NOTES ON HOTELLING’S GENERALIZED T
By P. L. Hsu

1. Frequency Distribution When the Hypothesis Tested is Not True

a. THE ProBLEM. Let the simultaneous elementary probability law of the
k(f + 1) variables z;and zi, 6 = 1,2, --- , k;r = 1,2, ..., f) be

r k
1) pGi2) = (V2D M exp L *% _Zlcﬁ{(zi =) =)+ Uz,'i}:ly

=

where

vt"i = ﬁ:l Z.,',-Z;',» (1)-7 = 1} 2) ] k)
C stands for the matrix || ¢;; || and | C |, the corresponding determinant. It is
required to find the elementary probability law of the statistic
k
T = l V, I—l V,{,'Z.'Z,',
1

$,5=

wh}are | V'| = | vi;| and V; denotes the cofactor of the element v;; in the matrix
lloii ll -

The quantity fT is a generalization of “Student’s” ¢ considered by Hotelling
[1]*. It isan appropriate criterion to test the hypothesis, say Hy , that the ¢; in
the parent population as given by (1) all vanish. The distribution of 7' when
the hypothesis H, is true has already been obtained by Hotelling. But our
knowledge of the test is hardly complete unless we know also the distribution of
T when the ¢; do not all vanish. Indeed, only such a knowledge can enable us to
control the risk of error of the second kind, i.e. of failure to detect that Hp is
untrue (3, 4].

b. THE SovuTioN. LetH be a k X k non-singular matrix such that H'CH = I,
the unit matrix, where H’ denotes the transposed matrix of H. Let the sets of
variables (21, 22, -+, 2) and (21r, 23, -+, 2e)(r = 1, 2, --. f) be subject
to the same collineation by means of H, so that

”zl,zz, "')z"” = ”tl,t27 "')tk”'H’
||z{,,z£,, ;zl,tf” = ”t{f;t;') "'ytl:f”fH' ('I‘= 1,2, )f)

where the ¢; and #;, are the new variables. Let further the quantities 7; be de-
fined by

* References are given at the end of the paper.
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@) e, o, ooy Sell = llmy, 712y ooy ]| -H.

Then, as is easy to verify, the simultaneous distribution of the new variables
will be given by

(3) i, t) = (V20) 7 exp ["‘;‘ ,Z: {ti— )"+ u,{i}}
while the statistic 7', as a function of the t’s, retains the original form:
) =|ul ”Z= Ulitit;
where
ui; = ,‘i tirtis (G,j=12 ---,k),
| U'| = | ui; |, and U{;is the cofactor of the element u;; in the matrix || u:; || .

By virtue of (2) we have the following relation between the old and new para-
metric constants:

k k
(5) 2= ,Zl Cii i -

=1 )=

Our problem is thus reduced to finding the derived distribution of T defined by

(4) from the parent population given by (3).

We solve this problem by obtaining an expression for the Laplace integral
E(e™®), i.e. the mathematical expectation of ™" for real non-negative 8. A few
words are perhaps needed to explain the fact that the Laplace transform of an
elementary probability law determines the latter uniquely except on a null set
of points. If f(x) is an elementary probability law which vanishes for all nega-

tive x and if
9(B) = /; ) e f(x)dz for >0,
then, letting ¢ be any fixed positive constant, we have
glc—p) = j: e f(z) dx
forall B8 < c. We get therefore
my = [o ""”f(x)dx—dﬁ,,g(c—ﬂ) , (h=0,1,2,---)

the definite integral being obviously finite for all A > 0. Now a sufficient con-
dition that the set of numbers m; determines the function ¢ “f(z) uniquely,
with the exception of a null set at most, is that the latter multiplied by e*V=
be summable (0, «) for some positive k (cf. [6], p. 320). Since this condition is
trivially satisfied by the function e”*f(z), this function, and therefore f(z) itself,
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must be uniquely determined by the ms. In other words, f(x) is uniquely
determined by its Laplace transform g(8). We now proceed to find the Laplace

