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164 POPUIL.ATION PARAMETERS
1. Introduction.

It frequently happens that all of the individuals of a sample of
statistical data from a multivariate population are not ‘observed or
classified with respect to all of the variates. :If a sample be repre-
sented in matrix form by allowing thé rows to represent the in-
dividuals and the columns to represent the variates, then the matrix
of the type of sample with which we are concerned is incomplete
in that some of the elements are not present. As an example of
a fragmentary sample of this nature, we may consider a series of
measurements taken from certain parts of a group of human
skeletons from some archeological find, in which some of the parts
under consideration are missing from some of the skeletons.
Again, we find such a class of samples in the social sciences and
government statistics arising from incompletely answered question-
naires.

In dealing with fragmentary samples, it is important to have
at hand techniques which will enable the investigator to extract
as much information as possibleyfrom the data. This is especially
true if the data are unique or expensive. An important problem
in this connection is that of estimating the population parameters
from the sample.

In this paper it is the purpose of the author to investigate in-
complete samples from a normal bivariate population. ‘T'o be more
specific, samples are considered from a normal bivariate popula-
tion of » and y, in which s of the items are observed with
respect to x and y , 7 with respect to x only and n with
respect to .y only. In the first part of the paper we shall con-
sider various sets of simultaneous maximum likelihood estimates
of the population parameters and the limiting forms of their
sampling variances and covariances in large samples. In the sec-
ond part we shall consider other less efficient, but simpler systems
of estimates.
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II.  Simultancous Iistimation by the Method of Maximum
Likelihood.
Let a sample w of /V individuals be drawn from the popula-
tion of the two variates x and y whose distribution is given by

v-a)* J- b)% 2r(x-aky-»)
1 ZZ [ %0, :l
zmrxo} ﬂ-rl’ ’

where @ and p avce the means, ¢ and o, the standard devia-
tions and r the correlation of x and y in the population. 1.t
W, y be the set of s individuals of this sample observed with re-
spect to x and y , w, the sct of m items observed with respect
to x only and W), the remaining n items observed with respect
to y only. Toavoid trivial results we shall assume that s is not
zero.  Furthermore, we shall let § and x be the variances and
¥ the convariance!, ¥ and ¥ the means of x and y in '«J,y.
The variance and mean of x in « will be denoted hy « an!
%, respectively, and similarly, the variance and mean of y in
Wy will be v and _\7/ The joint distribugion of £ . ¥y . £ .
Y ouw . v. £ . npand 3 can be written from several
well known independent distributions as
(1 . et

! FKlg) (o) (t-r9) e ateo 2552 G o

—2r z_%%fu)] e lur) -2 2]
c ' 4

u%’jv "77_'1({7742)%1,

where
. men+Xs
rm) “n)*s 2

/ﬂ/g,_/zg-i/,—/-ﬂ-i//—/ (%)

i, for two sets of variates, ‘T, 85, "tni fy.tas, -0 T2y
-, n _ - .
we let f~~;-’,£’ t;; and V}:-’Z (i - Yt -1, ), (/,ks/Z).

then l‘ and ? are the means, v a.nd , are the variances and Ve is the

covariance of the two sets of I's.
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The lkelihood of w when w is specified in terms of the
foregoing statistics is given by (1). \We shall use this expression
of the likelihood to ubtain approximations for the maximum like-
lihood estimates of the population parameters o, , o, r, «a
and 4 . TFollowing Fisher?, we shall take the logarithm of (1)
and denote it by L. For convenience, we shall, once for all, set
up the following set of first derivatives,

(e)d—L 8[(r-a) , «(x-a) rly-b) ]
"da o,lo,1-ry Oy a,(/-r?)
e)OL s[ -6  BE-b_ _rz-a ]
% oy lorrd oy  Gulrr®
moy O sf ! & ;3 ) «@]
D6 el g E

oL s 1 5 r§y\ 87
€= ~—|-itB) *r—=5 (575 * 57
AGUy dy_ 1‘/‘2 Jz axdy/ Jy J
% oL s f r 2 '7 2/‘3 ']
es) — 2 = —_— e [ & L
7 or I-rz[r*axay 1-r#lof *a; dzdy 1.

where &= £4(Z-a)?, F5=n+(y-b)*, a@-u+(%-a)?

n

Vevdy-b)*, $=3+(i-aly-b), w=3 6 B8=%

In order to consider the limiting form of the sampling vari-
ances and covariances of the maximum likelihood c¢stimates, we
shall need the matrix of mathematical expectations of the second
derivatives of L with respect to the five population parameters.
This matrix of expected valucs turns out to be,

*R. A. Fisher, The Mathematical foundations of theoretical statistics,

Philosophical Transactions of the Royal Society of London, Vol. 222 (1922),
pp. 309-368.
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(3)
oL oL oL oL o
oz, o2, oz, 02, 0=y
oL 5 1 __sr
|| © o o
| »
oL sr s /1
NI MR A— Y]
Oz, o,0, (/-r?) oy (1_,.1 ” © o o
oL o o s2al-r)e(2-rY))  _ sr? ___sr
Tz, o2 (1-r?) 5,0, (I-7%) | g, (I-7T%)
oL 0 0 . __sr? s2B(1-r9eil-rN| _ _sr
¥z, 9,0,(1-r?) ot (1-r*) | gy (1-r?)
oL ) 0 sr__, | ___sr s(1+r?)
Oz G (+-r?) o, (1-r3) (1-r2)2

where the entry in the «/ row and ,*/ column is —E( 0% )
0z; 9z;

where 2, is identical with @ , 6, 9,, g, and 1 as ¢ takes the
values 1, 2, .. 5 respectively. Again, « and S denote the
ratios am and —- which we shall consider constant as s+ o .

The maximum likelihood estimates of any number of the five
population parameters for given values of the remaining paramet-
ers are to be found by setting the corresponding first derivatives
in (2) equal to zero and solving the resulting equations simultarre-
ously. In most of the cases of practical interest, the solutions must
be reached hy approximation. In this paper we shall consider the
following cases :-

1. Estimation of ¢ and 4 for given estimates of o, g,
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and r.

2. Estimation of g, and o, for given estimates of @ , 6
and .

3. Estimation of o, g, and ~ for given values of @ and
b,

Before proceeding with the maximum likelihood estimates of
these parameters we shall consider .the notion of the efficiency of
a set of statistics designed to estimate a set of population para-
meters.

1. Joint efficiency of a set of estimates.

In order to attach an economic value to a sample and its in-
dividuals, Fisher® has defined the reciprocal of the variance of a
maximum likelihood statistic w of a sample from a univariate
population as the amount of information contained in the sample
relative to the population value of w. For large samples, in which
the distribution of w tends to normality, this quantity is a cons
stant multiple of the number of items in the sample. The amount
of information contributed by each member of the sample can be
found by dividing by the nuniber in the sample.

We can extend the idea of amount of information relative to
a system of population parameters contained in a sample by con-
sidering the reciprocal of the determinant of the limiting values, in
large samples, of the variances and covariances of the maximum
likelihood estimates of this system of parameters. This extended
definition also holds for systems of parameters estimated from
multivariate populations.

The reason for adopting this determinant as the extension of
the idea of the amount of information relative to the set of para-
meters under consideration, is apparent when we note that the
square root of its reciprocal enters as a multiplier in the asymptotic
normal distribution of the maximum likelihood estimates of the
parameters in the same way that the square root of the reciprocal

. ®R. A. Fisher, Statistical methods for research workers, third edition,
Oliver and Boyd (1930) pp. 266-270.
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of the sampling variance of the maximum likelihood estimate of
a single parameter enters as a multiplier in its asymptotic normal
distribution.

Fisher* has shown that for large samples, the maximum like-
lihood estimate of a population parameter is distributed with small-
er variance than any other statistic designed to estimate the same
parameter. In the case of a set of parameters, the determinant of
the matrix of limiting values, in large samples, of the variances
and covariances of the maximum likelihood estimates of the para-
meters is smaller than that for any other estimates of the same set
of parameters.

To prove this, let us consider a set {-,0[} , ((=1,2,-- n)
of population parameters, and let the set { l‘i} be their maximum
likelihood estimates, whose sampling distribution for large samples
is i '

VH "tk hy (iR p)
(zm)#

where /7 = ,hijl » where /; = —E/dz_lzl" and L is the
fogarithm of the likelihood of the sample. “H is the reciprocal of
the matrix of variances and covariances and covariances of the?'s.
Let the set { u il be any set of estimates of { p,-l in which at least
one u is not a maximum likelihood estimate, and let the asymp-
totic normal distribution of the «’s be.

1 I
vE__ 2E, Kejlu;-plw;-p;)
(2r)% :

where A= [k; j‘ » which is the reciprocal of the determinant of
the matrix of variances and covariances of { “’-i] . Now, ow
problem is equivalent to that of showing that /7 >X". Suppose
there is at least one set of estimates of { Pi } containing at least

‘R. A. Fisher, The theory of statistical estimation, Proceedings of the
Cambridge Philosophical Society, Vol. 22 (1925) pp. 700-725.
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one estimate which is not a maximum likelihood value, such that
the reciprocal of the determinant of its variances and covariances
is gréater than or equal to /7. Let this set be { u, } . Then, by
hypothesis, A" 2 H.

Let T be any linear transformation e -p, = 2:‘ a; x, of pure
rotation of the axes representing «;-o; (¢ -1 2--n ) about the point
PPy, - P, as ongm, which wxll reduce f (a p/ Xuj-p;)
to a sum of squares, Z k,xf Here welhave E’ﬁ Kijaq,

oJet Y
e, and x, ﬁ b, /u, -2 where is the cofactor of <,
in |a,;| . Then k is the rec1procal of the variance of the
varlable a, i by, about its mean value 5 = » Z.? 4,4, and

</
‘77, /( K, since the determmant ,a j’ of T is umty But &

is not the maximum likelihood estimate of 5, , since at least one
of the «/’s is not a maximum likelihood value. As a matter of fact

42’5'/ b, z; 3 F 153Y, is the maximum likelihood value of 5 . » for
OL. =n oL Op, n oL

o058, & op;, o0p, ey, “"dp

vanishes only for p =7, that is, for 5 = Z z‘t ; (provided
we assume that 35 = O(/ =1 2 ---n)has the umque solutlon o=t )
It follows from Fisher’s® proof for the case of one vanable.

that the recnprocal 7y of the variance of 7. ', is greater than k-o°
Hence, 7., >.‘77; k.. We note however, that the maximum like-
lihood estimates { t-o] are not independent, for their distribu-
tion is

la, |vE 32 Ayt B)Es=is)

¢ e ‘4B Wpl W 6 =]

(zm) ¥
where h L' i85 » which is not necessarily zero for « ¢ 8.
The eﬁ‘ect of tl’;ns non-independence is to introduce a term T asa
multiplier of 77, 7. » Where R is the determinant of correlatxons

among the. t s, and is less than unity. Hence, *7:// -%« > 77 9. >

R, A. Fisher, loc. cit.
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JZ@:K It is well known from the theory of quadratic forms that
the matrix || A, | is found as the product | 3, |- | il |, J I
where || a /./“ is “a " | with its rows and columns interchanged.
Since the determinant 'la /| is unity, it is clear that | /;_‘ 8 I .
which is equal to .é"/ %‘ , has the value '.hi /'| which is /A by
definition. Therefore we have A > K, which contradicts the hypo-
thesis that A"2 A, Hence, we must have /< /.

Thus, the proposition is proved that the reciprocal of the de-
terminant of variances and covariances of the maximum likelihood
estimates { t"} is smaller than that of any other set of estimates,
all of which are not likelihood values.

We are now provided with a means of measuring the joint
efficiency of a set of estimates in utilizing information in the sample
relevant to the population parameters estimated by the set. We
shall take as a measure of this efficiency the ratio of the reciprocal
of the determinant of its variances and covariances to that of the
set of maximum likelihood estimates of the same parameters.
This quantity is less than unity, as we have just proved. The ef-
ficiency of {u ;} is therefore
4)

err-£

2. Simultaneous estimation of @ and &4 .
We shall suppose that satisfactory estimates have been ob-

tained for a,, dy and . If they are to be taken from the

sample w , we can take o,° as the variance of the %’s in Wy and

< >’ 1
w, 0, as that of the y’s in Yy and W, and r from Dyy -

In any case our problem is to find the optimum values of o and
b for given values of g, o 'y and . These values of o
and 4 are found as the solution-of the equations obtained by set-

ting (e,) and (e,) in (2) equal to zero. Accordingly, we find,
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1 [a+B)2 % ,1 Br o
(3) | Ty t-7%) s (1"’2 " *%/Ifz) (y/-)/)]

h-L -(“*)y 37 z AL = =
b- Jx‘-dy//'f'Z) +(7y j_/,z *4)*6;7[?)/1/—‘&)

1 + + -
where A W[! < ,5“"5(1 /"2)]-

The matrix of the variances and covariances of & and 5
in samples is obtained by taking the reciprocal form of the two
way principal minor in the upper left corner of the matrix (2)°.
Thus we find,

o2[1+8(1-r2)) ro,o
* sD ﬁ"'x
(6)
ra,o, af [1+4(1-r?)]
sD sD

where D= fea+Braf(1-r3

We note from (6) that the variance of & is

2. _oflB-rA]
a 5[]+«,¢/5+-¢,5/1-f’)j
and a similar expression holds for &% .

a b
cientof & and b is

The correlation coethi-

pop = r
26 T 1eB(1-r N 1valt-r)]}E

6Sec Karl Pearson, On the influence of natural selection on the vari-
ability and correlation of organs, Philesophical Transactions of the Royal
Society of London, series A, vol. 200 (1900), pp. 3-10. Here Pcarson gives
a method of obtaining the variances and co-variances of the variates in a
normal multivariate probability function,
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From the definitions in section 1, we find that the amount of
information in w relative to @ and & is the reciprocal of the
determinant of (5). That is,

, ar ) s2esimen)s mn(l-r?)
(7) m,n,s/= Dfdyz(l-/"‘) )

From (7) we can find the relative amounts of information
contributed by 1.11embers of Wyy s Wy and Wy by means of dif-
ferences. For given values of » and s, we have as the informa-
tion contributed to w by an 7m+/st individual of w,,

s+n(l-r?
(7a) wa/m*/}=/4/m*/:72 5)-Alrm, ns)= W ’

which is independent of 777. A similar expression holds for the
n+/st member of w,.
For the s+/s/ member of «,, , for given values of m7 and

n, we get

mer+2s+/

(7b) 4q)xy(5*1)= W ‘

It is clear that an additional member to «,, is more infor-
(menel) r2

mative than one to each of «, and w) by an amount 2 32 (1-r
or, considering the ratio rather than the difference, we have

Alrr+d, nel, 8)-Al(m n,s) r 2 renel)
(7¢) way (s+1) =47 2s+mensl)

We find that the amount of information introduced b); w, and
Wy is A(m ns)-A0Q0s), which is "%’Z}f’(";f{;}) and its
x "y

ratio to the total information (7) is

s?
s2+5(m+n)+ mﬂ/]-r’z)
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3. Simultaneous estimation of o, and .

If we suppose that .~ is given as well as ¢ and &, we can
find the optimum value of g, and dyz by solving the equations
obtained by setting (e4) and (e ) in (2) equal to zero. Ac-
cordingly, we get,

®) & CE(EF-G?)
U REF(1+%)-G3(<-B)+ VEERG (145 N1+8)+G (< -B)*
3, -
Y  REF(/+8)-G*(8-x)+ VAEFGC 2 (1+=< ) 1+8)+G* (= -5)?
where E=°°&+1—~i—2 F',5w1 ,-z and 6-1-75;— .

The variances and covariances of 3, and ay are given by

the reciprocal form of the matrix obtained by striking out the last
row and column from the third order principal minor in the lower

right corner of (3). For the variance of &, , we find,
s gil21+8)-r?(28+1)]

a&x T 2s [201+ X1+ 8)-r2 (=< +.54-05)J

A similar expression exists for Ua,- . The amount of information

yielded by w relative to o, and g ', under these conditions is

4(m+5Nnss)-2r2lsmesn+2mn]
ofol (1-r2)

9) A'lmns)=

From (9), we find the differences corresponding to (7,a,b,c) to be

/ 4(5+n)-2r2(s+2n)
(%2) wa(m”)' afol(1-r?)

65—}4(777#)7*])-2/'2/177/-77}'
‘712 d;, (1-r?)

(9b) A ;,zy (5¢1)=

A'Cmsl pil,5)-Alm,ns) | f2(mintZs5+2) .
AL, (s+1) 4542(m #rtl)-r3(m+r1)
zy

(%)
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4. Simultaneous estimation of o, . o, and .

Let us suppose @ and b to be satisfactorily estimated. For
large samples, @ and 5 can be estimated from the sets of x's
and y's obtained by pooling Wyyr Wy and w_. Whatever esti-
mates we may choose for @ and b , our problem is to solve the
equations obtained by setting (e,) , (e,) and (ej) in (2)
equal to zero, for o, o, and .

If we denote the quantities in the brackets of (e,) , (e, )
and /e 5 ) by £, g and A respectively, then we are to solve
the equations F-g=-/-0 for g, . 9, and » . The method of
elimination seems to be of little value in solving these equations.
Then we shall use the extended form of Newton’s approximation
method and find an approximate solution. Considering nothing
higher than the first order terms of Taylor’s expansion of £, g
and /# we have (letting 0, =%, o'yzy, r==),

f+(z~z)f +ly-y, B, + (2-2,)f, =0
(10) { g +(»- x,)g, «(y- y)9y+(z = )9‘E =0
hy+(x- x)/7/+(y—y,)/7 +(z- -z,) Ay =0

where £=1(x,y, 2) 1, x c-)i(—z"—yLE‘-) and so on.

We shall take for the mltlal point, x, -n/f v Y= \/—_ and
z,= —#= , which are, for 777-7-0 and a=x, 6-y , the maxi-
mum likelihood estimates of o, O, and »~ fromw .

Solving equations (10) for x, y and = by Cramer’s rule we
find for the first approximation beyond the initial values,

oot [ 2 )00 57)
g,-1§ I+ 7
(11) & -f5|1+ "(Za“)(h——mp‘))*"”( )]

' (L %pz +22) oY)

=
2D

F=p | 1+(1-p?)*
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where D=1+ %V-r%‘ * ié'g—;'yﬁWand o= % . By using the
point whose coordinates are given by (11) in place of the initial
point in (10),we find a second approximation point, and continu-
ing the process we get a sequence of points. Such a sequence
would raise questions of convergence which will not be considered
in this paper. However, it can be shown without much difficulty
that the likelihood of the point whose coordinates are given by
(11) is greater than that of the initial point for variations of &

and v about f and 7 respectively, and for Z <€ and v=5
the likelihoods are equal. - Indeed the problem is equivalent to
showing that the ratio of the likelihood (1) with the values \/f ,
ﬁ and f—:F—ﬁ for Je » O, and r to the likelihood with
the values given by (11) for ¢ , o, and r has a maximum of
unity for variations of @ and ¥ about & and 5. This can
be readily done by examining, in the ordinary manner for maxima
and minima, the first and second derivatives with respect to &
and v of the ratio of these likelihoods.

The matrix of limiting values of the sampling variances and
covariances of the maximum likelihood estimates of o, , g, and
r can be obtained by taking the reciprocal form of the third order
principal minor in the lower right hand corner of (3). This reci-
procal matrix is,

(12)
a2 (1+8(1-r%) rio,8,0-r?)  ra,(t-r)(1+8(1-r*))
2s 2sE 2sE .
r2o,0,(1-r?)  o}(leall-r*) ra, (1-ri)1+4(1-r?)
RS E XSE ASE
rot-r)(teB0-r%) ro,(l-rKtraid-rd) friftsab- 5 JratltrY)
28E RsE 2sE

where £-f+wsBiaB(1-r*) .
The amount of information in w relative to O s Oy and
ris the reciprocal of the determinant of (12). Denoting this

quantity by B (m,ns), we have,
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(13) Blm,n,s)= ’+Sz(mm)+m/75(l—/"4)],

rareryETE )
aja; (1-r2)? I-

Proceeding as we did with (7a), (7b) and (7c), we find the
following incremental contributions :

4
(l3a).wa(MfI}=W [s 2, 577(1-/“‘/]

4
( l3l)).wa (5+1) = W 3 [Js‘f 3541+ (2s+iNms 70)*17777/./—/‘4)],
_y x

4
(13¢) B(m+Ln+ls)-Brmns)= W l:zsﬁs{ﬂ»mlfl-/‘)] _

(13)B(m, 7,3)- B0O s) = ;Fjg;;_—;z}—, [s%mem)s mnsa-r)

We note that the s+Ist member of c,,, is much more im-
portant than an additional item to each of Wy and wy, when ¢,
oy and ,~ are considered, than when a and b-are considered. The
amount of information contributed relative to r by w, and wy
can be found by differencing the reciprocal of the element in the
lower right corner of (12), with respect to # and n. If we call
this reciprocal [g é(:m,r;s’), we have as the ratio of the contribution
of information by w » and © )y to the total information in o re-

garding r, .
Kre/”z ns)—.’(,_e/QO,S) { s//7+ﬁ}+rmn/1-r2)
Ko (73,778) - s2+s(rmen)emn(l-r#)

In a similar manner, we can find the contributions of the various
parts wxy ) Wy and uJy to the information relative to any one
of the parameters o , oy<and rand we can find their effects
upon the covariances of the maximum likelihood estimates by con-
sidering the non-diagonal elements of (12). We find that the in-
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formation afforded by w,, relative to o, expressed in terms of
the total amount of information in Wyyr Wy and w,, regarding

O 18 r*sn .
S2+s(m+n)imn(l-r*)

We remark without going further, that, by considering the
five equations obhtained by equating each of the expressions in
(2) to zero, we can find approximations for the maximum like-
lihood estimates of a, b, oy, o,, and rby the foregoing method.
Since the process is straightforward, though somewhat cumber-
some in that it involves fifth order determinants, we shall nct
consider it here,

ITI. Systems of independent estimates.

We have seen that the problem of finding the maximum like-
lihood estimates of a, 4 o, o, and r from the sample leads
to expressions which are not very simple, especially from the point
of view of practical application. However, the variances and co-
variances of these estimates were found to be relatively simple.
In view of the difficulties connected with the foregoing maximum
likelihood estimates, we shall devote the remainder of “this paper
to a consideration of the moments, distributions and efficiencies of
simpler systems of estimates.

If we are interested in the means of the x's in «ww apart from
any contribution of the y’s, the optimum value of a is i‘,:x%—’ )
Similarly, for the means of the y's, we have Z:%’.‘%y_/ . 'The
best estimates of the variances (sz, and dyz under these con-

ditions are,

fo= 7\/7, [SE+777L£+ s(z'io )2+ m[j?‘-zc)z]

7, =A~/{—z [517+ r71/+5(?'?¢,)2*L ”{7:‘370)2] ’

where /V, =s+m, and N, =s+n.
For the covariance we shall take the product moment of the

deviations of the x’s and y’s in W, from Xk and y  respective-

y
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ly. That is,

LZSI(X Ny -Y,) = S+(Z-ZNT-Y, ).

MIN

From these values, we can take as the estimate of the correlation
coefficient,

SO
V46 o

1. Distribution of %2

o

=

and y
The variances and correlation of 2, and §, ean be found

from o (% -a)+ (y- b)* _ 2/‘&’4)(7'
Ymns e ,z‘("z_‘z)r oy Oy
(2m)% o Vi-r
262 (X d) 0'2 (y b)
I — ]
by making the substitution Z,= -—:':—-’ , Z=-§%.and using

determinant analysis” on the symmetric matrix of the resulting
quadratic exponential. 2 2
The variances of %, and ¥, are found to be OW"/ and N}
respectively, and the correlation between %, and ¥ is #A‘/f-/v;
The exact distribution of %, and ¥, is normal
The amount of information relative to @ and 4 furnished

by %, and y is, according to our definition,

(14) (s+m)(s+n)
/—‘252
% dy [1 (7ﬂ+$)(77-/-3)

The efficiency of x, and y, is, therefore, the ratio of (14)
to (7), which is

(r7+8)%(rs8)%(2-r?)
[(rr7#5X rres)- mer 2] [(mss ) rts)-s2r? )

7Karl Pearson, loc. cit.
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2. Characteristic function of Eo , m,and 5.

The characteristic function or generating function of the
moments of £, , 1, and 3, , which we shall denote by ¢(¥/s £),
is defined as the mathematical expectation of ¢ 7" IALLALE] . Since
g, . n,and 3, are expressible in terms of £ , ¥, %,, ¥, ,u,
v, £, nand 3, whose distribution is given by (1), then clearly,

we can write,

(15)  @(756)= Je 7% pay,

Where £”is given by (1) and &V'is the product of the differentials
of the variables in £, and the integration in taken over all possible
values of the variables.

The integral (15) can be broken into the product of a con-
stant by a quadruple integral, a triple integral and two single in-
tegrals. The quadruple integral is of the form

4
0,00 r00 ,00 _ (s - Nti-c;
Z///e By Pyt

which has the value® 75~ , where 4 is the determinant Ib‘;/- |
(4,/=4234 ) and b, =b,,. The triple integral is of the form

Y TG
0 [ oo 1&7 -C,,t#-szyl—ClzZ) éif
// / e (Xy-22) dzdxdy
o Yo -V;Ty
which has the value®
A%
C// C/z §i"‘!
c/z czz

8Karl Pearson, loc. cit. ’

7See V. Romanovsky, On the moments of the standard deviations and of
the correlation coefficient in samples from a normal population, Metron, vol.
5, no. 4 (1925) pp. 3-46.
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Fach of the single integrals is of the well known form

p2 -
/ kl c? d n
which has the value -—2(:—(‘2
Using the above results for the inteerals into which (13)
resolves itsclf, we get,
- -/
(16) PR
o) %005 97 (4 w) 2B )

[(——)(3-—)<C4 )2] [A- 1/5")

2 .
EX L r2mint omn \ Ermn Jomnr?

+ - EAPVE N 2 A2
4520 NS TN 250 o NN, NN |

g
¥4
»

z s 1 = /
there A = B A B ——E
where 20; Za)f 20;//*/“7 ’ 20),2(1—/‘2)

P AR
2 pn?)
..axoy(lf')

h A 4
It we write M (#,Ad) ='§7‘3}7—:?; @rd, £)|/=5.—£=0

we find the following expressions for the first few moments of
£, .p and 3,

M1,00): Yt a2, mioL0)s Dact o2
7 %y

7

M©001)+ re, o, (% + . )

-/-51)-‘

M(110)= [{N DNe-1)+2r% ([

3
It /
(17) M(1,01)- ——JN"_‘: (N2 X777 #571)
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Mo 11)- %9 )’(,\/+/)N A’S'l,)

« NZ 4//\/ 1)
M(2.00)= “(W?‘-) MI020)s —X—fr—
2

ato mn*
M(00z2) = 208 | (1er¥s-1)s r?
1002) = % [(m Hot)ore e + 700 ]
M(]11)=rq‘jdys [4/5—1)/1*/“9  Amn . T ”)
Seavv e N, N, N, N,

+§-S’— +5-17 /S’”” S‘I)/NN NN, 5}]

If the sample w is tanly large, we can neglect the contri-
butions of the means X , ¥ , %,, and Y, to fo , 1, 3, and con-
sider as satisfactory estimates of the variances and covariance,

= _ 54-09(—1 U*ﬂV -
go- 1‘/‘0‘ ’ ’70 4-,5 5’ 3 )
3. Characteristic function and sampling distribution of E,,
n, and 3.
It is clear that £, 7, and - ¥, are obtained from §,, 7 and
3, by dropping the terms involving the means Z, y, %, and

Y, . The characteristic function (7 & &) of these statnstlcs can
be obtained from (15) by replacing £,, n, and S, by £,, 3, and
30 and integrating. The integral in this case will not involve the

quadruple integral, but only the triple integral and the two single
integrals, Accordingly, we find

Plr8€)=4 4% 5% 15-c*) % a- N) il
x(B-%, )"’i‘[(z- BB ) (ST

which is somewhat simpler than (16).
The first few moments of Zo, 7, and 3, evaluated from
P(r s €) are (using the notation of (17),

¥
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2(N,-2) 26 -
M1,00)- _0%_ M(0,1,0)- fx_f/_C’f_i)
’ 2

s-1
M(QQ1) —5~ rg.9,

o) %% 2r'2/s—1)+(/\/-2)(/\/ 2)]
N,

Ne

M(110)=

-2
M(1,01)= f_?_fg_(_‘s_} M0 11)- royo,*(s-1)

2

ofin-2) 0 (Nz-2)

W rizgo)- 2= mozo) g

2,2, 2
M(002z)- g,%0} (s 15)/1+r 5)'

G-1)roj,

s ) ST o ettout) oim-2 i )]
1 V2

In order to find the exact sampling distribution of fo A
and 3,,, it is more convenient to consider the statistics Ela g—ll E", .
7, ,.2 7, and $,=S. The characteristic fuuctlon of these sta-
tl‘%thS is found from @78 &) by replacing Niy by ¥ ,~Jhy

S, ,and € by £ . Thus, we have

2€ d
(19) @,(7.8.¢,)=A"B 14 B¢ Ha- 1) (5-8) V- i NB-6)-t5 ]
where A,, B,, 4, , B, and C, are the constants 4 B .A B
and C each multiplied by s, and a= —5—1 , b= 2—-— and c= ’-'2'-4

The distribution £ {Z,, 5, 3, )of £,, 5 and 35, is then. the solu-
tion of the intewral equation,

;D, + +
(70// BERANET (e S)dpdnds-4,(1.4.5,).

/
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We note from 110) lh’lt the factor (A f )-a can be
written as 64 J’) ﬂ ) “and likewise with respect to (B- J)"'
For  sufficiently .~,mall values of ¥ and 4, these terms can
he represenmted by series expansions, Tt will he convenient to re-
arrange the product of these two series in a power scries in r2,
Expanding and arranging in this manuer we get

a 0, -C
(21) @17.4.8)= 7_75%4-)(4, L) 1B JJTA LXB-4)-(C+ 2’)’]

o 2
x;_;-C-

E5h rteirtonils) )

Each term of this expansion is of the {orm

(22) @,0.6,6)= 67 4,) “(B-4.) - g)5-5)-(C ¢ )] '

1271 %1

where G, is a constant independent of b: . 5/ and &, .
We are now in position to find £¢ {N n,,9,
terms fk(f ., 3,) whose form is given as the solution of

Yas a series of

v VET, .3
(-3)/// 7497 £, (£.9,3)dEdyd5=4.(7.6,&)
Vi,

The integral cquation (23) can be solved by the methods used by
Romanovsky'’.  Following Romanovsky we find that

-4,§,-B,7,+2C3, ak-r-c-% b+cd 3
S/ ? (7Z=)

“Vm

24 L(4.5.5)6

) '

where W is an even function of =%, say, which satis-

fies the umdm(m

10V, Romanovsky, loc. cit.
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I (g+4) (c+g) r
Magc+g)(5,+c+g) (5t 7

+1
(25)/ t*9w(t)dt-
-1

for g =014 . . . andw (¢) is independent of g .
To solve (25) we observe that the right side can be written
as

" 3 o .
(26) Mg =H//u9"3/(1ca)““*c'2 vee /(/-V)é‘ /a/udv,
. o 0

/
where /= =Ty = o b Trase3) - The g-th moment of #2is now
identical with the g-th moment of the product uv. Since w (t)
is even, we have,

/

@ [tRemat=iry.

[

. 42 2t ,, .
Setting v =%, dv=7df in (26) we find
’ - -3 by~
(28) w(t)-Hf = L A VR
{2
Making the transformation f—:—t“iz =@, we finally obtain,
ap+ bre-4
(1-t%

. (29) wt)- Flar. b, avohs -’,/—t".,
/-(Z,}/—/C')/'/dk*bkfc-f/ [a" ks WGt 5 ]

where the #~ function is the ordinary hypergeometric series. Us-
ing this form with t replaced by ‘/5% in (24), we have fk(f,, /8 3,)
fully determined. o

The complete solution f(¥,, ,, 5, ) of (20) can be found
by summing all of the expressions of the form (24) whose char-
acteristic functions appear in the sum (21). Without much dif-
ficulty we can sum this series by expressing the coefficients as beta
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functions and interchanging the order of summation and inte-
gration. Accordingly, we can express f(& , 7, § ) in closed
form as

A £ B77+ZCS’ asc-§ bec-3 zaw*c-g
(30) (£, ,5)-Re e T 1)

X

arc-5 b-1
/ /(1 5 [2-1- 7 )4 Yl
r2(- -‘-— )(7),2.’.5+ {:(//: l),ZA' )cz’xa’y,

where XK= A’aB’bm‘/B-/ -C'z)c
r(£)rla)r(b)ric)ric-4)

The distribution of £, 7, and §, can be found by the
change of variables -5’!' £, 7= -';’3 7, =%, . Itis clear
that our estimate #,= ‘of the correlation coefficient can

7,
range in value from ng_; to /F_’Z’_N; .

4. Moments of E 7, and 5, when r=0.

The general product moment A7 (4 1) 4EE "5 75Xz }ob-
tained from (30) for r#0 is extremely unmanageable and im-
practical, since it is a generalized hypergeometric series expressed
by a quadruple summation. However, for r=0,/M(h,k?) is quite
simple. Indeed, for this case, we have,

K a){e-1)s ¥ / / ;"7, L AL B
rta+rc-4) N7 NE

Cil TR

(31) M(h,k )=

+h-3 brc+k-% 7 2 ya+bre-3
xg2rhd, 57(1-}";)

arc-3 b4 e
x(2-6)" e [1-(1- ﬁ)eI dodsdEdy, .

M(h, k, T) exists for all positive values of & and & and for all
positive integral values of 7, Since the integrand is an even
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function of ¥, it follows that M(A, & Z)<Ofor Z an odd integer.
If we let 7=2v, set’ §,=tvVE pin (31) and make use of (25), we

find, y
stk A;h-\ﬁ*k—
Mihk 2V) NNF

F/M«fk#ﬂ)/—/af't'*/ﬂ-1/)/—/\/*2/)/—/6"/1/) .
I (brc+V)(arc+V)ric) (£)

The 2v/ -th moment of the correlation coefficient can be found
from (32) by letting h=k=~1/. Thus,

M () //WV, 1/r/V*Z/')f/C*V)/-/d*C)/_/be)_
2vo’=( "5z /'/a*c¢1/)/'/b+C*V)/'/C)/‘(f)

(32)

The variance of ;, is o;,js% ) » which does not dif-
fer appreciably from 37/7 , which is the sampling variance of »~
when it is computed from o), ,, . The distribution of r, is found
by setting 7= M, o in (29) and multiplying by /7a+c)
I(bec).

The 2V -th moments of the regression coefficient of y on

x, p-%say, is

N0y Y arc-V)rVed) FctV)
MyylP)= M(-2v,0 2v)= ?7 675) Ttarcs VI (z)

and the variance is
2 NAs-2) , o
aﬁ‘(/V,"ZXN,‘Ad?S‘“ of )
2
This differs very little from the variance 5'.1'3 '7635 of the re-
. x
gression coefficient using only the data from «),,, .
Slightly more accurate estimates can be obtained for o *,
2 and ra,a, by multiplying £,, 7, and 3, by mly o
gy an % %y Ly multiplying 6,, 7, and 3, by x=3 -77‘.2
and 3{7’ respectively. ‘These corrected estimates will have their
mathematical expectations identical with aj , c; and rog, oy,
as will be seen from M(1,90), M(0,2,Qand 1"(QQL) in (18).
In this case, the general moment M('#,k,27/)will be identical with
(32) multiplied by

(o) e ) )™
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The variance for ,, in this case is ;ﬂr , and that for the re-
gression coefficient is

(N,-2)of

(G-1)(N,-4 )of ’

5. Variances and covariances of \/?; , \/)i and 7, in
large samples.

As we have seen in the last section, the product moments of
Eo , 1, and S, evaluated from (30) are too complicated to be of
much practical value, and there is not much hope from this source
of finding the sampling variance of the estimate /; of the correla-
tion coefficient. The moments and variances of /£, and 7,
taken separately are well known results. In fact, for large sam~
ples, the variances are -ﬁand 2-7{,- respectively. The variance
of ;. 1is not so immediately obtained. We shall find its limiting
fcrm tor large samples from the normal form approached by
the distribution of \/?o , ¥, and £, as mn and s approach co
in constant ratios ;—’Z—’==o ,;’-Z=,8 .

For convenience let J?o =@ ,Vj,=¢ and r,=¢ . Then
we have

Etau 2 ntBYV .5 .
Gy otz gn 20Y v

If we integrate (1) with respect toZ,y, %, and y and
perform the following transformations on the remaining part of
the distribution,

E=0%1sa)-au dE=20(1+4)d O
n= P(1+8)-BV dn=2¢(1+8)d ¢
S=1t6¢ as=e¢di,

we can write it in the form,
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(33) Fluve Qt)[f/u, ved )] ’,

77

where s imezs
F(U,b’éi(ﬂ,l‘ﬁ46'(1+-v)(17+5)(1-r2)za:*'”o;/sme ZegLes

s B ey (frm o aukirBy v)-170°07]

and
_s-4

1 2 -] _s-m+2_ -s- o
c 531"7 2’77%1%5 ‘7y 3n+z(1_p~) Zz

2 menpZssd 1) () r(SE) r( ) r( 5

and 8
-4 -1,5 :v_g_tﬁ % Z

Hu v & ¢ t)=(1-r?) *g '[”y

x [(FRe*au)izBe%5v)-t%6 "7 ¢

i T 8% riu 1+;5¢2/"5V 2rtdy
x e U-rE) oz GF 9 g, .

If (34) were integrated with respect to « and v, we would
.act the distribution of &= 1/;,,-!, , P= 1&‘/7, and Z‘-

where the distribution of £ , 5 and 5, is given by (30). Thc
problem of finding the asymptotic norm'xl form of the distribution
of &, @ and ¢ from (30) seems extremely complicated. How-
ever, we can find this asymptotic form by first finding the limiting
normal form of the distribution of w, v, & , @ , and ¢ from (34)
and then integrating with respect to « andv.

The limiting normal form of (34) ‘can he found by methods
developed by von Mises' in a paper which appeared in 1919. In
fact, f{t wy §P¢ ) satisfies all of the conditions of the generaliza-
tion of his first thcorem to functions of more than one variable.
In particular, the first order partial derivatives vanish and the

IR, von Mises, Fundamentalsitze der Wahrscheinlichkeitsrechnung,
Mathematische Zeitschrift, Bd. 4 (1919) S. 14-18.
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determinant and all of its principal minors of the negative of the
Hessian are positive at the point P whose coordinates are u =0:.
v= az &g, P-o,and t-r. Furthermore, £ is identically zero
uutsndc the regmn ()f possible values of ., v, &, ¢ , and ¢.

"I'he matrix of the negative of the second derivatives at P is

14 of of of . ra
ou v 28 7 of
of 1« r’g < « «Br “r
—_ = 1 A 7N .. A7 _
0u |Zgf (gﬁ ) 2ofog p* o@’P* ( o ) ngdyp4 g p*
of | _riB | B 8, |- 2825 B (8 r
v | 2g70% 0% |20 (52+) 0,0} 0* ay’ﬂ*{ 5 of P *
of o )| - 2822 2 ripher) 2rt ( 2r /1 .4)
20 d-’pl( Qdy‘p‘ o7 2 o2 ddp‘ 70t apz 2%t
of Br* z2r? /48] 2 24,
20 -ajayp4 cr-’,ozﬂ p‘) ,0,0% /sz aFo* z V] apz(z*p)
of Ar Br 2r s % 2r /1.8 4%
= = AN TE R TAN Lo
¢ 0,2,0' a;’p“ o;p’(z ,0") Jypz (z 7’) P

Now it follows at once from von Mises’ theorem that

. s '-Z’ /7/ x, x/
36) 1y y @Rl 80| ~Flaia}a g, rde “TH

where x,:u-a)f: X,= v-cryz, X,=6-0,, x,=P-0, and . <#-r
and A, '/ is the element in the { -th row and / -th column of the

trix ‘ . N ’
matrix (35) ow sEVaB (L+aN1+8)

r)=
F’(O‘ dy,d Uy, ) (277)E C"tdy(.t ,.2)2
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s )3
which is equal to ( 2‘77) 2v} , where b is the determinant Ih[/’l .
The variables in which we are primarily interested are 6 ,
¢ and t. The matrix of variances and covariances of @ , ¢
and ¢ is formed by taking the third order matrix in the lower
right corner of the reciprocal form of “ nyp II . This matrix
turns out to be

(37)

e & t
ol _& r?o,a, ro,(1+8-r?)
2s(1+4) Rs(l+x)(1+8) 2s(1+2)1+8)
0 rég,o, o,? roy(1+«4-r*)
25(1+4)(1+8) zs(!+8) 2s(/+x)(1+8)
t|ra,(+8-r*) 1y 1+ ~r2) (1+41048)-rY :‘fé“ “B4Z)1 1%
25(1+a)(1+8] |25 ([+a)(1+5) S 1+ ) 1+5)

The determinant of (37) is

0 ’o. 2[(1-/"2) S (s BNL-r ‘)+-6/3(1+/"2)]
38) =X - .
( 45301+ )% (1+8)*

The variance of r, is given by the element in the lower right
corner of (37). It can be readily shown that this variance is
Z-p2)R . R

greater than %—J , the variance of the estimate of the correla-
tion coefficient from Dyy only—a rather surprising result.

The efficiency of @, ¢ and t taken jointly is the ratio of
the reciprocal of the determinant of (37) to B(m,n,s) in (13).
That is,

(1-r%)°(1+a)*(1+6)*
(244 12+6)-4Br2)[(1-72)% ¢ (w180 r)saptor )

(39) EFFBPL)=

which is less than unity except for the cases =0 and 4=8-2.
6. Efficiency of the system €, ¢ and .
If we use ﬁ: r, , say, which is the maximum likeli-
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hood estimate of r from Wy, instead of #, in section 5, and use
the foregoing analysis of von Mises, we find the following matrix
of variances and covariances for the asymptotic normal distribu-

tion of 8, @ and ry :

(40)
1% @ ry
o ol réo, o roy (1-r%)
2s(1+«) 25(1+4)(1+8) 25(2+4)
P rég, o, gf roy(l-r?
2s(1+4 N 1+6) cR2s(1+8) zs5(1+6)
r ra,(1-r%) ray (1-r*) (1-r2)*
/ Zs(Z+x) 25 (/+3) S

The determinant of this matrix is

ofof (1-r33[(1e4)1+8)- 2/:2/&*/5’»«2)]‘
45%(1+x)?(1+8)*

(41)

whose reciprocal provides us with the amount of information re-

lative to o, o, and r yiclded by the estimates €, @ and r, .

The efficiency of this system of estimates is given by the ratio of

the reciprocal of (41) to (13). that is,

‘ (1-r2)L+a)2(1+8)*

O, r)= = '

erf@ 4 (10Xt 8)-rou @[ (1 e X108)- 5 (4467 = )]

By comparing the systems ©,¢ , r, and Q.9 , r;, we actu-

ally find the latter to he more efficient, since

U-r?dedtsB)- G (ni802))

((2-r2)tetwsBlt-r?)sap(t+r2))

’

which is the ratio of the reciprocal of (38) to thatof (41). The
equality holds ony when r=0or «:6-0.
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The distribution #(z,w #) of _?fz , D,=wand 7;=7 can be
readily found from the distribution of & , », §, « and v, which
is included in (1), by making the following sets of transforma-
tions in succession,

(@) ¥-2vgp ds=fn
- iz i dE=liddz
(b) - —
n=[+82-Bv ay=1+Caw
w= “2a/1.6) du--LEzde
(c)
V= ifw/!-¢) dy-= - %pu/dﬁ

The result can be expressed in closed form as the definite
integral

Stm-4 S+77-%
F4

-4
42) Flzw t)-t(r-1?) T2 " F

.3 -3 -3 ”ﬁg
; ///;_99 Firo) p) %71-417 dédy.

Where N2 N2 -Ny+Z ¥

NtNeg-4 N-2 2
. 4 TN TN, T, a " w-ry "
A rCF)A (T r(F) r (5
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ML (Mlruele , MU PV 2ot AR »]
I arro | oz o7 G,

When <0, (42) breaks into the product of three well
known functions, two of which represent the distributions of the
variances in samples having s+777-Z and s#7-Z degrees of free-
dom, and the third which is the distribution of the correlation co-
efficient in samples of s items from a normal population in which
the correlation is zero.

IV. Summary .

Samples are considered from a bivariate normal population
of » and y in which all of the members are not observed with
respect to both x and y ., Such a sample is broken into three parts
“!xy » &, and <y, where a&y is the set of s members observed
with respect to both ¥ andy, «), the set of »7 members observed
with respect to .~ only and wy the remaining items observed with
respect to y only.

Maximum likelihood estimates aré found for the following
sets of conditions:

(a) For given values of o, g, and /", optimum estimates

are found for the means g and b.

(b) For given values ofz, 4 and/», optimum estimates are

found for o and Iy

(c) For given values of @ and 4, approximations are found

for the optimum estimates of o , v, and .,

Other sets of estimates considered are:

(1) Means z and 4 estimated independently from the z’s and

the y’s respectively, of the sample w .
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(2) Maximum likelihood estimates of o, from «j, y and w,
and o, from Wyy and wy, each estimated independent-
ly of the other. The estimate of ~g, a, is taken as the
covariance from wy,,. The characteristic function of
these estimates is found.

(3) Estimates of o, and o taken as the square root of the

Yy
weighted averages of the variances from w yand @y,

and from ), and w,, respectively, with the :stimate of
rtaken as the ratio of the covariance of wy\ to the pro-
duct of these estimates of the standard deviations.

(4) Estimates of o, and g, the same as in (3), with

estimated entirely from /.

The exact forms of the sampling distributions of the systems
in (3) and (4) are found, as well as the asymptotic normal forms
approached by these exact distributions as the size of the sample
w increases, subject to the condition that 37"7 =t and 3?:,6 are
constant. The limiting value of the variance of the estimate of r
in (4) was found to be less than that of »~ in (3).

We have defined the amount of information available in a
sample relative to any set of population parameters as the reci-
procal of the determihant of the matrix of the limiting values, for
large samples, of the variances and covariances of the maximum
likelihood estimates of these parameters. It is shown that this
determinant is smaller than that obtained from the asymptotic
normal form approached by any other set of estimates of the
same set of parameters. The amount of information relative to
the parameters utilized by any other set of estimates is the reci-
procal of the determinant of the matrix of the limiting values of
the variances and covariances of this set of estimates. The meas-
ure of the efficiency of any set of estimates is taken as the ratio
of the amount of information yielded by this set to the amount
yielded by the maximum likelihood estimates. The efficiency thus
defined was found for each of the sets of estimates (1), (3) and
(4). It was found that the set (4) is more efficient than set (3).

S f a lbe



