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264 CHARACTERISTIC FUNCTIONS AND DISTRIBUTION
PART 1

The General Theory

I. Introduction:* By the distribution problem of statistics
we mean the problem of determining the distribution law of func-
tions of variables satisfying known distribution laws. Many par-
ticular problems of this nature have been solved by various meth-
ods. In Part 1 of this paper we develop a general solution for
this problem for functions of variables satisfying continuous dis-
tribution laws. The general result is then applied in Part 2 to
derive the distribution laws of several functions whose distribution
laws have been derived by other methods and of some functions
whose distribution laws have not been given or given only for
special cases; in Part 3 we summarize the results. The method of
solution is related to the concept of characteristic function.

The theory of characteristic functions is essentially a devel-
opment of Laplace’s'® “fonction génératrice.” In this paper we
shall adopt the term characteristic function, although the same
concept has been termed generating function'* and reciprocal func-
tion.?* Poisson ?* 2* employed the methods of Laplace to discuss,
in particular, “Sur la Probabilité des Resultats Moyens des Ob-
servations.” Cauchy? was apparently the next to study and apply
this theory; he applied the basic concept of characteristic func-
tion in connection with whit he called “coefficient limitateur ou
ristricteur” to study the problem of a function of errors. In par-
ticular he studied the case of a linear function of the errors.
More recently the same concept has been reintroduced under the
name of characteristic function by Poincaré*” and also by P.
Lévy'™ 1% 1® who employs it to consider the composition of laws
of probability, the notion of the limit of a probability law, the idea
of stable and semi-stable laws, etc.

In a series of papers, C. V. L. Charlier® further applied and

* The reference numbers correspond with the number of the item in
the bibliography.
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developed the theory of characteristic functions (though he em-
ployed the terminology of reciprocal functions) to develop the
Gram-Charlier Type A and Type B series, and to consider the
distribution law of functions of variables satisfying general fre-
quency laws. Under the name of “Erzeugenden Funktion,” T.
Kameda'* studied the properties of functions which are intimately
related to characteristic functions. In particular, he discussed the
development of a function as a series of Hermite Polynomials and
also considered the problem of finding the distribution law of a
function of variables obeying general distribution laws.'®

I1. Characteristic Functions: By the characteristic function

of the distribution law of the variable x is meant the mean* value
Ll x

of € where <=y-;/ . Thus, for a continuous distribution
law, if fox)d > is the probability to within infinitesimals of a
higher order that > - ii-z"—‘ {x, < x+ i_,_—"— and @(#) is the

characteristic function of the d.1..** of x then

(1) ¢(t) = ‘[eétx[(x) dx

where the limits of the integral depend upon the range of applica-
bility of f(x). We may also write gz ) - /eitx][(x) dx if we

agree that f(x)=0 outside the range of applicability. The
characteristic function derives its importance from the fact!® that

%]
—(tx
(2) f(x):zgr—/e gte) dt.
— 00
For the case of several variables, we have that the character-

* Also known as probable or exbected value.
** We shall designate distribution law hereafter by d.l.
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) 21 2 P ”

istic function of the d.l. f (x,
is given by

vx)of x, =z .-.- x

) 9(5,4,1,)- ffe‘t“‘“* e ) do i,

where & is the region of applicability of f(x ). We

'y 2; S

bag 2% 228 it x,,
may also write £ (¢;.¢)) =f’~fc‘ e [ x ) dx e dx,

provided we agree that f (x, x,,---,x,)= 0 outside the
region K . As for the case of a smgle variable we have here too®®

—th- - X,

@) f O, m5%,) > s f f P&, 3t)dt L,

We shall prove that the following extensions are also possible.

Consider the function ¢« (x,, x,,--, %, ) * of the variables
x,, %, ", x, whosedlis f(x,, x,, -,x,) . Then

the characteristic function of the d.l. of w« is given by

it wlx,%;, Xn)
(5) y(t) =f;‘,j'e 'f(x')_xz‘,..)xn) dz’,d%..dxn,

where /7 is the region of applicability of £ (x,,x, -+, x,).
The d.l. of w, Plu), is given by

P “-zt—u
(6) 77(u—)= o ]e Pa)dE, where
P(t) is defined by (5).
If we consider the several functions «, (x;, x,,---, %, ) ;

* The conditions which w(x,, x,;--,x, ) must satisfy will be developed
further in this paper.



SOLOMON KULLBACK 267

Uy (), %y nmmmm e Xp) 5w s W, (x,,x, - »Xn) of the
variables x,, x,, ----,x,, whosedl is f(x,, x,, - - %),
then the characteristic function of the d.l. of w,, - - -,
is given by

it (o, x Y v it g, (Jt,,l‘,---,x,‘)

O §50)- [ e flrimm)dn, dn i,
I

where R is the region of applicability of f (x,, x, -- -,x ). The
dlLof « , w, - ,, is given by
o ® ihu- L u~—itu,
. Lt,)dtdl-dt,

where ¢ (¢, t,, - ¢t,)is defined by (7).

1II. Theorems Regardmgabmgle Function w(x,,x, - A D E
We shall now justify our statements and determine the precise
conditions the function « must obey.

Consider the function « (x,, x,,------- , %) of the variables
X, Xy e ,x, satisfying the continuous d.l. f(x,,x, **-,%)

such that fff(x.,, X, X, ) dx, dx;---dx =/ The

function « may have at most a denumerable infinity of discon-

tinuities. The probability that « (x,, x, - - - ,%,) satisfies the
conditions
9) w, {wu<l u, is given by

(10) fff(xl' ;)-' )dx,'dxz"",dt,,)where A



268 CHARACTERISTIC FUNCTIONS AND DISTRIBUTION

is the region defined by the inequalities ¢, {« < «, . To avoid
the difficulty of integrating over the region 4 we shall avail our-
celves of the discontinuity factor (See Whittaker and Watson*®
§ 9.7).

o w.

2 _it(e-«)
a Fez [ [ e Jodt, where F=/

oo L,
for <uluw,; F-0 for W, 2 w; Fe0 for w 2 w,.
We are now able to say that the required probability is given*

by
(12) _/’;""ff(z” x,, ", xn)-/c- dx dx,--- o(x_n

If weset 2w=w+tu, and « = &, -, | the required
probability may also be written as

o W+

(13) ;;’;f,-?-ff( VX X)) dx, dye-dx - ff ‘t(zig)dt.

_oow:

Integrating with respect to @ , we obtain

~ it (u-w) xt
(14 -—-fff( x5 %,) dx [c L2 g4
S t
We now want to prove that

it -w) q_:f : s ort ‘.t(a-w)

(15) JzaX [e e 2SI T 4t - ’:*4%',3.:0:
R
oo il -

where we write Z = f(;c,, x,,000 xn); daX-= d"nd"m“'di,,

* This method is essentially an application of Cauchy’s “Coefficient
limitateur ou ristricteur.” See C.R. Vol. 37, p. 150 ff, and Whittaker and
Robinson, Calculus of Obs., p. 169.
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and f as the multiple integral over the region X .
We have that

o9

”m,l";f it (u-w) s ot ct(u-w)
J;’zdﬁff_q___zc dat -'-fi‘dz ﬂ_z_.c dt
-2 R ; t
(- =4

Y ™))
f-Ji‘ dx [250+F o dt,
+

(]

(16)

We will now prove that

17 f o /o.; sin % it(u-w) o: sin °-g-'-. it (u-w)
( )' R; Xo-—?—e dt =f'—t—dt' e Zdl
o R

For this, it is sufficient’® to prove the existence of the (72+1)

ot it —w
fold integral* /é Z—T-nf—iel ( )dI At

and the existence of the right-hand member of (17).

Consider** the rectangular region G- in (72+)) fold space
defined by o<t ¢ ; x‘}é)s-: x; , J'='/,2,3)-~-~, .,
where we shall designate the region x}f £x< ";’I; FEYE IR X
by £ . Then, over G the multiple integral of

2 sim & it (u-w)

2
+
exists since the integrand is bounded and has at most a denumer-
able infinity of singularities (those of W (x,, % ..--,x,). Then'

t_l"

. ot ct(u-w) . ot it ~-w)
2 sem "2 2sinzZ w
(18) "éz'—__t .e d,th-/ - dt[g 2d¥X

Now for any positive € there exists a t Yo such that

t + - -

2 - 42 Lt(u w)
(19) ‘f 25 2 4t [z  dX
¢ E

£
€ <2

* For the sake of convenience we shall understand a single integral
sign to represent a multiple integral where necessary.

** The proof here given is modeled after a similar one of E. L. Dodd
(See Annals of Math, 2nd S. Vol. 27, pp. 12-20).



270 CHARACTERISTIC FUNCTIONS AND DISTRIBUTION

forevery ¢, ) t, , since I_éz elt(udglc'f;idl“é /,

s ot
and zs':%dtﬂf for o« > 0 . Furthermore,
.0

t,
[Faintt 402 (it
@) | J=5Ee  de £ ) 2EgEat |<4,

and since ‘4 Z2dX =/, wecan find a rectangular region E, ,

such that if £ encloses £, and E, is that portion of E not in E, ,

@1) I[ 2 dx |<¥§ Thus

:'s,'n‘lt- it lu-w)
)/\——t—_—EC{t/‘E e dX
E

2

(22)

Hence, siuce £, and £ may now increase without limit (19)

and (22) show the convergence of the (77+/) fold integral of
z"n —Z- Lt(u-w)
2. %.e

it (u-w) it (a-w)
But since IeL ‘ fe zdX

exists for all values of 7. Therefore,

fZSIn o fz ect(a-w;_x—

exists being equal to the corresponding multiple integral whose
existence has just been proved. We have thus established (17)
by using the theorem that if the multiple integral and a corre-
sponding iterated integral both exist they are equal.

It;l'n% itlu-w)
= [ zdx = ¢ dt <
E 3

£
FR
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We can show in a similar manner that

a0 o0
-y X it (u-w) ot —it(u-w)
.[241 tr e ¢t=/2m‘z‘4t/ ‘Read X,
R ° J + R

so that finally

oo

' 7wt it (uew) -, xt itlu-w)
(23) [‘ulx_ :‘_‘;_l”_fe act:fi“’?’”_ac{;ﬁrc 4X.

R -%0 oo

Let w, and w«, approach an intermediate value v as a limit
with. w,> w, . Then ¥ > dv and w-> v and in the limit

2 . tdv kv ctwlx,x %)
(24) F(v)dv:#ﬁ”’;—i_e dt-'/e, .z .dx,
- o0 R

FPv) exists since "L‘e‘:t%z -d.Kl—f—/ and

. tdv
2s5m ___tdv ""t" < 2—/40: —z, -/
XF —_—c .

Therefore, to within infinitesimals of a higher order, the d.l. of

o e ot'tv it wlx,;xn)
(x5, x,) is given by ;?V)dv=%‘f[e‘dt[e. EAX
- 00 R

, [ ity ity %)
or (25) 7%»’) =) € J@dt where %)[ Z2dx,

-0
An application of Fourier’s Integral Theorem®® to (25) yields
finally

Lt u(’:) x}.’“‘}"ﬂ-)

(26) G(t) = fo P(v)alv_ll; 2dX,

where P(v)fo outside the range of applicability.
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From (26) we see that ¢(#) is the characteristic function
of thedl. of «w(x,,x, ------ )y Xn) -

We now state

*TueoreM I. If u-u(x, x,, ---,x,) is any function which
may have at most a denumerable infinity of discontinuities, of the
variables x,,x,,--- x, where the distribution low of x, x, .- x,,
is given by f(x,,x,,-++++,%,) which is on a certain n- dimensional
manifold R a single valued, non-negative continuous function

such that ff(x,, X, ,X_”)dx, dxz'--dx"-/ then the

characteristic function of the distribution law of «L 1is given by

ctu(x,,x,)
ge) - [ e L Cx,

I)) 7,

)C{x c{;(

-

**THEOREM II. Under the conditions of Theorem I, the dis-
tribution law of W is given by

¢t

Plw) = 3'717.— e ‘Lg’(t) dt  where

ctu(x X,,%5 n)
P(t)-= f flx, %5 %,) dx dxdx,,

1V. Theorems Regarding Several Functions & ( X, %2,
J‘ =12, , The procedure in the case where we consider
several functions dg-[x, S %y,), FENA 2.+, 4 of the variables

* Charlier? (Arkiv. Vol. 8) considers a function « (Xx,, X,y %,,)
which may not be infinite for real X, nor may the maxima and minima
of w be infinitely dense for any values of the variables.

Kameda'® (Proc. Vol. 9) considers a function «(x,,x, ... x,)
such that (1) «L must be a continuous function of at least one argument,
say X., , (2) the derivative of w with respect to x,, exists, (3) there
exists no interval of X, for which 53;:*; is identically zero, (4) the func-
tion w and its derivatives have the same sign in the neighborhpod of teo .

** Dodd* (Annals Vol. 27) considers the distribution of a continuous

function « (x, y XKgyttre )x_n) .
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, X, is similar to that above.
The probability that w,.(x,, x,, ", x, ), R R
where the u, 44%a and X, w-1,2,-+, 2 are defined
as for the case of a single function w , satisfy the conditions

w o, ()
f w <oy Cuy

X, X, -eeeeee, X

@7)

is given by

(28) f )((x') xz:"'lx'n) dxl dxz."' dln
B

where the region B is defined by the set of inequalities (27).
We can avoid the difficulty of integrating over the region /3 by
introducing the discontinuity factor®®

F Lt:(o )+t (@-u )+ Ll (6 t)
(29) (ﬂ,) / / d6--dé dt-dt,
-0 -~90
' [
u, <u" < b"l
where F =/ for { .........
w, { L,
LL,' ew ; L‘1=u'nl
and =0 for ) e e .-
W, 2w,y Ul
We can now say that the probability that «, , «,  ------ y,
satisfy the conditions (27) js given by
J Lt (8-w)+it(6-4)+. -1+ it (6-4,)
(30)——— zdx/[ 46 d8, dt-dt,.

In a manner entirely analagous to the case of a single function
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w , we find that

ity-cty—-iEn
31 P,y 4,)“( — f Pt L) dEdE,
oo
where
b e (6, et L G )
(2)  FE,L,58,) > f*e dX,

An application of Fourier’s Integral Theorem?®® to (31) yields

f" Lt‘l—Lfl.t;lL:zf plt W,
q(:)p)n.)" e F(u;,,,,_)da, Ju.

where FPly,,-, w,)= o outside the region of applicabil-
ity, which shows that ¢ (¢, ¢ .- £ ) also given as in (32) is
the characteristic function of the dl. of ¢, t, - W, .

We now state

TureoreM III. If Up= (X, 6, 2,)  J=1,25 2,
which may have a denumemble infinity of discontinuities, are func-
tions of the varigbles x,, %, -« .. ,X,, whose distribution law
is given by £( x,,%,, Xy ) which is on a certain 72-dimen-
sional manifold K a single valued, non-negative continuous func-
tion such that f f(x, c,%,) dx dx, - dx, =/, then
the characteristic funchon of the dtsmbutzon law of &t
is given by

(L e, (x50, 2, ) bt CE el (600 )

7(') > )4) fe .f(x”.--)x_”) dl'....dxn'

THEOREM IV, Under the conditions of Theorem III, the dis-

tribution law of t e  <--¢-- 73

Y, , L, 1is given by

/ -Ltu- l—tl(k ...—Lt:,_l-l%,
7>(LL,) &Ly (’.‘4) =(2T)¢/e q)(t: 2 &) at-- ‘{t.a.

where
ctu(x, 5 n)* "“-t (x,, )xn)

¢(t’_:lé)"')t/p):fe f( »Xx,,) dx,. d"‘n
~



SOLOMON KULLBACK 275

PART 2
Various Special Cases of the Distribution Problem

V. Distribution of the arithmetic mean:** 1f we take
W%, X )= Xyt et Xy and assume that x,, x, ... X,
are independently distributed each according to the same distri-

bution law, then we find for the distribution of totals

o
_ittu

2 n
. it
@ Pay-grfe de( J&Hmax), atxtt

The substitution w=2x will then yield the distribution of the
arithmetic mean.

This result has been derived previously by Poisson,?® F. Haus-
dorff'* and J. O. Irwin.®

Hausdorff applied it in particular to find the distribution of

means of samples obeying the law f(x) = %z, for -1 £ x% /

and §(x)=0 elsewhere (a rectangular universe) ; also to the
L

law )((x)‘-' —%— 5 ~—0f xf 0 . Irwin has applied

it to the normal law, Pearson Type III distribution, Pearson Type
II distribution and a rectangular universe.

V1. Distribution of the geometric mean:?
Let w= fgx +hgxr - +fy x, where X, j<42,7
are distributed independently each. according to the same distribu-
tion law, then

L -4
&
-ctw n 4
/ 3
(34) P("“):.z’r?[e dt ([Xﬂx)dl , efatxtt
Zoo a
The distribution for the geometric mean g is obtained from

that of w by the transformation w = —/oy ;”"

a. Consider, for example, the case for f(x)= é , 0 {x$a,
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Then

~ t(n f7a,-u-)

G5 Fw) = : Crect )™ +ts

where 3 /o’—ga-u_ 2 0.
From (35) we have
7t —(n/a;a,-'-‘)
36)  Pruy - 2 Oged €
/n

oo u@x &
2 21 -
since* dx 27 4 e fo/? tYo
I

Cl+ox)"’

From (36) we obtain

The result for 72-2,3 has been given by A. T. Craig.”

Pl -x
b. Suppose now that f(x)= x € ) 0 £x % co.
/7
Then
> it /;',,_t
(38) Fruy- = ( dt
)= 2 =
Let ptil--%, then
-ﬂf—e’co
Py wz n
(39 Flw)- e (/3) d=.
7‘2) 2me )
-ﬁ-l_”

By a method similar to that used for the case of the general-
* MacRobert,*® p. 67.
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ized variance (see Section XII1), we may show that

n
4m |z e ([2) |20,

290
so that the integral converges and

ef“’ Zw ”
(40) P(l»b) B —— e (/:_;) dz';
(/F)eri J,
where C is the contour bounded by the line x= -z and that
part of the circle |2|= m+% | 77300 which lies to the right

of the straight line. The contour is traversed in a counter-clock-
wise direction.

n , "
Y ._¢C) 7 .
Now ( i-) “—s/‘n"n:(/;, ) = so that we may also write

e/"U— ‘ I)nT”’C uz
(41) 7’(u)=—————[ z,
C

-y d
(/;),”n_' sin"TE ()"

2t
The poles of the integrand are of the 77””‘ order and are
those of (F;)n viz, Z=A, 220,42 . Since the
contour is traversed in a counter-clockwise manner, the value of
the integral is 27¢ times the sum of the residues at the poles
within the contour so that

== n+anH wE
. -1
PU 1) d ” e

42) [u)==—
W £ et e Ty,

or
np-1 2
ng n+nat! dﬂ"l 77!]
43 ..D s = (—I) .——,., ”n,
A A 2™ ([ Huen

c. If instead of assuming the ;; each satisfy the same

distribution law, we assume X ; to be distributed according to
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B
%) = X € where none of the 2 5 are equal
7

or differ by an integer, then

-ctu _Z[ f,,t
(44) Fluw) - f JT—/—— dt,

s
or
z ”
@ Pla) ——— f e L gz =
Y] 8 L0 ~cot ’

The same results as to the convergence of the integral and

the contour may be shown with respect to this integrand as for
Section VIb.

The value of

f “EI/——Z dz

4= /
is 27¢ times the sum of the residues within the contour bounded

by the y-axis and that part of the circle |Z[= m+Z ) mco.
which lies to the right of this line.

For the pole 2 = A.t2, A=012" " the residue is
r _“(prr)
(")e 2 . _,/__...-_
[7"7" /f'r’-/z /75’..,7;’47;.;,2}4 v
therefore,

oo At ulfrr)

. Y,
6) Flu)= I-:—/’_ Z(" = «I (77 f
2/

G e
where ZJ means that in the product & takes all the values

T RERRE ,M  except /.

< 2 77(?4-/1—)1 n
(47) D@)-——— Z Z(—I) I,/;;IL%

m 75" 4 Ao el
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d. Suppose that in the previous case 75_:: yids !T;bi R J AN

Since /f: /;;

for this case

Fn: 2P 7_Z‘;:.—I/——
o lpr= = 77 (z7) e

A
7

0 . __ T3~ /
48) Flu)= 3 f et ”) b7
W)= o .
2 —
LA '~ 00 nz ”P(Z”') 7P
Let 7pt 77t = -2 then
—ﬂf?-r(.oo
u.fz np
“9)  fi) - /(e’" n) /2
n np 2772
..71/9_100
Now it may be shown that
~atioo -uw
2717. /LL /’— Az ~e
—a —(0
where a)o and -z (amp u<EL (See MacRobert,® p. 151.)
Therefore w
euﬂ np  -ne
n
= (4
u =
(50) 7% ) n/;z;o
7 w
Substituting g e we obtain for the distribution of g9
np Apl -mg
VA
(51) D)= LS ycqteo,

frp

In other words, the distribution of the geometric mean of 72
independent variablés respectively satisfying the distribution law

-l - —f.‘}f—*l -x 'PfZL-!I -x
x € . X € . X v <
) T — PRI —— ) 0=x:oo
/% [p+% [t

is the same as the distribution of the arithmetic mean of 7 inde-
pendent variables each satisfying the Pearson Type III distribu-
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tion law 1,, x
x 0<x oo
f() /‘P )‘ =
e. For the case where Y/ f"z_", =062, see the

discussion for the generalized variance (see Section XIII).

VII. Lemma: The following geometrical considerations will
for certain cases simplify the problem of finding the distribution
of statistical parameters caiculated about a sample mean.

Consider the sample as a point or points (for multi-variate
distributions) in an n- dimensional Euclidean space. (This meth-
od has been employed to great advantage by R. A. Fisher® and
others.) Then, if the probability density at any point (the proba-
bility for that particular combination of values to occur) is a
function of the distance from the origin, the mean value of a
function of the distance from the origin and of other geometric

invariants of the"system forn X, Y, ,/ =4 2,-,n satisfying
the conditions Z xX=0, Zy -0 ..... will be the same as
dat 4 J J=1 9 ’

for the same function for independent variables in 72-7 dimen-
sional space. Since the important element is the distance from the
origin and the integration is to be carried out over an -/
dimensional space, the final result is independent of the fact that
the whole system is immersed in an - dimensional space.

As an illustration, let us consider the following distributions
which have been derived by various methods.

VIII. Distribution of variance of a sample of 7 from c
normal population :® 25 34 36

Let w= x4 S -+ x:_, where the
Y
X, are distributed according to f (x)= - e ~wtxtoo
4 "-—7,- )
Then

-—-—;fl.tl n-! /
(52) ?(t} [ﬂ—ﬁ- dx] P

G-za'ct)%
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(Compare Rider,** Annals p. 600; Romanovsky,** Metron p.
6.) Therefore, the distribution of

n

2 2 2z 2z -

V=x+X +----+X, =7ns , where ;XJ-O,
is given by

-

$3)  Fv)- ettar  vTme T

v ~27r (I Zo’Lt)z (10—")7%!/114

2

(see MacRobert,*® p. 67.)
We thus have

»l;q

(54) D(s*)ds - ) (S) 8 d as is well known.

IX. Distribution of the X of Goodness of Fit Test:** ?** Con-
sider

where K = /@K |, 3 = and A, is the
cofactor of/,.OK in ' so that! /ﬁ/.k[:,? " and Z,%, X,
are distributed according to *

-3

Therefore R, (1-2it) %%

n .
°0 2 m_z—;—(;z.l_"__———-—————

_th <€ axt 4 ?{x du-dx,
5y A )= 7 dt 25

KL '
GGG R

= ot 1”' oo - a""él /i-,(/—zct) X X,
[ e .dzr.‘(x,."'dI"_
- -0 (”)"Al R_
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oo . * "z
1A

w P - 57’—:[06 |";‘x(l—zzt)|lh

and we have finally,

6 PX)AX - —'—(% e 4(7‘)

n
F3

2. -
If we restrict the x; in ’X, to satisfy j% X =0 , then

!

from the preceding, it is clear that y(t) and now

~d:x -zbt)z
, e
7y PX7)- ’Trf—_—(, =

or ) I!%} -LL )
(58) P(?Cl)ctli/‘,—;—;j (%) e zd(-zf—).

This latter case is the one commonly met with in actual practice
and is equivalent to the case wherein the expected values are ad-
justed according to the total in the sample.

X. Simultaneous distribution of variances and correlation co-
efficient of a sample of . from a bi-variate normal population:®
This is a special case of the problem of finding the simultaneous
distribution of the variances and covariances from an »-variate
normal population which has been solved by J. Wishart.*? The
same method is applicable to the general case, but for its own

interest and for the sake of simplicity this special case will be
considered.



SOLOMON KULLBACK 283

Z“ > /’JZ ‘G f %"
Let LL' .L__ M M’z: — u3= gt %4
2(1+ ’)o’ (/’) 59 Z(I'F")d; .

where X, and g are dlstnhuted accordmg to 2

* J 9y
e ;)

1
— e
ET G % Vrp™

Now consider
(- Lt)l z/’(lnt)xy - L“t ) y”
a0 f‘) [

(o9 6'
s9) J- 42 dg
A 2T Ox Oy Voo™

2 l/’—
(1-r7)
[(""t,)('“ét;) —pP 1+ tz)‘J .

a /2
] (-P*)
T | -4t Ptcty)] 12
p(lf-{:t I-—L’t

Therefore, if we add the conditions Z JC =0, Z 7 o,
in which case

L B
, = __Zz_fS.ET) u :l/‘_”i_s.i‘_‘?l ; W= ...lz_;éi_.;__ and
201-p*) & 2 Gp)g o, 3 207 g

(- ‘):%L
(m) 9‘( llt;.z:,): ) N T
[G-it)o-ct)-p(ret) ] 5

Therefore

_,,tu, Lt w, -t 3 U3
) P[u wie)- /f At dt, d £,
ar) o [0-i6X6-8)POr i Y| F
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Integrating with respect to £, , we find

P (I+bt,_)J
0o -t u, n-3 -“'.[’ 1-LEy
e dt, _ar wre
(62) 2 i n-t
[ar-c6)0-it)-p*(4i6)*] X [z (1-ct,))

Integrating with respect to £, , we find
= O £) -

(63)fe 2 ét*’ Ve

Integratmg w1th respect to £, , we find

(64)] "‘tx A7 (-
TS _; 2 (4, mp)

using the facts that f c s
-
@ . bx

and /e dx = 22 n-le'&
(-cx)™ o~ ’

Therefore we finally find that

ity
(:. /-l.t) :/u/)

@
’Lz‘ - (“3 - lfu":‘)

- f,‘)’%’ - (4" ‘s*'s)
(65) /G, u4,4) - Py AL G u,p‘)u’ )

S zﬂt
%M w1 3(,7;)[ '51‘]
(66) D(5, 2,5, )d Sctn 4, ren)S e

()ET [y °;m°§"-'

N I/
since 7 3/ /'—" g ”-2

or

a( w,, 1) ) "JP‘SY-S

and 5 ”’3
25,7 5) () s,
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X. The distribution of the covariance of a sample of n from
a bi-variate normal population:*

ny

(/—,o‘)fo" gzt

Let U =

where x- and 4, are distributed according to

, x* _P%Yy oy
, -~z [ e ]
P <
17)"6;0;'/,__/,1
Consider (l*bt)Pxfl _;1_-]
oo .oe 2(170;) [6‘
67y J-= // dx oy
~o0 Zoo 27’-6;_0;‘V/'/""
2 12
-
TS 1 S
[1-FCritY ]
If we impose the conditions
” ” S
. Z 4 =0 sothat 1 = —L7xd_
J.ZI-XJ o P4 jer :/J (/—/ﬂl‘)f;i;
7t
then (/'/'J )
68 = N 77-1
@ R
and 2 7! = cte
27 ) [1-0"Grit) J
Consider

T oo { [ /-p(:n’t)][l + (1 /u’tﬂ} kS
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r#
Let /—f(/-l-l;t) = - so that
- '-pz’u.f-doo
n-3  wlr-t) _z
7 uT e e dz
71) = o - o — 2y
(2p) = ame | & FT(+E)E
.--/-—ofl.‘ LQG
Since we may show that
-3
lim |7 e |0

Z - A

2o |0 (0)¥ (10 22)%
the integral is convergent and we may write
(o®) 2

3 & -
2 T uw e“ / e dz
72) 1 =- — o) nt

% - 2
() * 2w /. G#) "(H— ;f
(o+)
where / means that the path of integration starts at infin-

ity on the real axis, encircles the origin in the positive direc-
tion and returns to the starting point. (See Whittaker and Wat-
son,* pp. 239, 333.)

Since i:;—/’ < 7,.1: , the point Z = - u';_o is outside the con-
tour so that
-
e dz e Vl/o -n2(24)
73) - o) = —— 2 124
%0+ 22)% e

where W ( 2) is the confluent hypergeometric function.*®
Also, since \/Vo’ m (%) = \A/"’_m (z) we have finally

W

n-/ n-3
apt) T w T
(74) 7(2' =

[= )%

w
e Woz=2(2%)
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If we start with the following definition for the Bessel Func-
tion of the second kind and imaginary argument?® 3

oo
m-%

J— X.m -xt a
(75) K, o) - T fe (t-1) dt -
2" frts Lo
: -Z 7z
then it is possible to show that A, ()= Vmr x 2 \M,,_m (z=),
so that

) - (") u rz;}ewK?(%) .

(76)
nz 'n
2 @ 2 X o=
If we finally set v = Vel = —_Z4
(157") 0 0y

we find for the distribution of v/,
L pv mE

1-0%) "e v -

77 Devay - 977 2 ,

which is the form found by K. Pearson, G. B. Jeffery, F.R. S. and
E. M. Elderton.?®

XII. Do N samples, each of n-categories, come from the
same n-variate normal parent?*® Consider

- Nz . X, X
% = Z Z R . # " where the simul-
1 gkt R . d

4
taneous distribution of x,, x, -+ -, x_ is given by
-L Z %, *x
ZR fxe 9K G

(78) e
/a2 2 ’
(2m) 0760 R
where /§;x denotes the cofactor corresponding to /2« in the de-
terminant K= |/« | of the population correlations and 5
is the standard deviation of the j " variate.
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Consider n

ST (r-acr) e %

e R o 0,

J’ dx, dx, - dx,
oo Qr)" e oo g
tfa
- AR _ :
’ﬁ'.“(l-,u't)‘ = (1-206) 7"

If we impose the conditions Jg XJ; =0, ¥=242- N and

»* ', 7 then from the previous results the

>
characteristic function for the distribution of % becomes

/

q(t) = ) Gr-1)(w-1)

Cr-2c8) 2

and the distribution for ’X- is
oo _Lt% (77—/)(/V-I) -2 a
e

(79) P(X ) = 17,. (n—:x.v G- w-1) = (%)

(, ZLt ) (- /)(N")

(rr-1)(N-1)
2 / e

This case is equivalent to applying the %’— test to a contin-
gency table. If the table has £ rows and ¢ columns then the
value of =’ to be used in Elderton’s tables of “Goodness of Fit”
is® n's (r-1)Ce-1) + 1 [as we saw in Section IX, equa-
tion 58, the distribution for X~ has an exponent 722 (our n is
equal to the =’ of the table) and the exponent in the distribution

(m)(w-r) —2 .

above is 5

XIII.  Distribution of the generalized wvariance of a sample
of /V froman rn-variate normal population:** One of the gen-
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eralizations considered by Wilks is that of the sample variance.
For a sample of N from an » variate normal population the gen-

eralized sample variance is defined to be the determinant I a; K [

. % ), 4nxs42-mn and

~
T a. = a .=_‘_ X‘-z x
where K X} Ngcb Jx

X = x ‘YZ x,; . Wilks has given the distribution of w- la,, 1
as an (@-1) - tuple integral and has obtained the explicit form of
the distribution for n=172 .

By employing the theory of characteristic functions we are
enabled to express the distribution of w as a single integral and
find the explicit form for any value of n .

The simultaneous distribution of the « .. defined above is

IR
given*? by
n
,’Y_?: ‘J,(Z-I A Q/“ yonoz
Al e | *
80
( ) 1 (m-1) e .

where |A | is the n-th order determinant of elements

- NKy . .
SR = —Z—a-,:.—"r\, , where R, jx 1s the cofactor of /4, in the
determinant of parent corre]atlons R=14].
If we write A =N Gy and a,, - ;‘:.3 , the distribu-

tion of the € ’s is

&K
% -2 B4, oo
81) BJ'K’ € o '6;’« ,
( 7 T F [
J"

For the sake of concreteness and the better to follow the dis-
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cussion for the general case, we shall first consider the cases
n= 3,4 in detail.

Case1,77=3 : Let & =43 & where we write 4= 165 ].
The distribution of £ is then given by

Tite 18 RE
82 -5 / f ,f ,& d¥,

where (3B - | B, |. (Compare Wilks,** Biometrika Vol. 24, 1.
477, equation 10.)

Let ~-3 , .t = -2z ,then
2
,v_ o+ a0
V-3
ape®) T ge 2 o
®3) &) - —— e’ B leols-2lkedz
[ 1% 2 ami
—'-'_-3—600
The integral is taken along the line x= - v2 and since

~ > 3 (since otherwise the distribution of the @, 's is nugatory)

JI(

all the poles of the integrand are to the right of the line >-- 2:2

Now /:z = -z /2 sothat /./ //_ /~Z - }.(/}) -2

2—-

but /.: R A so that ( 2-) —_— -
s w2 (142 St T2 (/,R_)
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Now . 2z-22g &
Cim ——'—;' - Cirm e 7

2o | (vz) Z> o0 2w 2?

c

If weset 2:-1r¢e

2ncos6 -2 006 bognt228s5176

{:‘m ! = tiom €
zroe | ()] 2= 2ra’
w-
Also /;1 =

€cos ME [z¢4

| ncocd - ncor8logntbasirnd
and bim ’ I; Lm e

244 A~y oo

3/2

T 2z
. . twn 51 6
We also have that € l s rz[ < €im !
£ Yoo F X
according as s/7x 8 is positive or negative and that
. LT 2 &
Lo ’ coe Tg—l < b o
2 o0 T Aa—yoo

aécording as s/7¢ 4 is positive or negative.
We find therefore that finally,

x cas6[8+bgBe3-38yn] + 2 asi 6[36 7 37
af: ,:!B! /-!/;;/‘;5 ﬁnﬁ’:’ < 7 4 ] [ ]

Jll

according as sin @ is positive or negative.

. N B .
Therefore if L£262c¢€; —:’%_56:(—6 ; or if
N-3
-2 £ ncoe o <o,

4

2 =z —
” _
z e B /" /j-r -2 tends uniformly to zero as =z tends
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to infinity and the integi'al is uniformly convergent.*
&
Nextif -€c6<4€ let 2z :/L,"CL where - m+ri

and » is an integer. Then,

£ _coae[$tbgBr3-3 legn, Jon sinele]
. £ 2 z . e
o e Bl ] MM L

oo N
where 2 M: 2 |esc wx| ; 1M2 2> ’p(c_‘ﬂ't, %
n & = __ .
Therefore Z'e B Iz /{; /-2 tends to zero uniformly
as m tends to infinity.
We can now write

6% [ _
8 [7)-- £’3€ ) e Blilizls dz,
/’!’gl/!z—‘/"i_;; 27c

c

where C is the contour bounded by the line = - X ;3 and

that part of the circle |Z/= >»+L , where m may be increased
indefinitely, which lies to the right of this line; the contour is
traversed in a counter-clockwise direction.

§z 2
The value of f=fe B/lalizle dz is ar%
C

times the sum of the residues at the poles within the contour C.

For z-0 there is a simple pole at which the residue is /; -7 e

For 2-i¢2 2.4 3..., there is a simple pole at which the

* MacRobert,20 p. 139, Rule II.
** MacRobert,2° p. 114 Lemma.
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residue is
Y YT E(ntt) ari
') T e B
2! lary //Lf-a
2
since r - /__ s T
i — ' Jyeg: = /1_ = ;
2 stare 0 MR T sy 12727 o2 P
and the residue of LA for z-{1sn is equal to — (")
T2 [1,2 L2t

For 2:. where 4 is an integer other than zero, the inte-

grand has a pole of the second order, viz., that of /-2 /-2 so
that the residue is

N
e e B
dx (os”—l'/;/;:i/—;/
z-2

Finally we have

N3

N
) s as. ) (eB) (e B) 4 & B)
(85) 79&) /_/_ /’:’ T+r (e ) C ot Z “"‘/_I;tr]

If we make the substitutions & - {9 & - {’,:9 an’ where
a-= la— J and 3- — where A”A‘-," we have for the

distribution of a
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o2 a0

w3
/ = ) @A) d @A)
86 da-%2 f“ﬁ__ -r e @n) ﬂ'}[—- —
( )D@) -z [ [z fz ) ,L /ml’p dz c‘s’nﬁ]n;,;,
2273 N=1
Z:n

or
o A% Jerea)” 2 (28)”
(87)D() - ‘ L M) a9 r“r'i [41 casiz/; [21 ‘*J

With the same notation as before, we find that

Case2, p-4 :
td it —
(8) Fg) ——— [ fatuue Jirnce frrve fete
[% [ 2 Jrt ar
2 a 2

Let ’Z;_:' +ét --z sothat
-%y’."oo
& é
= r 2 —_
@) FE)- —P) | T i an
| Jix [ 2t o

A similar discussion as for the case »- 3 applies here with
regard to the corivergence and we can write here too,

~-4
2.

o0 Peg)- - 0% S
o - - [i- 2z d
J fefe . am) S @ laliee 42

C
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where the contour C is bounded by the line x= - 251, (~34)
and that part of the circle | z[= m+ 4 ., where m may be increased

indefinitely, which lies to the right of this line. The contour is
traversed in a counter-clockwise direction.

'i‘he value of J-:Jreé'tB z/;z /;._; /;2 /:; dz
d

is 27L times the sum of the residues at the poles within this
contour.
. . . . . .
For 2=0 there is a simple pole at which the residue is /‘%- f;;- 2=
i A & 2
For 2-4 there is a simple pole at which the residue is -zw(e’B),
The integrand may also be written as

. gz 2z
7r2 _rrl. e B

sin*rz  cas'TZ2  fau fy [z [2-%

! {
and the poles are those of SoTE and e

We have already considered the simple poles Z=0, &

For 2= , 2 an integer other than zero, the integrand has a

!
n Tz

P
2 (e”B) ]
Az 0’72 [fon Fes T3 Taog 350

For Z- 2’— + 4 , 2 an integer other than zero, the integrand

pole of the second order, that of ——=—_ at which the residue is

at which the

has a pole of the second order, ttfat of cos‘l1rz

residue is

é z
N d. (C B)
T [dz sn 2 fan [2e5 [z [o-2
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We thus find that

e 4 "'
(e’B) g
91 P = — : w _ B
WO Emm ) E

(C B) z.’ $ 2
+72[J; vz ;-J TI’Z[‘%} .;(e B)

e , o S W2 [z+ /;ff l: 2-4
o A= AT

For the distribution of @ , we find

r me /.
A a V=
92) D) = - T 4 ar(aA)
[7 e gl ) %

) 2[ () [ ()"
dz oo rz/_f;i/—/;!] “ T len sl ey

2= A Exfon
Case 3, 7 even: As is evident from the previous discussion,
retaining the same notation,

, -itE it n
”‘J
(93) P(é): — e _B J_,g +t dt

P
j-l —EJ ‘7r - 00
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Let N-7v , it = - % so that
2

N'n

o) F&)- o) * eél52/";"’*/’E"-i'-‘ Akl

_ﬂ: /”’J 2mi
jz/ 2

N-n_;
Z

-LQ0

The same considerations as to the convergence and the con-
tour are applicable here too and we find that

(95) Hé)-— G B) éi i’L/’—_-/’—’—: -z d3,

”" 20

where C is the contour bounded by the line x=-%7, (w>n)
and that part of the circle [Z[= 77+ % , where 77 may increase

indefinitely, to the right of this line and the contour is traversed
in a counter-clockwise direction.

z
The value of J / /”-"'i‘ ce-f-z d2

is 27¢ times the sum of the residues at the poles within the
contour. Let us write 7 =2, so that the integrand is

z 2 T
Ny S

For Z-2, 2= 0,1,2,---,p-2 thereisa pole of the
(et1) th order, the integrand being representable in the form

(_I)H-,Zf..raf;r weéEB /:/r e /E_‘-g //lfl z-/.lu-z - ./f»-/-z
sin}u I 5 /;:/ /z -- /z:z-r—/
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The residue is therefore,

m&’lﬂ
1) d”™ ét / -2/3-2.. lf‘- /zm 2[ntz-E -+ 1:—1-1-]
rlan) s
o) nt|dz /Z-;l /;-— ter /z—/u-/ .
For =g+2, 2=0612.p there isa pole of the

atr) th order, the integrand being representable in the form

OF 14240+, é

-1 - EB /; /. /;./-;/szz—z//u»}-r /i%-z-
casa 72 [e1t [2-% - [z E-ntrs

The residue is therefore of the form

xlarl)

') = 4 ét 2/—:/1—-— / -I-2 /Jui~2/’l*‘ - /1'0 f-z
o)
0™ [z ferg feg o Jaones 2oten

For 2~ p-t+n, _2-0,y 2,.++ thereis a pole of the

7

- —th  order, the integrand being representable as

gz =z
(& )‘F7r’h7r Fet® B

TR
sin e coa’wz lz41 3*3.../1.,9,%_

The residue is therefore of the form

©r 1+ P~ ét 72
(1)) 7’ 4 e’ B
PCp-1tn P —
(ol 0! dl coa' w2 [zu /},u Y
) (_/J )! . 2 ey 2= p-1+r
For Z= -l,.;l,_/:,, 2=9,/,2..+ there is a pole of the

+# - th  order at which the residue is

.P f ) ol 4* 3
1) m 4 e B
(-/)*(f”}]ﬁ-.)! de?" e Prz /24, 205 [z pe3
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We have therefore that

P(£)-

(bcz) z (_’)Qﬂzga-z) I'da ér, /:; [—- e ﬁ:l—l-/lﬂ' /;Tz]
! ‘b’ /;; /: /z—;«.ﬁ J;:;,_,

2!

P2 DG
+}-')(m)§ +2) dﬂ_ eétbi/_';/;:../f-:-z-/mf~}/4,_}_t ,_/3_%:_2]
di /;_"-i /;—:in'/z’a"i _!hém

A=0

= POrp) P 2
£ e P[ d eé B
! l_d coa’rz [z I3+ ey [2-pez

Az0 2= Pt

o2
-f(fM"') .P~, f 3 F 3
) wrid e_é B

P-0! |de?' oinre [ar [zes - Jepez Y

S e

Nzo0

For the distribution of a , we find

97y D()-

L e fe e e fr
If: "'l“* sz foars
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(_l;‘l"—m)[dl" @A)}/:;//;../p—l—z-/ll.fi-é [ug -z --[‘—le'-z
2! lft ,;_fi /z_-g_---/zw.!u-g_

L
) [ 2b Lk

= -p(lur)'-l P
Q) 4" @s)
(1"—').’ dz"r'  cosTrs /;;7/,{,—;; [z_p,%

e Z=p-1+n
O plerat)r [ pot =
+ z(") 7| @4
P T F
-1)! |dz stn T2 [z4) feos - Japen
R0 Z:a‘i‘ 2
with 72=2p.

Case 4, 7 odd: As before we find that

e &=
(e B) ér 2 N
(98) P(g):-—_e_____ e B ’q:{_[_ ""'i-"-l'"/"t dt'
,i. '%_7‘ an<

C

Let ”7=2 r +~/
The integrand is

&8 e [ . [ ).

The considerations are similar to the case for 7z even except

that the integrand has an additional factor, viz. /p-=.

For 2.2, r:o,1,2 » (1)  there is a pole of the
@re1)-th  order at which the residue is

(an Xrt2)
o ° [ S5 i i /’" Jari-z fatzz - /‘-?
('-l)lt oY dz" [26) 7 /-:ul
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For 2z=:=3+n =0,/ (#3) thereis a pole of the

G+1)-1th  order at which the residue is

R R e Y e e

) n —
(—l)(llﬂx;:—.l‘ l_f‘l /;:i /"'i eee ,l"'-*i e yen

For Z: pra, x=0,/,2..: there is a pole of the
&) th. order at which the residue is

P o om &2 2
- T d e B
o )(Pfl)(fr/l-) di': coa”r2 Jons /;:ﬁ B ’___z—/’fl

For z=32L'+n, _n:0,/,2,..- thereis a pole of the
2 - th  order at which the residue is

iz;"f‘/l

PH  prr P E‘l'
D st P <
ety ) ' -
er) 0! {ng ein 1z /_+-/ 24 /Z—Pf -E[J
since the integrand is representable as

r gz 2
Tt r e B

. Pt b od —
At mz <o W2 /2fl. Zf‘i"' z-pr/

We have therefore that

(9 77(g)-

é l%g fadd i) (n-2) A2 P
(e?) e B g B i fie o fo v - [;?]
IF Z ! Ldz (2tr Iz [a-ner ..

Jo

P2 ppres) -
*26’)01:'1[4 e B l‘/l‘ /—_'l- /4,}-2-/4*}_‘ ../4!_%"_‘z
] 3 m——
d 2 /:;i /l-‘,‘“/z-/ug_ v

n!

ANco0
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@t )Ptirn)

z
YD) . v”[d# cgtB
Z 4! dz™  cearz /;_; /;; 2-pors

Rz0 2=ﬁf4
= (- DX £
p(prar, » 2 2
L e e [a” e
POl dz ' L5z /5, /;1‘... 2prs
Q=0 2.2,
The distribution for a /s
100y D¢) =
K ygr (C apn
Aa"* (:) [d. ) /‘- /i-l /’f—’/mz at22 /_]
j,f [ VYOl PO e
- nso
?'140“3) r » B — /-—— /’- /__.
- fo‘f [d” ah)lalinfpr otz hesr fira
2 ! ,_d.z"’ /;:5- /2‘f= "'/Z~/'-*‘§. T-ntt
=0

> 7o+;mm s z
. a4 (a4)
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It is of interest to derive from the general formula the distri-
bution when 7=/, 2

For 7z =/ the value of & in equation (100) is zero. The
expression in the brace in equation (100) becomes

_ah, @A) L
/ /!f-—z!—__....... = e ,
so that
Q% %% A
a e
(101) Dia) =

For ~=2 the value of £ in equation (97) is 1. The ex-
pression in the brace in equation (97) becomes

Tah T (aAp)*
ae) T, # PR

T EA R

, /2
Ten)"™ T@A) ] rn)’
Y PR A Y A

fy
T [I" 2(A)  2%aA 13(a.ﬂ_)3/2' J
+ - + 0

/L ! 2! 3!
2

23 —IVQ,A'
. T e ;

there is no difficulty about combining the infinite series in equa-
tion (102) since each is absolutely convergent for all value of a .
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Therefore,

(103) D) - Ul -

The explicit expressions for =/, 2.  have already been
obtained otherwise by Wilks.#!

PART 3

Conclusion

XIV. Summary and Conclusions. By the use of a disconti-
nuity factor derived from Fourier’s Integral Theorem we obtain
the characteristic function (in the sense of P. Levy) of the dis-
tribution law, and the distribution law of very general functions of
variables satisfying a continuous distribution law. In the appli-
cation of the general theory a certain lemma is found to simplify
the calculations for a particular class of distribution laws and
functions. Several of the distributions derived are presented not
because the results are new but as illustrations of a general
method of procedure which it is hoped will enable us to find the
distribution laws of many functions not yet obtained.

The explicit form of the distribution of the generalized sample
variance for an »-variate normal populatfon is derived. The same
analysis is applicable to find the explicit form of the other gen-
eralizations introduced by Wilks, for general 72 , since the inte-
grals that must be evaluated are all of the same general nature.
The writer hopes to be able to present these further results in the

near future.

NOTE
After this paper had been completed, the writer’s attention was drawn
to the fact that an analysis very similar to that of Sections VIII, X, and XI
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of this paper had already appeared in two papers by Wishart and Bartlett,
viz:

“The distribution of second order moment statistics in a normal system.”
Proc. Cambridge Phil. Soc. Vol. 28 (1932) p. 455f.

“The generalized product moment distribution in a normal system.”
Proc. Cambridge Phil. Soc. Vol. 29 (1933) p. 260.

These sections are, however, presented here as illustrations of the
Lemma of section VII.
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