integral E(e™").
Introduce the function

g(t) t,) 07 a) = (\/i;)kl v’ Ii exp [ { E uwolo] + 2ia E t; :}]

i,7=1 i=1

and write
F(t; t’; 0, a) = pl(ty tl)g(tr t’) 0, a))

where all the arguments take real values only. For any functions ¢(f) and
Y(t, ') let us write

f¢<o>do=[ o an o an,
/¢(t, t)d@,t) =/ / v, t) dly - dtidtyy - diiy .
We have

/ d, £) / |F@, ¢, 0, )| do = / mlt, ¥) d(t, ¥) / o ¥, 6,0)do = 1

whence we know that

(6) /d(t, t’)/Fdo = /;do / Fd,t)

On the right-hand side of (6) we find
f m(t, ¢) d, t) f gt, ¢, 6, @) do = f (e, ¢) d(t, ) = E(e )

while for the integral on the right-hand side of (6) we have

/Fd(t,t’)
) = (\/27) 7" exp( fl )/exp[ 2§{t + 2(iaf; —T.}]dt

X / | U’ |*exP [ Z (09; + 0:) u:,] dt’,

l\DI’-‘

where we mean by the §;; the quantities

6; =0 forz = j

In the equation (7) the integral with respect to the ¢; is immediately written
down as

(i)j= 1)27"'yk)
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(v/Z)* exp [2 3 (re = i)'

As to the integral with respect to the t;, , we may evaluate it by the method by
which Wilks [7] evaluated the moments of the generalized variance. The
result is

r§/f+ 1
rG(f+1—k)

Making the substitution into (7) we get, after necessary reductions,

/ Fd(,v) = (\F/@)(f iel(f —Z);)) 10,6, + 8|10

2% (/2m) | 6.0; + 8y | Y

k
X exp [—Z {%azof + z’an&}]
=1

k
whence, noticing that | 6:0; 4+ 8;;| = 1 + Z M

=1

—la?7 V@) rG(F+ 1) B\ oD
B =S40+ 1-m) (1+.-§"*>

(8) k
exp [—-Zl {367 + ianoi}]do

Equation (8) gives the Laplace transform of the elementary probability law,
p(T), of T. There is no essential difficulty in getting p(7) by inversion directly
from (8). Nevertheless, it may be of interest to get p(7T) indirectly by identi-
fying the right-hand side of (8) with the Laplace transform of another ele-
mentary probability law which is otherwise known. For this purpose consider
the simultaneous elementary probability law

5o\ (1472) 1 g
P ) = (VI e[ -1 3 - - L 34t

1=1

and let us find the derived distribution of the statistic

L—Zx,/ty?

=1 i=1

As before, we introduce the function

9(z,9,0,a) = (\/21r) Be (i %)m exp[ (Z v t 0% + 2ia 5_", x,~0.->]

i=1 {=] t=1
write
F(z,y, 6, ) = p(z, y)9(z, ¥, 6, @)

and ascertain that
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9) /d(z, y)/Fd0 = /dG/Fd(z, y)

On the left-hand side of (9) we find
/ e p(a, y)d(e, y) = B(e')

while for the integral on the right-hand side of (9), we have

[rae = VEre on (-3 5 )

X /exp[-—
< J(E )" w501+ £ ) £ o

('\/;")_hr(i(fl + f2) 2 it
T(3f) T+ ‘?-: "')

J1
E {2} + 2(iaf; — Ei)x,-}]dx

DO} =

N

f1
exp [-—% ; (20} + 2ia£.~0i):|

Writing
(10) fii=k fo=f+1-k
we get finally
—tery _ (V) 'TGRU + 1) Lo\
peir - R [(14+ 3 0)

(11) exp [“5 ; (o26? + 2ws.o.)]

From the identity of (8) and (11) we conclude that T is distributed exactly
the same as L with the appropriate ‘“degrees of freedom” f; and f; given by (10).
But the elementary probability law of L has already been derived by P. C.
Tang [5). Using his result we immediately write down the elementary proba-
bility law of T':

(12) p(T) = e Z - m Lt e

where f1 and f; are given by (10) and
1
(13) A= ZT. = Z cii$ifi

.-1 2 1,7=1

in accordance with (5). The tables of probability integrals prepared by Tang
can, of course, be used to suit our purpose.
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2. An Optimum Property of the T-Test. To any reader familiar with the
Neyman-Pearson theory of testing statistical hypotheses [3, 4], the theorem
stated below may be of considerable interest.

Denote by W the k(f 4 1)-dimensional space of the z; and 2, and let w be any
region in W which may possibly serve as a critical region for the rejection of the
hypothesis Ho. Let us speak of a critical region w as belonging to the class D
if w satisfies the following condition:

k
(14) / P, 2)d(, 2) = e + 5 2 culili + B

t,7=1

where ¢ < 1 is a positive constant independent of the {;, ¢;; and the region w,
a is a constant depending on w only, but not on the ¢; or ¢;; , and where R for
any given set of values of the c;; is an infinitesimal of at least the third order
as all the ¢, tend to zero.

TueoreM. Of all the regions belonging to the class D, the particular region
which gives the largest possible value to the coefficient o in the equation (14) is the
region defined by T > T., where T is a constant so determined that the probability,
when all £; vanish, of the observed T being not less than T is exactly e.

The significance of the theorem is clear. Every critical region belonging to
the class D serves as an unbiased exact test of the hypothesis Hy, ¢ being the
preassigned chance of rejecting H, if it is true. Further, as is seen from (14),
as the ¢, start to depart from zero, the increased chance of rejecting H, due to its
falsehood is approximately proportional to the quantity Zc.;¢:f;. The co-
efficient o therefore measures the power of the critical region w to detect the
falsehood of Hy , at least when the departure of the {; from zero is small. Our
theorem asserts that in this particular sense the T-test is the most powerful of its
kind.

The method of proof is very much the same as that by which Neyman and
Pearson proved some of their general theorems concerning unbiased tests. How-
ever, as the present theorem has not yet been contained in their more general
results, we shall give it a full proof without referring, save in one occasion, to
these authors.

Proor. Write

vii + zi2; = 8ij ¢ j=1,2---,k)
k
(15) Pz, ) = (/B HHDCHID exp [_; pops s.-,]

t,g=1

and denote by po(s) the simultaneous elementary probability law of the variables
s;; derived from (15). Let W, be the domain of all possible positions of the point
(s, $12, - -+ , Skk) in the 3k(k + 1)-dimensional space.

We know, although we omit the proof of it, that there is no elementary proba-
bility law of the variables s;; other than po(s) which has the same moments of
all orders as those derived from po(z, 2’). It then follows that if g(s) be any
summable function of the s;; and if
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(16) [ (IL s ) gmras = 0

2,7=1

for all positive integers r;; or zero, then we must have g(s) = 0 except perhaps
on a null set of points.
It follows therefore that the identity

(17) L g(s)po(s)ds = 0

implies the identity g(s) = 0 provided g(s) does not involve the parameters c;; .
For, substituting for po(s) its expression as given by Wishart [8] we shall have

(18) K/'; g(8)po(s) ds = /;} g(s) | S IW_") exp [—% ~'t=1 Ci;‘Sii] ds=0

where | S| = |s;;| and K is some constant. Differentiating (18) successively
with respect to the ¢;; and dividing the results by K, we shall regain the equations
(16). Hence it follows that g(s) = 0.
This being established, let w be any region belonging to D and rewrite the
equation (14), so that
k

(Va0 [exp| =1 3 el — 1 = 1) + o | e, )

(19) k

=e+ g 2 cititi+ R
1,)=1

Setting all the ¢; to zero in both sides of (19), we have

(20) / po(2,2)d(z,2') = ¢

identically in the ¢;;. Differentiating (19) once with respect to {; and after-
wards setting all the {; to zero, we easily get

(21) /z,-po(z, 2)d(z,2) =0 (i=1,2 ---k)
for all possible values of the c;; .

Finally, differentiating (19) with respect to {; and then to {; and putting all
¢: = 0 in the result we obtain

k k
/{(}; Cihzh> <’; C,‘hZh) - C.';‘} oz, 2)d(z,2") = aci; (1,j=1,2,--- k)
whence, renumbering (20)
k
(22) “Zl CinCinQn = BCi; (,j=1,2---,k)

in which we denote by 8 = a + e and
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qn = / zhzlpo(Z, Z,) d(Z, Z,) (h;l = 1: 27 Y k)

If we denote by @ the matrix of order k formed of the elements gx;, we see that
(22) may be written as

CQC = BC,
whence, since C has its inverse matrix, C™,
Q= pC”
ie.,
(23) i = Bei7” (Gj=12--,k

where ¢{;" denotes the element in the matrix C™' which corresponds to the
element c;; in the matrix C.

Conditions (20), (21) and (23) are necessary for the region w to belong to the
class D. They are evidently also sufficient.

Let us evaluate the integrals in (20), (21) and the g;; by first evaluating the
surface integrals on any surface, say G(s), on which all the s;; have constant
values, and then integrating the results with respect to the s;; over a region,
say w; , of the s;; contained in W,. Thus we may write (20), (21) and (23) in
the form

(24) f(8)po(s) ds = ¢, / gi(s)po(s) ds = 0, / eii(8)po(s) = Bei7?,
('L;j = 1y27 "'yk))
where

1 ,

56) = o5 [, e ra6e
1 '

gi(s) = Eazs—) /(;(H 2ipo(2, 2') dG(s)

eii(8) = 5;%—5 L " 2z:2;po(z, 2') dG(s)

It is readily verified that the function po(z, 2)/po(s) is free from the parameters
¢i;, and consequently so are the functions f(s), gi(s), ¢:;(s). Besides, we can
extend the definition of these functions in the whole domain W, by assigning
them the value zero outside of the region w; . Doing this we can now write the

equations (24) as

/ (f(s) — e)po(s) ds = 0, fw gi(8)po(s) ds = 0,
(25) w1 1
ﬁ [pii(s) — vsi] po(s)ds = 0 (4, =1,2 -,k

-

B.

wherey =

f+1

+
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Now all the equations (25) are of the form (17); consequently, according to
the already established result and remembering the definitions of the functions

1(s), gi(s) and ¢;;(s), we must have

(26) ﬁ - Doz, 2) dG(s) = epo(s)
(27) L(e) zipo(z,2) dG(s) = 0
(28) /G " zi2;po(2, 2') dG(s) = vsi;jpo(s)

in the whole domain W, .

Hence the most general region belonging to the class D is constructed as
follows. On any surface s;; = const. (¢,7 = 1, 2, ... k) we take an areal region
such that it satisfies the equations (26)—(28); we then allow the s;; to vary in the
whole domain W,;. Equations (28) may now be replaced by

2
(28" / (f_l - z_,z1> po(z,2) = 0, (G,j=1,2,---,k)
a(s) \Su Sij

Let us call w, the region defined by 77 > T.. Since wo belongs to the class
D (cf. (12)), its cross section, say Go(s), by any surface s;; = const. (¢, j = 1, 2,

.-+, k) must satisfy the equations (26), (27) and (28’). Sincey = f%_l (a4 e),
all we have to prove now is that among all the areal regions G(s) satisfying the
equations (26), (27) and (28’) it is the region Go(s) that gives the largest possible

value to ypo(s). Now
2
(29) v = [ 8 i) de, )
a(s) Su

and, according to a Lemma of Neyman and Pearson, [3, p. 10] the right-hand
side of (29) will attain its maximum value if G(s) is defined by an inequality
of the form
2 k 2 k

(30) 2> 3 a,-,'(—z-1 - ﬁ) + X bai+

S11 =1 S11 Sij i=1
where the a;;, b; and ¢ are constants so determined as to enable the region G(s)
to satisfy the equations (26)-(28). We shall show presently that the region
Go(s) is defined by such an inequality.

The inequality 7' > T'. may be written as

,|v$ii S 1
|vi; + 22;] — 1+ T.
f.e.
| 8 — 2izj | 1
[si]  — 14T

or
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k
- T
31 GV gz >
(31) 5;187 2z1—1+T¢
where s{;7" denotes the (i, j)th element in the inverse matrix of || si;||. The

region Gy(s) is therefore defined by the same inequality (31) in which we regard
the s;; as constants.
If we put

1 - 1 1 ..
aii=-]_csijs§fl)! bi=0; ('L;]=1)2;""k)

CT RIS+ T.
in (30) we can easily reduce the inequality (30) into (31).

The proof is now complete.

3. Note on Applications of T. It is already known that the T-test may be
used for the following purposes (a) and (b):
(a) Given a k-variate normal surface

p@ = VB ew [ - 1 3 eile— e - 6|

1=

with the unknown &; and ¢;;. n observations

(@1, Tory -0y Tha), =12 -..,n)
having been made, it is required to test the hypothesis that the £; have the par-
ticular values &) fori = 1,2, ... k.

Here we use the T-test with
2= Vn@—§), = 14_‘:1 (1 — &) (F0 — %)
G=A/nE—8), f=n-1

(i,j_—_ 1y2) "')k)
where

n
T; = 1 qu

n 1=1

(b) Given two k-variate normal surfaces

m(z) = (\/2r)C* exp (— —; > cilw — £)(xi — Ef))

ii=1
iy oo 1S
p®) = (VEC o (~ 3 st = s = )
where the ¢;; are common to the two surfaces while all the &, &;, c;; are un-
known. Samples of 7, and n, having been drawn respectively from the two
populations, to test the hypothesis that & = = for all 7.
Let the samples be
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(@12, T21, - -+, Tha), =12 --.,m)
and
Winy Youy =+ 5 Ya), h=1,2,---,m)
Let
n1 1
To= 2Ty Gi= - 2l (t=1,2 -,k

We use the T-test with

2 = 4/ tata (& — 74, v::' = Z (g — 2) (0 — &) + ’; (yin — §)(yan — 75)

n + N2 =1

. nineg . A
?u——/‘/n————” EG—m), Sf=m4+n-—2
(%.7— 1’27"',k)

A third application of 7', which appears to be novel, is the following:
(c) Given a (k 4 1)-variate normal surface

k+1

- 1
p@) = (VISP e | -1 B dite— )-8, D= ldl,
=
where the ¢; and d;; are all unknown. = observations

(zu,xn,---,z,,.,.l,;) (l=1,2,--~,n)
having been made, to test the hypothesis that all the &; are equal.
If we put
Yi = T — Tk =12 ...,k),
then we have a k-variate normal surface for the variables y; .
p@) = (v/Zr)™C* exp [— %‘:’: eilys — m)]

where n; = §; — & (€ =1,2, ... | k). Thus the problem is reduced to testing
the hypothesis that »; = 0 for¢ = 1, 2, ... | k and therefore belongs to the
type (a). Write

Yia = Ta — Tr41,l =12 ...,kl=12...,n)

" and

n

_ 1 .
y"=§2y”r (7'=1121"'7k)~

=1

We use the T-test with
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=V, f=n+1

Although there are no simple expressions for the ¢;;, there is one for the param-
eter Z cimim;, on which alone the distribution of T' depends. We have indeed

G,j=12--,k)

1 01, k41 1
k
22 ciminy = % M R
m £ -0 Een 0 0
1 oo 1 0 0
where

1 01, k41 1

D= k41,1 **° 0;k+1,k+1 1

1 “ e l 0

where ¢;; is the covariance between z; and z; .
Expressing 7' in terms of the original variables z, we have

S11 812° ