1995a in discrete time and Schweizer 1994 and

Ž .Monat and Stricker 1995 in the general continuous-time framework under

more or less restrictive additional conditions. While all those papers focussed

mainly on the problem of determining the optimal hedging strategy j , we are

here also interested in the computation of V . This leads in turn to some0

Ž . Ž .general results on the structure of the solution V , j of I.1 . Hence the0

Ž .present paper partly complements and partly generalizes Schweizer 1994 .

An outline of the paper is as follows. A very elementary Hilbert space

argument in Section 1 shows that V can be written as the expectation of H0

Ž .under a new signed measure on V, FF , the so-called variance-optimal signed
˜Q-martingale measure P. A signed Q-martingale measure is a signed mea-

2Ž .sure Q < P whose density dQrdP is in LL P , has P-expectation 1 and

satisfies

dQ
E G q s 0 for all q g Q.Ž .T

dP

˜ ˜ 25 5We call P variance-optimal if P minimizes dQrdP over all those Q.LL ŽP .

˜ ˜After this easy identification of V in terms of P, we turn to the study of P0

and in particular its explicit construction. This problem was discussed in
Ž .Hansen and Jagannathan 1991 in the simple case of a one-period model, but

the multiperiod framework considered here is not so straightforward. Section
� 42 solves the case of a finite discrete-time index set 0, 1, . . . , T in full

generality by first constructing the so-called adjustment process b of X by
˜backward recursion and then showing that P is given by

T˜dP
[ const. 1 y b X y X s const. EE y b dX .Ž .Ž .Ł Hj j jy1 ž /dP Tjs1

Although this looks elementary, some care has to be taken: since the proofs

work recursively backward in time, integrability properties are sometimes

rather delicate.
w xIn Section 3, we study the case of a continuous-time index set 0, T . We

first provide a characterization of the adjustment process b by means of a

backward stochastic differential equation and give another criterion for the

existence of b if X is continuous. Under a very mild no-arbitrage condition
˜on X, we then show that P is always nonnegative if X has continuous

˜trajectories. This is in sharp contrast to the discrete-time case, where P is
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typically a signed measure. By a completely different argument, Delbaen and
˜Ž .Schachermayer 1994 have recently proved that P is even equivalent to P if

X is continuous and admits an equivalent local martingale measure with

square-integrable density. This allows us in turn to give an existence result

for the adjustment process b. We conclude Section 3 by discussing the
˜ ˆrelation between P and the minimal signed local martingale measure P

for X.

Examples and applications are collected in Section 4. After illustrating
˜ ˜various properties of P and b by explicit computations, we show how P can

be used to solve quite generally several quadratic optimization problems
Ž . Ž .related to I.1 . In particular, this generalizes results of Hipp 1993 , Schal¨

Ž . Ž .1994 and Schweizer 1994 . Finally, we provide a feedback form description
Ž .of the optimal strategy j , thus extending results of Schweizer 1995a from

discrete to continuous time. This involves the adjustment process b and a

second backward stochastic differential equation.

1. Pricing options by LL
2-approximation. Consider an R

d-valued
Ž . Ž .stochastic process X s X , defined on a probability space V, FF, P andt t g TT

Ž . w xadapted to a filtration F s FF , with a time index set TT : 0, T for somet t g TT

T ) 0. We interpret the components of X as discounted prices at time t of dt

risky assets in a financial market and FF as information available at time t.t

We also assume the existence of a riskless asset Y whose discounted price is

1 at all times. Assets X and Y can be traded; we denote by Q the space of all
Ž .trading strategies q and by G q the total gains from trade using theT

strategy q g Q. In addition, we are given a contingent claim H representing

a payoff to be made or received at time T. Formally, H is a real-valued
Ž i .q

FF -measurable random variable; the typical example is H s X y K ,T T

which corresponds to a European call option on the ith stock with strike price

K. The problem of option pricing is then to associate a price at time 0 with a

given H.

For a so-called complete market, there exists a fairly definitive pricing
Ž . Ž .theory which was originated by Black and Scholes 1973 and Merton 1973

Ž .and fully developed in Harrison and Kreps 1979 and Harrison and Pliska
Ž .1981, 1983 . In the incomplete case, the problem is to define a pricing

operator on all contingent claims in such a way that it coincides with the

usual arbitrage-free price system on the space of attainable claims. By

incompleteness, such an extension is no longer uniquely determined from

arbitrage arguments alone; additional optimality criteria or preference as-

sumptions have to be imposed. For various approaches in the literature, see,
Ž . Ž .for instance, Bouleau and Lamberton 1989 , Barron and Jensen 1990 ,

Ž . Ž . Ž .Cvitanic and Karatzas 1993 , Schal 1994 , Davis 1994 or El Karoui and´ ¨
Ž .Quenez 1995 .

In the present paper, we propose to price options by LL
2-approximation: we

want to determine an initial capital c g R and a trading strategy q g Q such
Ž .that the achieved terminal wealth c q G q approximates H with respectT

2Ž .to the distance in LL P . Thus we consider the following optimization
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problem:

22given H g LL P , minimize E H y c y G uŽ . Ž .Ž .1.1Ž . T

over all c, q g R = Q.Ž .

Ž . Ž . 2Ž .For 1.1 to be well defined, we assume that G Q : LL P .T

Ž . Ž .DEFINITION. If V , j g R = Q solves 1.1 , then V is called the Q-approx-0 0

Ž .imation price of H and is denoted by q H .Q

REMARK. If a contingent claim H is attainable in the usual sense that it
Ž H . Ž H .can be written as H s H q G j for some H , j g R = Q, then0 T 0

Ž H . Ž . Ž .H , j obviously solves 1.1 and thus q H s H . Hence our approach0 Q 0

yields the usual arbitrage-free prices if these exist, and so Q-approximation

pricing is consistent with complete markets. The idea to use an LL
2-criterion

Ž . Ž .of the type 1.1 in order to define a price of H is due to Schal 1994 , who¨
called V the ‘‘fair hedging price.’’ We refrain from using this terminology0

since we prefer to view q as one possible extension of the pricing operatorQ
2Ž .from the space of attainable claims to all of LL P .

It is well known in financial mathematics that option prices can usually be

computed as expectations under a suitable martingale measure for X. This

reflects the duality between martingale measures for X and price systems
Ž .consistent with the given price process X; see Harrison and Kreps 1979 for

a detailed exposition. Our purpose in the rest of this section is to obtain an

analogous result for the Q-approximation price, and to that end, we introduce

some terminology.

Ž .DEFINITION. A signed measure Q on V, FF is called a signed Q-martingale
w x 2Ž .measure if Q V s 1, Q < P with dQrdP g LL P and

dQ
E G q s 0 for all q g Q.Ž .T

dP

Ž .We denote by P Q the set of all signed Q-martingale measures and by DDs

� < Ž .4the set D s dQrdP Q g P Q .s

Note that the above concept depends in an essential way on the space Q
Ž . Ž .and the definition of G q . In many cases of interest, P Q coincides withT s

the set of so-called signed LL
2-martingale measures for X. This more familiar
Ž .notion, introduced in Muller 1985 , is given by the following definition:¨

2Ž .DEFINITION. Assume that X g LL P for every t g TT. A signed measuret

Ž . 2 w xQ on V, FF is called a signed LL -martingale measure for X if Q V s 1,
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2Ž .Q < P with dQrdP g LL P and

dQ
E X y X FF s 0 P-a.s. for all s, t g TT with s F t .Ž .t s s

dP

2 2Ž .The set of all signed LL -martingale measures for X is denoted by P X .s

˜DEFINITION. A signed Q-martingale measure P is called variance-optimal
˜if P minimizes

2 2dQ dQ dQ
Var s E y 1 s E y 1ž / ž /dP dP dP

˜ ˜Ž .over all Q g P Q . If P is variance-optimal, we denote its density dPrdPs

˜by D.

˜ ˜Note that a variance-optimal P is necessarily unique and that P exists
˜Ž .whenever P Q is nonempty, since the density D is obtained by minimizings

5 5 2D over the closed convex set DD. Throughout the rest of the paper, weLL ŽP .

shall make the following assumption:

1.2 standing assumption: P Q / B.Ž . Ž .s

Ž .As pointed out by Schachermayer, 1.2 is equivalent to assuming that the
Ž . 2Ž .closure of G Q in LL P does not contain the constant 1. In that sense,T

Ž .1.2 can be viewed as a condition of absence of arbitrage. We denote by p the
2Ž . Ž .Hprojection in LL P on G Q .T

Ž .LEMMA 1. Assume 1.2 .

˜Ž . Ž .a P g P Q is variance-optimal if and only ifs

˜dQ dP
1.3 E is constant over all Q g P Q .Ž . Ž .s

dP dP

˜Ž .b P is given by

˜dP p 1Ž .
2˜ ˜w x1.4 D s s s E D q RŽ .

dP E p 1Ž .

Ž .H Hfor some R g G Q .T

˜Ž . Ž .c P g P Q is variance-optimal if and only ifs

˜dP
HH

g 1, ` q G Q .. Ž .T
dP

x ˜ ˜ ˜Ž . Ž . Ž .PROOF. a The mapping D ¬ D [ xD q 1 y x D s D q x D y D is a
˜� 4 Ž .bijection of DD _ D onto itself for every x / 0. Hence a follows from

22x 2 2˜ ˜ ˜ ˜w xE D s E D q 2 xE D D y D q x E D y D .Ž . Ž . Ž .
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Ž . Ž . Ž .c The ‘‘if ’’ part is immediate from a , and the ‘‘only if ’’ part from b .
Ž . Ž . Ž .b Due to the standing assumption 1.2 , p 1 cannot be P-a.s. equal to 0.

Thus
2

1.5 E p 1 s E p 1 ) 0Ž . Ž . Ž .Ž .

Ž Ž .. Ž w Ž .x. Ž .shows that D [ p 1 r E p 1 is well defined and in DD. Since p 1 s
0 0 H HŽ . Ž w Ž .x.1 y R for some R g G Q , we obtain D s c q R with c [ 1r E p 1T

0 H H ˜Ž w Ž .x. Ž . Ž .G 1 and R [ yR r E p 1 g G Q . Part a now implies that D s D,T

Ž . Ž .hence the second equality in 1.4 ; the third follows from 1.5 . I

Ž . 2Ž . Ž .PROPOSITION 2. Suppose that G Q : LL P is a linear space. If 1.1T
2 ˜Ž . Ž .has a solution V , j for H g LL P and if P is variance-optimal, then0

˜w xq H s V s E H .Ž .Q 0

Ž . Ž . Ž .PROOF. Since V , j solves 1.1 and R = G Q is a linear space, we0 T

obtain

E H y V y G j s 0Ž .0 T

and

E H y V y G j G q s 0 for all q g Q.Ž . Ž .Ž .0 T T

Hence the signed measure Q with density

˜dQ dP
[ q H y V y G jŽ .0 T

dP dP

˜Ž . Ž .is in P Q . However, P is variance-optimal and so 1.3 implies thats

˜dP
˜w x0 s E H y V y G j s E H y V ,Ž .Ž .0 T 0

dP

which proves the assertion. I

Proposition 2 shows that the variance-optimal signed Q-martingale mea-

˜sure P can be interpreted as the price system corresponding to Q-approxima-
˜tion pricing. Our main interest in the sequel is in the precise structure of P.

2. The discrete-time case. In this section, we consider the case of finite
� 4discrete time where TT s 0, 1, . . . , T for some T g N. For notational simplic-

ity, we take X one-dimensional, but the results can be carried over to

dimension d ) 1. More precisely, we shall assume throughout this section
Ž . Ž . Ž .that F s FF is a filtration on V, FF, P and that X s Xk ks0, 1, . . . , T k ks0, 1, . . . , T

is a real-valued, F-adapted, square-integrable process with increments

D X [ X y X . Since we want to consider self-financing strategies in ak k ky1

frictionless market, we define the space of all trading strategies by

< 2Q [ predictable processes q q D X g LL P for k s 1, . . . , TŽ .� 4k k
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and take
T

G q [ q D X for q g QŽ . ÝT j j

js1

2Ž . Ž .so that we clearly have P X s P Q . In this situation, the variance-s s

˜optimal P can always be constructed explicitly. With the conventions that

a sum over an empty set is 0, a product over an empty set is 1 and

0r0 s 0, we begin by introducing an auxiliary predictable process associated

to X by the following definition:

DEFINITION. The adjustment process b of X is defined by

TE D X Ł 1 y b D X FFŽ .k jskq1 j j ky1
2.1 b [ for k s 1, . . . , T .Ž . k 22 TE D X Ł 1 y b D X FFŽ .k jskq1 j j ky1

Ž .LEMMA 3. b is well defined by 2.1 and satisfies for k s 1, . . . , T,

T
22.2 1 y b D X g LL P ,Ž . Ž .Ž .Ł j j

jsk

T
22.3 b D X 1 y b D X g LL PŽ . Ž .Ž .Łk k j j

jskq1

and

T
2

E 1 y b D X FFŽ .Ł j j ky1
jsk

T

s E 1 y b D X FF F 1 P-a.s.Ž .Ł j j ky1
jsk

2.4Ž .

PROOF. We argue by backward induction. For k s T, b is well definedT

by Jensen’s inequality. Since

2 2<E D X FF D XŽ .T Ty1 T
2Y [ I G 0n �Ew D X < FF x G1r n42 2 T Ty1< <E D X FF E D X FFT Ty1 T Ty1

increases to b 2 D X 2 P-a.s. and D X 2 and Y F n D X 2 are both integrable,T T T n T

2 2 < <E b D X FF s lim E Y FFT T Ty1 n Ty1
nª`

2
<E D X FFŽ .T Ty1

2s lim I F 1�Ew D X < FF x G1r n42 T Ty1<nª` E D X FFT Ty1

w 2 2 x Ž . Ž .P-a.s. implies E b D X F 1, which proves 2.3 and 2.2 for k s T. SinceT T

b D X and D X are both square-integrable, we conclude from the definitionT T T

of b thatT

< <E b D X FF s b E D X FF G 0 P-a.s.T T Ty1 T T Ty1
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and

2 2 2 2< < <E b D X FF s b E D X FF s b E D X FF P-a.s.,T T Ty1 T T Ty1 T T Ty1

Ž .hence 2.4 for k s T. For k - T, the argument is almost identical. First of

all,

2
TE D X Ł 1 y b D X FFŽ .ž /k jskq1 j j ky1

0 F Y [n 22 TE D X Ł 1 y b D X FFŽ .k jskq1 j j ky1

=

22 TD X Ł 1 y b D XŽ .k jskq1 j j

22 TE D X Ł 1 y b D X FFŽ .k jskq1 j j ky1

= I 2 T 2�Ew D X Ł Ž1yb D X . < FF x G1r n4k jskq1 j j ky1

2 2 T Ž .2increases to b D X Ł 1 y b D X P-a.s. and therefore as abovek k jskq1 j j

T
22 2E b D X 1 y b D X FF F 1 P-a.s.Ž .Łk k j j ky1

jskq1

Ž . Ž .This implies 2.3 , and 2.2 follows by the induction hypothesis since

T T T

1 y b D X s 1 y b D X y b D X 1 y b D X .Ž . Ž . Ž .Ł Ł Łj j j j k k j j
jsk jskq1 jskq1

Ž .Conditioning on FF finally yields 2.4 as above and thus completes theky1

proof. I

COROLLARY 4. The random variable

T
0˜2.5 Z [ 1 y b D XŽ . Ž .Ł j j

js1

2 ˜0 ˜0Ž . w x w xis in LL P and satisfies 0 F E Z F 1, with E Z s 0 if and only if
˜0 ˜0Z s 0 P-a.s. Furthermore, Z has the property that

0˜ <2.6 E Z D X FF s 0 P-a.s. for k s 1, . . . , T .Ž . k ky1

˜0 2 ˜0 2Ž . wŽ . xPROOF. Lemma 3 implies that Z is in LL P and 0 F E Z s
˜0 ˜0w xE Z F 1, where the first inequality is an equality if and only if Z s 0

Ž .P-a.s. To prove 2.6 , we first note that

0˜E Z D X FFk ky1

T ky1
2s E D X y b D X 1 y b D X FF 1 y b D XŽ . Ž .Ž . Ł Łk k k j j ky1 j j

jskq1 js1

2.7Ž .
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T Ž . 1Ž .since D X Ł 1 y b D X g LL P for every l by Lemma 3. Furthermore,k jsl j j

T
2U [ b D X 1 y b D XŽ .Łk k j j

jskq1

T T

s D X 1 y b D X y D X 1 y b D XŽ . Ž .Ł Łk j j k j j
jskq1 jsk

is integrable by Lemma 3 and therefore

T
2V [ E b D X 1 y b D X FFŽ .Łk k j j k

jskq1

T
22s b D X E 1 y b D X FFŽ .Łk k j j k

jskq1

T
22s b E D X 1 y b D X FFŽ .Łk k j j k

jskq1

\ b Wk

Ž . w < x 2by 2.4 . Now V s E U FF is integrable since U is, and so is W F D X duek k

Ž .to 2.4 . Thus we obtain

T
2E b D X 1 y b D X FFŽ .Łk k j j ky1

jskq1

T
22s b E D X 1 y b D X FFŽ .Łk k j j ky1

jskq1

T

s E D X 1 y b D X FFŽ .Łk j j ky1
jskq1

Ž . Ž .by the definition of b , and this proves 2.6 in view of 2.7 . Ik

REMARKS.

1. From a purely formal point of view, the preceding results are of course

straightforward to check. The main difficulty throughout this section is to

ensure that all appearing expectations and conditional expectations actu-

ally exist, and this is not quite as elementary as it may look. To illustrate
˜0 Ž .the problem, let us rewrite Z in 2.5 as

T ky1
0˜2.8 Z s 1 y b D X 1 y b D X s 1 y G b ,Ž . Ž . Ž .Ý Łk k j j T

js1ks1

where the predictable process b is given by

ky1

2.9 b [ b 1 y b D X s b EE y b dX .Ž . Ž .Ł Hk k j j k ž /
ky1js1
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At first sight, it seems quite plausible that b should always belong to Q
Ž .or, equivalently, that the discrete stochastic exponential EE yHb dX sk

k Ž .Ł 1 y b D X for k s 1, . . . , T should always be a square-integrablejs1 j j

Ž .process. However, this is false: a counterexample due to Schachermayer

is given in Section 4.
Ž .2. It is tempting to conjecture that 2.6 characterizes b among all pre-

Ž .dictable processes, but this is not true in general. In fact, 2.6 only implies
Ž . � ky1Ž . 4that b is given by 2.1 on the set Ł 1 y b D X / 0 , and an easyk js1 j j

counter-example shows that this is not enough to determine b. For a

similar result in continuous time, see the remark after Proposition 8.

˜Now here is the promised construction of the variance-optimal P.

˜Ž .THEOREM 5. Assume 1.2 . Then the signed measure P defined by

˜ ˜0dP Z
˜2.10 [ D [Ž .

0˜dP w xE Z

Ž .is in P Q and variance-optimal.s

˜0 ˜PROOF. If Z is not P-a.s. equal to 0, Corollary 4 shows that P is well
Ž . 2Ž . Ž . 2Ž .defined by 2.10 and in P X . Since P Q s P X , Lemma 1 implies thats s s

it then only remains to show that

dQ
0 2˜2.11 E Z is constant over all Q g P X .Ž . Ž .s

dP

2Ž . Ž .Moreover, P X / B by the standing assumption 1.2 , and since the con-s

˜0Ž . Ž .stant in 2.11 will turn out to be 1, 2.11 shows in particular that Z cannot
Ž . Ž .be P-a.s. equal to 0. If V is finite, 2.11 is easy to prove. We simply use 2.8

˜0w xand the martingale property of X under Q to obtain E Z s 1; this isQ

straightforward since there are no integrability problems. In the general case,

however, b D X need not be P-integrable. We therefore denote byk k

dQ
2Z [ E FF g LL PŽ .k ky1

dP

the density of Q with respect to P on FF for k s 0, 1, . . . , T and note thatk

<2.12 E Z D X FF s 0 P-a.s. for k s 1, . . . , T ,Ž . k k ky1

2Ž . Ž .since Q g P X . To prove 2.11 , we show by backward induction thats

T

Ž .2.13 E Z 1 y b D X FF s Z P-a.s. for k s 1, . . . , T.Ž .ŁT j j ky1 ky1
jsk

For k s T, we have

< <E Z 1 y b D X FF s Z y b E Z D X FF s Z P-a.s.Ž .T T T Ty1 Ty1 T T T Ty1 Ty1

Ž . Ž .by 2.12 since Z D X and Z b D X are both integrable due to 2.3 . ForT T T T T
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k - T, the induction hypothesis yields

T

E Z 1 y b D X FFŽ .ŁT j j ky1
jskq1

T

s E E Z 1 y b D X FF FF s Z P-a.s.Ž .ŁT j j k ky1 ky1
jskq1

Furthermore, the induction hypothesis also shows that

T

Z b D X s b D X E Z 1 y b D X FFŽ .Łk k k k k T j j k
jskq1

T

s E Z b D X 1 y b D X FFŽ .ŁT k k j j k
jskq1

Ž .is integrable by 2.3 and therefore

T

<E Z b D X 1 y b D X FF s E Z b D X FFŽ .ŁT k k j j ky1 k k k ky1
jskq1

<s b E Z D X FF s 0 P-a.s.k k k ky1

Ž . Ž . Ž .by 2.12 . Taking differences now yields 2.13 , and for k s 1, 2.13 implies
˜0w x w x Ž .that E Z Z s E Z s 1, hence 2.11 . IT 0

REMARKS.

2Ž .1. If Q g P X is nonnegative, that is, an absolutely continuous martingales

Ž .measure for X with square-integrable density, then 2.13 implies

T k

2.14 E 1 y b D X FF s 1 y b D XŽ . Ž . Ž .Ł ŁQ j j k j j
js1 js1

Ž . Ž . Ž .due to 2.2 . By using 2.10 and the definition of b in 2.9 , we conclude

that

˜dP 1
E FF s 1 y G bŽ .Ž .Q k k0˜dP w xE Z

Ž .can be written as a constant plus a discrete-time stochastic integral of X,

independently of the choice of Q. For a general version of this fact, see
Ž .Lemma 2.2 of Delbaen and Schachermayer 1994 .

˜2. The informed reader may wonder at this point how P is related to the
ˆminimal signed martingale measure P previously studied in the litera-
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ˆŽ .ture. Recall from Schweizer 1995a that P in discrete time is defined by

T Tˆ ˜dP l jˆ ˆ[ Z [ 1 y D M s 1 y l D M ,Ł Ł ž /j j j˜dP ž /1 y l D Ajs1 js1j j

where X s X q M q A is the Doob decomposition of X, that is,0

<D A [ E D X FF for k s 1, . . . , T ,k k ky1

and where we assume that

D Ak˜2.15 l [ for k s 1, . . . , TŽ . k 2 <E D X FFk ky1

satisfies

l̃ D A - 1 P-a.s. for k s 1, . . . , T .k k

ˆThe process l is defined by

l̃ D Ak k
l̂ [ s for k s 1, . . . , T .k <˜ Var D X FF1 y l D A k ky1k k

If the mean-variance tradeoff process of X,
2

l l <E D X FFŽ .j jy1ˆ ˆ2.16 K [ l D A s for l s 1, . . . , T ,Ž . Ý Ýl j j <Var D X FFj jy1js1 js1

ˆis bounded, then P is indeed a signed martingale measure for X;
ˆ ˜ ˆŽ .see Schweizer 1995a for more details. If K is deterministic, then P s P

˜ Ž .and b s l; this is proved in Corollary 4.2 of Schweizer 1995a . For a

continuous-time analogue of this result, see Example 2 below; Example 3
˜ ˆ ˜below shows that, in general, we have P / P and b / l.

As an amusing consequence of Theorem 5, we obtain the following corol-

lary.

˜0w xCOROLLARY 6. X is a martingale if and only if E Z s 1.

5 5 2
2Ž .PROOF. By Jensen’s inequality, dQrdP G 1 for every Q g P X ,LL ŽP . s

with equality if and only if dQrdP s 1 P-a.s. Hence X is a martingale if and

only if
dQ

min s 1,
22 Ž .dP LL PŽ .QgP Xs

where equality means in particular that the minimum is attained. However,
˜ ˜2 ˜0w x w xsince P is variance-optimal, the minimum is given by E D s 1rE Z due

Ž . Ž .to 2.10 and 2.4 . I

The adjustment process b plays a very important role in the solution of
Ž .the optimization problem 1.1 . As we have just seen, it allows us to give an

˜explicit construction for the variance-optimal signed Q-martingale measure P

in discrete time. Moreover, b is also crucial for the description of the optimal
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Ž .strategy j in the solution of 1.1 . For the discrete-time case, this is clearly
Ž . Žillustrated in Schweizer 1995a . In the case of continuous time, things not

.surprisingly become more difficult. We provide in the next section some

results on the existence of the adjustment process b in continuous time and

discuss applications in Section 4. The construction in Section 3 is closely
Ž .related to the question if the process b in 2.9 belongs to Q; see Remark 1

after Corollary 4. As a partial answer, which also serves to motivate the

subsequent developments, we provide here the following result:

ˆ Ž .LEMMA 7. Suppose that the mean-variance tradeoff process K in 2.16 is
Ž .bounded. Then the predictable process b defined by 2.9 is in Q.

ˆ Ž .PROOF. Since K is bounded, Theorem 2.1 of Schweizer 1995a implies
Ž . 2Ž . 2Ž . Ž .that G Q is closed in LL P ; hence the projection of 1 in LL P on G QT T

Ž .exists and equals G c for some c g Q. Moreover, Section 4.2 of SchweizerT

Ž .1995a shows that b coincides with c and hence belongs to Q. I

˜3. On the structure of P in continuous time. In this section, we
˜provide some results on the variance-optimal signed Q-martingale measure P

w xin the continuous-time case where TT s 0, T for some T ) 0. We shall

assume throughout this section that X is a semimartingale with respect to P

and F and that

< 23.1 Q s q g L X G q [ Hq dX g SS P .� 4Ž . Ž . Ž . Ž .

Ž . Ž . dIn 3.1 , L X denotes the space of all R -valued X-integrable predictable
2 2Ž .processes, and SS s SS P is the space of semimartingales admitting a

2Ž .decomposition X s X q M q A with M g MM P and A of square-integrable0 0

variation. We want to consider self-financing trading strategies in a friction-

less market with continuous trading and so we take

T
3.2 G q s q dX .Ž . Ž . HT s s

0

w xWithout special mention, all stochastic processes will be defined for t g 0, T .
Ž . cFor any c g L X , we denote by EE the stochastic exponential of yHc dX,

Ž .that is, the unique strong solution Z s EE yHc dX of the stochastic differen-

tial equation

dZ s yZ c dX , Z s 1.t ty t t 0

Ž .Finally we recall the standing assumption 1.2 and the notation p for the
2Ž . Ž .Hprojection in LL P on the closed subspace G Q .T

Ž .DEFINITION. A process b g L X is called an adjustment process for X if
b 0˜ Ž .the process b [ b EE is in Q and if the random variable Z [ EE yHb dXy T
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Ž .His in G Q . That is,T

0˜3.3 E Z G q s 0 for all q g Q.Ž . Ž .T

Note that this definition is motivated by the properties of b in discrete time;

see Theorem 5 and Lemma 7.

˜Ž .PROPOSITION 8. Assume 1.2 . If b is an adjustment process for X, then P

defined by

˜ ˜0dP Z
3.4 [Ž .

0˜dP w xE Z

Ž .is in P Q and variance-optimal.s

PROOF. By the definition of the stochastic exponential,

T
0 b˜3.5 Z s 1 y EE b dX s 1 y G bŽ . Ž .H sy s s T

0

2Ž . Ž . Ž .is in LL P since b g Q. For any Q g P Q , 3.5 and the fact that b g Qs

imply that

dQ
0˜E Z s 1,

dP

˜0Ž . Ž .and since P Q / B by the standing assumption 1.2 , Z cannot be P-a.s.s

equal to 0. Moreover,

2
0 0 0˜ ˜ ˜w xE Z s E Z 1 y G b s E Z ) 0Ž .Ž .Ž .T

˜Ž . Ž . Ž . Ž .by 3.5 and 3.3 , and this shows that P is well defined by 3.4 , in P Q bys

Ž .3.3 and variance-optimal by Lemma 1. I

Ž .REMARK. If P Q contains a probability measure Q equivalent to P, thes

adjustment process for X is unique in the following sense: the set N [
� b 4 w xEE / 0 : V = 0, T does not depend on the choice of adjustment process b,y

and all adjustment processes coincide on N. To see this, choose adjustment

processes b 1, b 2 and use Proposition 8 to write

˜ b i

dP EE iT bs \ c EE for i s 1, 2.i i TbdP E EET

˜ ˜Ž . Ž . w xFrom 3.5 and 3.3 , we deduce that c [ E dPrdP s c for i s 1, 2 andi

therefore

˜dP ib is cEE s c 1 y G b for i s 1, 2.Ž .Ž .T T
dP

i 1Ž . Ž .However, since G b is a Q-martingale for i s 1, 2, this implies that G b
1 22 1 b 1 2 2 bŽ .and G b are indistinguishable, hence b EE s b s b s b EE , and they y

w xassertion follows. In particular, N s V = 0, T P-a.s. if X is continuous.
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For the discrete-time case, we have seen in Section 2 how the adjustment

process b can be explicitly constructed by backward recursion. The analogue

in continuous time is a characterization of b as the solution of a backward

stochastic differential equation.

Ž .THEOREM 9. Assume 1.2 . Then there exists an adjustment process b for
Ž . Ž . 2X if and only if there exists a solution b, U g L X = SS of the backward

stochastic differential equation

3.6 dU s yU b dX , U s p 1Ž . Ž .t ty t t T

Ž .with U deterministic. More precisely, b g L X is an adjustment process for0
b 2 Ž . Ž .X if and only if U [ EE is in SS and b, U solves 3.6 .

PROOF. If there exists an adjustment process b, then b g Q implies that

U [ EE
b is in SS

2, U satisfies

dU s yU b dXt ty t t

and U s 1 is deterministic. Moreover, Proposition 8 implies that U s0 T
H˜w x Ž . Ž . Ž .E U dPrdP is in G Q , and since 1 y U s G b is in G Q :T T T T T

Ž .H H Ž .G Q , we have U s p 1 .T T

Ž . Ž .Conversely, let b, U be a solution of 3.6 with U deterministic. Then0
b 2Ž . Ž Ž ..3.6 yields U s U EE s U 1 y G b , and thus b is in Q since U is in SS0 0

Ž .and U is deterministic. Note that U / 0 by the standing assumption 1.2 ;0 0
HŽ . Ž Ž .. Ž .more precisely, p 1 s U s U 1 y G b g G Q implies thatT 0 T T

2
U E 1 y G b s E p 1 s E p 1Ž . Ž .Ž .Ž .0 T

2
2 2s U E 1 y G b s U E 1 y G bŽ . Ž .Ž .0 T 0 T

b Ž . Ž .Hand therefore U s 1. Thus EE s U s p 1 is in G Q , and so b is an0 T T T

adjustment process. I

The next result gives another criterion for the existence of b in the case

where X is continuous.

Ž .THEOREM 10. Assume 1.2 . If X is continuous, the following statements

are equivalent:

Ž .a There exists an adjustment process b for X.
Ž . Ž . Ž .b 1 y p 1 is in G Q andT

3.7 p 1 ) 0 P-a.s.Ž . Ž .

PROOF.

Step 1. If there exists an adjustment process b for X, Theorem 9 yields
bŽ . Ž . Ž .p 1 s EE ) 0 P-a.s. by the continuity of X, and 1 y p 1 s G b is inT T

Ž .G Q .T
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Ž . Ž .Step 2. Conversely, suppose that 1 y p 1 s G c for some c g Q. WeT

Ž .first show that 3.7 implies the stronger result that

3.8 the process 1 y G c is P-a.s. strictly positive.Ž . Ž .

To that end, define

<w xt [ inf t g 0, T G c G 1� 4Ž .t

ˆwith inf B [ ` and set c [ c I . Since X is continuous, we have#0, t n T #

� 4G c s 1 on C [ t F TŽ .t n T

and
c � 43.9 G c - 1 on C s t s ` .Ž . Ž .

ˆSince c g Q, so is c , and

ˆ cG c s G c s I q G c IŽ . Ž .Ž .T t n T C T C

implies that

2 2 2ˆ cE 1 y G c s E I 1 y G c F E 1 y G c .Ž . Ž .Ž . Ž .Ž .Ž .T C T T

Ž . 2Ž . Ž .However, G c is the projection in LL P of 1 on G Q ; hence we mustT T

ˆŽ . Ž .have G c s G c P-a.s. and thereforeT T

G c s 1 P-a.s. on C.Ž .T

Ž . w x Ž . Ž .By 3.7 , this implies P C s 0 and therefore 3.8 in view of 3.9 .
Ž . Ž Ž ..y1Step 3. Thanks to 3.8 , the process 1 y G c is continuous and locally

Ž Ž ..y1 Ž .bounded so that b [ c 1 y G c is in L X . Moreover,

1 y G c s 1 y 1 y G c b dX s EE
bŽ . Ž .Ž .H

b Ž . Ž . Ž .shows that b EE s c is in Q, and b satisfies 3.3 since 1 y G c s p 1 isT

Ž .Hin G Q . Hence b is an adjustment process for X. IT

Ž . Ž .COROLLARY 11. Assume 1.2 and suppose that X is continuous. If G QT
2Ž .is closed in LL P , the following statements are equivalent:

Ž .a There exists an adjustment process b for X.
Ž . Ž .b p 1 ) 0 P-a.s.

˜Ž .c The variance-optimal signed Q-martingale measure P is equivalent

to P.

Ž . Ž . Ž . Ž . Ž .PROOF. Due to 1.5 and part b of Lemma 1, c implies b , and a
Ž . b Ž . Ž .implies c since EE ) 0 by the continuity of X. Finally b implies a by

Ž . Ž .H H Ž .Theorem 9, since G Q s G Q for G Q closed. IT T T

˜In general, the variance-optimal P is not a measure, but only a signed

measure; this is illustrated by an explicit example in Section 4. At first sight,

this might seem to indicate that Theorem 10 and Corollary 11 are of little
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˜use. Moreover, a signed measure P is not very attractive for the characteriza-

tion of the Q-approximation price in Proposition 2, since it might assign a

negative price to a nonnegative random variable. However, the situation

becomes different if X is continuous and satisfies in addition a no-arbitrage-
Ž . 2 Ž .type condition. Following Schweizer 1994 , we say that a process X g SS Ploc

Ž .satisfies the structure condition SC if in the canonical decomposition X s

X q M q A, we have0

i ² i:3.10 A < M for i s 1, . . . , dŽ .
d ˆ 2 Ž .and if there exists a predictable R -valued process l in L M such thatloc

ˆ w x3.11 s l s g P-a.s. for t g 0, T .Ž . t t t

Ž .The predictable processes s and g in 3.11 are defined by

t
i iA s g dB for i s 1, . . . , dHt s s

0

and

t
i j i j² :M , M s s dB for i , j s 1, . . . , d ,t H s s

0

where B is a fixed increasing predictable RCLL process null at 0 such that
i ˆ² :M < B for each i. The increasing predictable process K defined as an

RCLL version of

t t
tr trˆ ˆ ˆ ˆ ˆ3.12 K [ l dA s l s l dB s l dMŽ . H H Ht s s s s s s ¦ ;

0 0 t

is then called the mean-variance tradeoff process of X.

Although it may look rather special at first sight, condition SC appears

quite naturally in applications to financial mathematics. It is a very mild

formulation of the assumption that X should not admit arbitrage opportuni-

ties, that is, riskless profit strategies. Sufficient conditions for SC are given
Ž . Ž .for instance in Ansel and Stricker 1992 or Schweizer 1995b . As an exam-

ple, every adapted continuous process X admitting an equivalent martingale

measure satisfies SC. We remark that for d s 1, condition SC reduces to the
Ž .combination of 3.10 , that is,

² :X s X q M q a d M ,H0

2 ˆŽ . Ž .with the assumption that a g L M ; 3.11 is then satisfied with l s a ,loc

ˆ 2 ² :and the mean-variance tradeoff process is given by K s Ha dA s Ha d M .

Ž . 2 Ž . Ž . 2Ž . 2Ž .LEMMA 12. a If X g SS P satisfies 3.10 , then Q s L M l L A ,loc

where

T T
2 d tr tr 2< < < < < <L A [ predictable R -valued q q d A s q g dB g LL P .Ž . Ž .H s Hs s s s½ 5

0 0
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ˆIf in addition X satisfies the structure condition SC and K is P-a.s. bounded,T
2Ž .then Q s L M .

Ž . 2Ž . Ž . 2Ž .b If X g SS P satisfies the structure condition SC, then P Q s P X .s s

Ž . Ž .PROOF. Since a is proved in Lemma 2 of Schweizer 1994 , we only show
Ž .b . First of all, it is easy to see that Q contains all bounded predictable

2Ž .processes if and only if X y X g SS P , and in that case, we clearly have0

Ž . 2Ž . 2Ž .P Q : P X . To obtain the reverse inclusion, take any Q g P X ands s s

denote by Z an RCLL version of the density process of Q with respect to P.
2Ž .Then Z g MM P and ZX is a P-martingale. For any q g Q, the product rule

yields

trd ZG q s G q dZ q Z d q dM q d Z, q dAŽ . Ž .Ž . H Hy y½ ž /
qd Z, q dM y d Z, q dMH H¦ ;5

q d Z, q dM q Z q tr dA,H y¦ ;
Ž .and by part a and Yoeurp’s lemma, the term in curly brackets on the

Ž .right-hand side is the differential of a local P-martingale. Since X satisfies
Ž .SC, Proposition 2 of Schweizer 1995b implies that

ˆdZ s yZ d l dM q dRHy ž /
2 Ž . ifor some R g MM P strongly P-orthogonal to each M , and so we get0, loc

tr t̂r trd Z, q dM q Z q dA s yZ l sq dB q Z q g dB s 0H y y y¦ ;
Ž . Ž . Ž .from 3.10 and 3.11 . This shows that ZG q is a local P-martingale, and

2Ž . Ž . 2Ž . Ž .because Z is in MM P and G q is in SS P , ZG q is even a P-martingale.
Ž .Since q g Q was arbitrary, we conclude that Q g P Q . Is

The next result shows that for a continuous process X satisfying SC, the
˜variance-optimal P is in fact a probability measure. From the point of view of

possible applications, this is very important: it implies by Proposition 2 that

the Q-approximation price of any nonnegative contingent claim H is also

nonnegative. This is clearly a highly desirable property of any reasonable

price system.

Ž .THEOREM 13. Assume 1.2 . If X is a continuous adapted process satisfy-

ing the structure condition SC, then the variance-optimal signed Q-martingale
˜measure P is a measure, that is, is nonnegative.

PROOF.
ˆStep 1. Suppose first that K is P-a.s. bounded. Then Theorem 2.4 ofT

Ž . Ž . 2Ž .Monat and Stricker 1994 shows that G Q is closed in LL P . If we denoteT
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Ž . Ž .by G c the projection of 1 on G Q , the same argument as in Step 2 of theT T

proof of Theorem 10 shows that

ˆ cG c s G c s I q G c I F 1 P-a.s.Ž . Ž .Ž .T T C T C

Note that this is the only place where the continuity of X is used. Moreover,
Ž . w x Ž .the standing assumption 1.2 implies that P C - 1 and so G c - 1 withT

˜Ž . Ž .positive probability by 3.9 . By part b of Lemma 1, P is given by

˜dP 1 y G cŽ .T
s G 0 P-a.s.,

dP E 1 y G cŽ .T

ˆand this proves the assertion in the case where K is bounded.T

ˆStep 2. The process K is predictable and RCLL, hence locally bounded.
ˆTnŽ .Take a localizing sequence of stopping times T such that each K isn ng N

bounded and define the spaces

n < nq1Q [ q I q g Q : Q : Q� 4#0, T #n

and

VV [ G Qn : VV : G Q : LL
2 P .Ž . Ž . Ž .n T nq1 T

2Ž .Then we claim that each VV is a closed subspace of LL P . To see this, wen

note that

T T
T T 2 Tn n nVV s q dX q g Q s j dX j g L MŽ .H Hn s s s s½ 5 ½ 5

0 0

Ž .by part a of Lemma 12, and so we can apply Theorem 2.4 of Monat and
Ž . TnStricker 1994 to X instead of X. If we denote by V the projection of 1 onn

2 ˜0Ž . Ž .VV , the sequence 1 y V converges in LL P to some Z . By Step 1,n n ng N

˜0 Ž .1 y V G 0 P-a.s. for every n and so Z G 0 P-a.s. For each q g Q, G q In T #0, T #n

Ž . 2Ž . w Ž . xconverges to G q in LL P see, for instance, Schweizer 1994 , Lemma 5T

and this implies that

0˜E Z G q s lim E 1 y V G q I s 0.Ž . Ž . Ž .T n T #0, T #nnª`

Ž Žn. . Žn.Moreover, each V can be written as V s G j I for some j g Q,n n T #0, T #n

and so we deduce

dQ dQ
0˜E Z s lim E 1 y V s 1Ž .n

dP dPnª`

Ž .for every Q g P Q ands

2
0 Žn.˜E Z s lim E 1 y V 1 y G j IŽ .Ž . Ž .ž /n T #0, T #nnª`

˜0w x w xs lim E 1 y V s E Z .n
nª`

˜The same arguments as in the proof of Proposition 8 now show that P with

density

˜ ˜0dP Z
[

0˜dP w xE Z
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˜0Ž .is well defined, in P Q and variance-optimal, and since Z G 0 P-a.s., thiss

completes the proof. I

˜An earlier version of this paper conjectured that P is in fact equivalent to

P if X is continuous and satisfies SC. In the meantime, this has been proved
Ž .by Delbaen and Schachermayer 1994 under the natural additional assump-

tion that

there exists a probability measure Q f P with dQrdP g
3.13Ž . 2Ž .LL P such that X is a local Q-martingale.

This allows us in turn to give an existence result for the adjustment process
Ž .b. As an aside, we remark that 3.13 already implies SC if X is continuous;

Ž . Ž .see Theorem 1 of Schweizer 1995b . For sufficient conditions for 3.13 , see
Ž .also Stricker 1990 .

2 Ž .In order to prove the next result, we need some notation. If X g SS Ploc

satisfies condition SC, we can define an exponential local martingale by
ˆ ˆ ˆŽ .Z [ EE yHl dM . It is easy to check that ZX is a local P-martingale, and by

ˆ Ž .the same kind of argument as in the proof of Lemma 12, so is ZG q for every
ˆ ˆ 2Ž .q g Q. If K is P-a.s. bounded, Z is even in MM P by Theorem II.2 ofT

ˆŽ .Lepingle and Memin 1978 . In that case, we can define a signed measure P´
by setting

ˆdP
ˆ ˆ3.14 [ Z s EE y l dM ,Ž . HT ž /dP T

ˆ ˆŽ .and P is then in P Q . This signed measure P is the so-called minimals

signed local martingale measure for X, introduced in Follmer and Schweizer¨
Ž .1991 and subsequently studied and used by several authors.

THEOREM 14. Assume that X is continuous and satisfies the structure
ˆcondition SC. If K is P-a.s. bounded, then there exists an adjustment processT

b for X.

ˆ Ž .PROOF. Since K is bounded, 3.14 defines a signed measure whoseT
2 ˆŽ .density with respect to P is in LL P . Since X is continuous, P is in fact

ˆŽ .equivalent to P, and so 3.13 is satisfied with Q s P. By Theorem 1.3 of
˜Ž .Delbaen and Schachermayer 1994 , this implies that P is equivalent to P.

ˆŽ . Ž .Due to Theorem 2.4 of Monat and Stricker 1994 , G Q is closed since K isT T

bounded, and so the assertion follows from Corollary 11. I

REMARKS.

ˆ1. Actually, the boundedness assumption on K in Theorem 14 is unneces-T

sarily strong. It is clear from the proof that b exists as soon as X is
Ž . Ž .continuous, 3.13 is satisfied and G Q is closed. For conditions guaran-T

teeing these assumptions, see Delbaen, Monat, Schachermayer, Schweizer
Ž .and Stricker 1995 .
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2. In view of Theorem 9, Theorem 14 also provides an existence result for the
Ž .backward stochastic differential equation 3.6 . It would be interesting to

see a direct proof of that result.

To conclude this section, we now briefly discuss the question of when the
˜ ˆvariance-optimal P coincides with P. This also gives an alternative approach

to the construction of the adjustment process b in some cases. We know from
ˆ ˜ ˆŽ .part c of Lemma 1 that P s P if Z can be represented as the sum of aT

constant and a stochastic integral of X with an integrand from Q. For

instance, this is possible if X is given by

t
X s W q m dsHt t s

0

with a one-dimensional Brownian motion W and a bounded process m which

is adapted to the augmentation of the filtration F
X generated by X; see

Ž .Section 6.3 of Schweizer 1994 . Another class of examples follows.

2 Ž .EXAMPLE 1. Suppose that X g SS P satisfies the structure conditionloc

ˆ ˆ ˆSC. If K is continuous and K is deterministic, then b [ l is an adjustmentT

ˆ ˆprocess for X and P is variance-optimal. In fact, continuity of K implies

trˆ ˆ ˆ ˆl dM , l dA s l dM , K s 0,H H H

hence

ˆ ˆl yKˆ ˆ ˆ ˆ3.15 EE s EE y l dX s EE y l dM EE yK s Ze ,Ž . Ž .H Hž / ž /
ˆ ˆ ˆŽ . Ž .and so b [ l satisfies 3.3 because K is deterministic and P is in P Q .T s

ˆNote that here is the only place where we use the assumption that K isT

Ž . Ž .deterministic. Moreover, 3.15 and 3.12 yield

T T2tr trˆ ˆ ˆ< <b s b dB F sup Z l s l dBH Hs s s s s s s s s
0 00FsFT

ˆ ˆ 2 1< <s K sup Z g LL PŽ .T s
0FsFT

ˆ2 lˆ ˆ ˆŽ . Ž .since K is bounded and Z g MM P , and so lEE is in Q by part a ofT y

Lemma 12. This proves the assertions by Proposition 8 and thus ends

Example 1.

2 Ž .EXAMPLE 2. Suppose that X g SS P satisfies the structure conditionloc

ˆ Ž .SC. If the entire process K is deterministic but not necessarily continuous ,
ˆ ˆthen b [ l is again an adjustment process for X and P is variance-optimal.

Ž .In fact, the second assertion is proved in Theorem 8 of Schweizer 1995b by

an argument completely different from the one in Example 1, and the first

claim then follows as in Example 1.
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4. Examples and applications. This section contains several examples

and applications of the concepts introduced so far. After illustrating various

points by explicit examples, we use the variance-optimal signed Q-martingale
˜ Ž .measure P to solve some quadratic optimization problems related to 1.1 ,

and we provide a feedback form expression for the optimal strategy j with

the help of the adjustment process b and a certain backward stochastic

differential equation.

4.1. Some explicit examples. The first example illustrates that, in gen-
˜ ˆeral, P is only a signed measure and differs from P.

EXAMPLE 3. Suppose that X s 0 and that D X takes the values0 1
1

q1, 0, y1 with probability . Given that X / q1, D X takes the values "11 23
1with probability each. The conditional distribution of D X given X s q12 12

is denoted by n , and we shall assume that

`
24.1 0 - x n dx - `.Ž . Ž .H

y`

The filtration F is generated by X. To simplify the notation, we denote the
� 4value of any FF -measurable random variable Y on the sets X s q1 ,1 1

� 4 � 4 Žq. Ž0. Žy.X s 0 and X s y1 by Y , Y and Y , respectively. It is then easy1 1

˜ Ž̃y. Ž̃0.to check that l s l s l s 0 and1 2 2

H` xn dxŽ .y`Žq.l̃ s ;2 ` 2H x n dxŽ .y`

Ž̃q. Žq.Ž .by 4.1 and Jensen’s inequality, this is well defined and l D A - 1. In2 2

ˆparticular, K is bounded.
˜Ž . Ž .Next we compute the adjustment process b. By 2.1 and 2.15 , b s l2 2

and therefore

˜E D X 1 y l D AŽ .1 2 2
b s1

2 ˜E D X 1 y l D AŽ .1 2 2

2`y H xn dxŽ .Ž .y`
s

2` 2 `2H x n dx y H xn dxŽ . Ž .Ž .y` y`

Ž .by conditioning on FF and using 2.4 and the structure of X. Thus the1

˜processes b and l are different as soon as

`

xn dx / 0,Ž .H
y`

that is, whenever X is not a martingale. Furthermore, it is clear that

˜0Z s 1 y b D X 1 y b D XŽ . Ž .1 1 2 2
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will become negative with positive probability if supp n is unbounded and X
˜is not a martingale. This shows that P will, in general, not be a measure, but

only a signed measure.

In the special case where

1n s d q dŽ .�q24 �y142

with d denoting a unit mass at the point x, we obtain� x4

1 1 1
Žq. Žq. Žq.˜ ˜l s , l D A s , b s y .2 2 2 1

5 10 19

�By numbering the trajectories as v to v , starting with v s D X s q1,1 6 1 1

4 � 4D X s q2 , v s D X s q1, D X s y1 and so on, we can write the ran-2 2 1 2

˜0dom variable Z as a vector:

12 24 18 18
0Z̃ s , , 1, 1, , .ž /19 19 19 19

˜0w xHence E Z s 55r57 and

˜0Z 36 72 57 57 54 54
D̃ s s , , , , , .

0 ž /˜ 55 55 55 55 55 55w xE Z

Similarly, we obtain

2 4
Ẑ s , , 1, 1, 1, 1 ,ž /3 3

ˆ ˜ ˆ ˜which shows that Z and D, hence also the measures P and P, do not agree.

This ends Example 3.

Ž .EXAMPLE 4. There exists a square-integrable process X suchk ks0, 1, 2, 3

that

2
14.2 1 y b D X s 1 y G b f LL PŽ . Ž .Ž . Ž .Ł j j 2

js1

2 ˜Ž . Ž .so that b is not in Q. Note that 1 y G b g LL P since P exists. This3

counterexample to the question after Corollary 4 was provided by Schacher-

mayer.
Ž .In a first step, fix « ) 0 and M ) 0. We then construct a process Yk ks0, 1, 2

Ž C .on a filtered probability space C, 2 , G, P such that the unique martingale

measure Q for Y satisfies

2
dQ

4.3 F 1 q «Ž .
2 Ž .dP LL P

and

dQ
4.4 E GG G M .Ž . Q 1

1dP Ž .LL P
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� 4To do this, choose C s c , c , c ,1 2 3

5� 4 � 4P c s d , P c s d1 2

Ž� 4. C Ž .for d ) 0 small, and GG trivial, GG s s c and GG s 2 . Let Y s 0, Y c s0 1 3 2 0 1 1

Ž . Ž . Ž . Ž . Ž .Y c ) 0 ) Y c and DY c ) 0 s DY c ) DY c so that the filtra-1 2 1 3 2 1 2 3 2 2

tion G is generated by Y. It is clear that Y has a unique equivalent

martingale measure Q, and we can choose the values of Y , Y in such a way1 2

that
3� 4 � 4Q c s Q c s d .1 2

This implies that
22 3dQ 1 y 2dŽ .

5 y4 4s d d q dd q F 1 q «
52 Ž .dP 1 y d y dLL P

for d small enough. On the other hand,

dQ 1 dQ
E GG c s E IŽ .Q 1 1 Q �c , c 41 2� 4dP Q c , c dP1 2

d 3dy2 q d 3d 2 1
y2s G d

3 22d
yields

dQ 1 1
5 y2 y1E GG G d q d d G d G MŽ .Q 1

1dP 2 2Ž .LL P

for d small enough.

To construct X, take now « s 2yn, M s 2 n and apply the first step ton n

Ž n n .obtain a sequence C , G , P , Y , Q . Define V as the disjoint union of then n n

sets C , X s X s 0 andn 0 1
`

nX s l Y I for k s 2, 3Ýk n ky1 Cn

ns1

Ž .for arbitrary numbers l / 0. For suitable l , X even remains bounded.n n

Ž . Ž . Ž .Take FF trivial, FF s s C ; n g N , FF s FF k s X and FF s FF k s X s0 1 n 2 1 2 3 2 3

2V. Finally, take
`

ynw x w xP ? s 2 P ?l C .Ý n n

ns1

Since l / 0, any signed martingale measure Q for X is of the formn
`

w x w x4.5 Q ? s m Q ?l CŽ . Ý n n n

ns1

` w x ynfor some m / 0 with Ý m s 1. Since P C s 2 , we thus obtainn ns1 n n

22 `dQ dQnns m 2 IÝ n Cn2 Ž .dP dP 2LL P n Ž .ns1 LL P

`
2 ns m 2 1 q g ,Ž .Ý n n

ns1
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where
2

dQn
1 q g [ F 1 q «n n

2dP Ž .n LL Pn

Ž . Ž .by 4.3 . By minimizing over m , we conclude that the variance-optimaln

˜ Ž .measure P is given by 4.5 with

1
m s const. .˜n n2 1 q gŽ .n

˜ ynNote that P is equivalent to P since m ) 0, and that m is of order 2 . By˜ ˜n n

Ž .2.14 ,

`˜dP dQnn˜ ˜1 y G b s const. E FF s const. I m 2 E FF˜Ž . Ý2 2 C n 2ndP dPnns1

w x ynand since P C s 2 , we obtainn

` dQn n
15 51 y G b s const. m E GG˜Ž . ÝLL ŽP .2 n Q 1n dP 1n Ž .ns1 LL Pn

`

G const. m M s q`˜Ý n n

ns1

Ž . Ž .by 4.4 . This proves 4.2 and thus ends Example 4.

Ž .REMARK. It follows from Lemma 2.2 of Delbaen and Schachermayer 1994
1 2Ž . Ž . Ž .that G b is in MM Q for every Q g P X which is equivalent to P; sees

Ž .also 2.14 . The conclusion to be drawn from Example 4 is therefore that, in

general, integrability properties of b or b should not be formulated with

respect to P, but with respect to Q. This issue will be studied more carefully

in the future.

4.2. Some related optimization problems. As a first application, we now
˜ Ž .use P to solve several quadratic optimization problems related to 1.1 . To

that end, we consider the following auxiliary problem:

22Given H g LL P and c g R, minimize E H y c y G qŽ . Ž .Ž .T4.6Ž .
over all q g Q.

Ž . Ž .Note that in contrast to 1.1 , the initial capital c is prescribed in 4.6 .
Žc. ˜ ˜Ž .Denote the solution of 4.6 by j if it exists and recall that D s dPrdP and

2Ž . Ž .Hthat p is the projection in LL P on G Q .T

Ž . 2Ž . Ž .LEMMA 15. Assume 1.2 , and fix c g R and H g LL P . If 4.6 has a

solution j Žc., then

˜w xE H y c
Žc.4.7 E H y c y G j sŽ . Ž .T 2˜w xE D
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and

2 ˜w xc y 2cE H2 2Žc.4.8 E H y c y G j s q E p H .Ž . Ž .Ž .Ž .Ž .T 2˜w xE D

w Ž Žc..xPROOF. Let g [ E H y c y G j . If g s 0, the same argument as inT

w̃ x Ž .Proposition 2 shows that c s E H and so both sides of 4.7 equal 0. If g / 0,

then

dQ 1
Žc.[ H y c y G jŽ .Ž .T

dP g

Žc. Ž . Ž .defines a signed Q-martingale measure Q, since j solves 4.6 . By part a

of Lemma 1, this implies

1 1
2 Žc.˜ ˜ ˜w xw xE D s E H y c y G j s E H y cŽ . Ž .T

g g

Ž . Ž Žc.. Ž .Hand therefore 4.7 . Since H y c y G j is in G Q ,T T

2Žc.E H y c y G jŽ .Ž .T

Žc. Žc.s E H y c y G j H y p H q p H y c y G jŽ . Ž .Ž . Ž .Ž . Ž .T T

Žc.s E H y c y G j p H y cŽ .Ž .Ž .Ž .T

˜w xE H y c
2

s E p H y cE p H y c ,Ž . Ž .Ž .
2˜w xE D

Ž . Ž .where the last step uses 4.7 . However, part b of Lemma 1 shows that

HH2˜ ˜w xD s E D q R for some R g G Q ,Ž .T

and so we get

2˜ ˜ ˜w x w xE H s E Dp H s E D E p H ,Ž . Ž .

˜ H H HŽ . Ž . Ž .since D g G Q and H y p H g G Q . Putting everything togetherT T

Ž .yields 4.8 and thus completes the proof. I

Ž .Lemma 15 is an abstract version of Corollary 2.5 in Schweizer 1995a . As

an immediate consequence, we obtain the following corollary:

Ž . Ž . 2Ž .COROLLARY 16. Assume 1.2 and that G Q is closed in LL P , and fixT
2Ž .H g LL P . Then:

˜ŽEw H x.˜Ž . Ž w x . Ž .a E H , j solves 1.1 .
˜ŽEw H x.Ž . w Ž .xb j minimizes Var H y G q over all q g Q.T

˜2Ž . w xc If E D / 1, the solution of

w Ž .xGiven m g R, minimize Var H y G q over all q g QT

w Ž .xsatisfying the constraint E H y G q s mT
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is given by j Žcm ., where

˜2 ˜w xw xmE D y E H
c s .m 2˜w xE D y 1

Ž . 2Ž . Ž . Žc.PROOF. Since G Q is closed in LL P , 4.6 has a solution j for everyT

Ž . Ž .c g R. Thanks to Lemma 15, a is now proved like Corollary 3.2, b like
Ž . Ž .Corollary 3.4 and c like Corollary 3.6 in Schweizer 1995a . I

REMARKS.

1. In the framework of Section 3, Corollary 16 generalizes previous results of
Ž .Schweizer 1994 where the solutions to these problems were only obtained

ˆunder the assumption that the mean-variance tradeoff process K is deter-
˜ ˆministic. Note that this implies P s P according to Example 2.

˜2w x Ž .2. The condition E D / 1 in c can equivalently be expressed as 1 f

Ž .H Ž .G Q which up to integrability amounts to saying that X is not aT

Ž .H w Ž .xmartingale. If G Q does contain 1, the constraint E H y G q s mT T

w xcan of course only be satisfied if m s E H .
Ž .3. For a thorough study of the closedness of G Q , see Delbaen, Monat,T

Ž .Schachermayer, Schweizer and Stricker 1995 .

4.3. A description of the optimal strategy. To illustrate the usefulness of

the adjustment process b, we now provide a description in feedback form
Žc. Ž . w xof the solution j of the optimization problem 4.6 in the case TT s 0, T of

Ž .continuous time. Due to part b of Corollary 16, this also furnishes a
˜ŽEw H x. Ž .description of the solution j s j of the basic problem 1.1 . We shall

obtain j Žc. as solution of the equation

ty
Žc. Žc. Žc.4.9 j s D y b c q j dX s D y b c q G j .Ž . Ž .Ž .Ht t t s s t t tyž /

0

� 4This kind of result was already obtained in the case TT s 0, 1, . . . , T of finite
Ž .discrete time by Schweizer 1995a . In particular, one can find there an

Ž .explicit expression for D in the discrete-time situation. We shall see that 4.9

still holds in continuous time, but D has to be constructed as the solution of a

certain backward stochastic differential equation.
w xThroughout this subsection, we shall assume that TT s 0, T , X is a

Ž . Ž .semimartingale with respect to P and F, and Q and G q are given by 3.1T

Ž .and 3.2 , respectively. We also suppose that there exists an adjustment

process b for X. Consider the following backward stochastic differential
Ž . Ž . 2equation for D , Z g L X = SS :

4.10 dZ s D dX y Z b dX , Z s H y p H .Ž . Ž .t t t ty t t T

Ž . 2Ž . 2Ž .In 4.10 , H g LL FF , P is fixed and p is as usual the projection in LL PT

Ž .H Ž .on G Q . Note that 4.10 , hence also D , does not depend on c.T
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PROPOSITION 17. Assume that there exists an adjustment process b for X.
Ž . Ž . 2 Ž . Ž .If D , Z g L X = SS is a solution of 4.10 with Z deterministic, then 4.90

Žc. Žc. Ž .defines a process j in Q for every c g R and j solves 4.6 .

PROOF.
Žc. Ž . Ž .Step 1. To show that there exists a process j g L X satisfying 4.9 , we

denote by V the solution of the stochastic differential equation

4.11 dV s D y cb dX y V b dX , V s 0;Ž . Ž .t t t t ty t t 0

Ž .this exists and is unique by Theorem V.7 of Protter 1990 . The process

4.12 j Žc. [ D y b c q VŽ . Ž .y

Ž . Ž Žc..is then in L X , and since G [ G j satisfies

dG s j Žc. dX s D dX y c q V b dX s dV , G s 0 s V ,Ž .t t t t t ty t t t 0 0

Ž Žc.. Ž . Žc.we conclude that G j s V. Inserting this into 4.12 shows that j
Ž .satisfies 4.9 .

Step 2. To show that j Žc. is in Q, we introduce the process Y [ Z y V y
Ž . bc 1 y U , where U s EE satisfies the backward stochastic differential equa-

Ž . Ž . Ž . Ž .tion 3.6 . Combining 4.10 , 4.11 and 3.6 shows that Y satisfies the

stochastic differential equation

dY s yY b dX , Y s Zt ty t t 0 0

and therefore Y s Z EE
b s Z U. Since Z is deterministic, we conclude that Y0 0 0

2 Ž Žc.. Ž . Žc.is in SS and so is G j s V s Z y Y y c 1 y U ; hence j is in Q.
Žc. Ž .Step 3. It remains to show that j defined above solves 4.6 . However,

this follows immediately from the observation that

H y c y G j Žc. s H y c y VŽ .T T

s H y Z q Y y cU s p H q Z y c p 1Ž . Ž . Ž .T T T 0

Ž .H Ž . Ž .is in G Q due to Step 2, 4.10 and 3.6 . Note that this uses again that ZT 0

is deterministic. I

Somewhat surprisingly, Proposition 17 can be used to establish a unique-
Ž .ness result for the backward stochastic differential equation 4.10 .

THEOREM 18. Assume that there exists an adjustment process for X.
2 Ž . Ž .Suppose that X is in SS P and satisfies 3.10 . If either X satisfies SC andloc

ˆ Ž .K is P-a.s. bounded or 3.13 is satisfied, then there is at most one solutionT

Ž . Ž . 2 Ž .D , Z g L X = SS to 4.10 with Z deterministic.0

PROOF.

Step 1. We remark first that each of the two hypotheses implies that the
Ž . 2Ž .mapping q ¬ G q is injective from Q into LL P . In fact, this is immedi-T

ˆ 2Ž .ate in the first case, since boundedness of K implies that Q s L M byT

5 5 2 5 Ž .5 2Lemma 12 and that the norms q and G q are equivalent byL ŽM . LL ŽP .T
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Ž . Ž . Ž .Theorem 2.3 of Monat and Stricker 1994 . If 3.13 is satisfied, G q is in
1Ž . Ž . Ž .MM Q for every q g Q, so G q s 0 P-a.s. implies that G q s Hq dM q0 T

Hq tr dA is indistinguishable from 0. By the uniqueness of the canonical
2Ž . 2Ž .decomposition, we then conclude that q s 0 in L M l L A .

Ž i i. Ž . 2 Ž .Step 2. Now suppose that D , Z are solutions in L X = SS to 4.10

with Z i deterministic for i s 1, 2. If we set z [ D1 y D2 and Y [ Z1 y Z 2,0

Ž . Ž . 2then z , Y g L X = SS satisfies the backward stochastic differential

equation

4.13 dY s z dX y Y b dX , Y s 0,Ž . t t t ty t t T

and Y is deterministic. By Proposition 17, the process c defined by0

4.14 c s z y bG cŽ . Ž .y

is therefore in Q and solves

2
minimize E G q over all q g Q.Ž .Ž .T

Ž .This implies that G c s 0 P-a.s., hence c s 0 in Q by Step 1, and weT

Ž . Ž . Ž .conclude from 4.14 that z s 0. By 4.13 and 3.6 , Y is therefore given byT
b Ž .Y s Y EE s Y U s Y p 1 . Since Y s 0, we must have Y s 0, becauseT 0 T 0 T 0 T 0

Ž . Ž .p 1 cannot be P-a.s. equal to 0 by the standing assumption 1.2 . Again from
Ž . b4.13 , we obtain Y s Y EE s 0, and this completes the proof. I0

Let us now turn to existence results for the backward stochastic differen-
Ž .tial equation 4.10 .

PROPOSITION 19. Assume that there exists an adjustment process b for X.
Ž . Ž . Ž . Ž . Ž . 2If H y p H is in G Q , then 4.10 has a solution D , Z g L X = SS withT

Z deterministic.0

Ž . Ž .PROOF. By assumption, there exists q g Q with H y p H s G q . WeT

Ž . Ž . Ž .claim that D [ q q bG q and Z [ G q provide a solution to 4.10 withy

Ž . Ž . 2the desired properties. In fact, q g Q implies that D , Z is in L X = SS ,

Z s 0 is deterministic, Z satisfies0

dZ s q dX s D dX y G q b dX s D dX y Z b dXŽ .t t t t t ty t t t t ty t t

Ž . Ž .and Z s G q s H y p H . IT T

THEOREM 20. Assume that there exists an adjustment process b for X.
Ž . 2Ž .Then G Q is closed in LL P if and only if the backward stochasticT

Ž . Ž . Ž . 2differential equation 4.10 has a solution D , Z g L X = SS with Z deter-0
2Ž .ministic for every H g LL FF , P .T

Ž . Ž . Ž .PROOF. If G Q is closed, then H y p H is in G Q for every H; henceT T

the ‘‘only if ’’ part follows from Proposition 19. Conversely, closedness of
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Ž .G Q clearly follows if the problemT

2
minimize E H y G q over all q g QŽ .Ž .T

2Ž .has a solution in Q for every H g LL FF , P and so the ‘‘if ’’ part is aT

consequence of Proposition 17. I

REMARK. It would be interesting to see a direct argument for existence

andror uniqueness of the solution of the backward stochastic differential
Ž .equation 4.10 . In particular, this might provide a more concrete characteri-

Ž .zation for the closedness of G Q .T

Acknowledgments. This work is based in part on my Habilitations-

schrift at the University of Gottingen. Financial support by Deutsche¨
Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of

Bonn, is gratefully acknowledged. I would also like to thank Walter Schacher-

mayer for helpful comments.

REFERENCES

Ž .ANSEL, J.-P. and STRICKER, C. 1992 . Lois de martingale, densites et decomposition de´ ´
Follmer]Schweizer. Ann. Inst. H. Poincare 28 375]392.¨ ´

Ž .BARRON, E. N. and JENSEN, R. 1990 . A stochastic control approach to the pricing of options.

Math. Oper. Res. 15 49]79.
Ž .BLACK, F. and SCHOLES, M. 1973 . The pricing of options and corporate liabilities. J. Political

Economy 81 637]654.
Ž .BOULEAU, N. and LAMBERTON, D. 1989 . Residual risks and hedging strategies in Markovian

markets. Stochastic Process. Appl. 33 131]150.
Ž .CVITANIC, J. and KARATZAS, I. 1993 . Hedging contingent claims with constrained portfolios.´

Ann. Appl. Probab. 3 652]681.
Ž .DAVIS, M. H. A. 1994 . A general option pricing formula. Preprint, Imperial College, London.

Ž .DELBAEN, F., MONAT, P., SCHACHERMAYER, W., SCHWEIZER, M. and STRICKER, C. 1995 . Weighted

norm inequalities and closedness of a space of stochastic integrals. Preprint, Univ.

Franche-Comte, Besançon.´
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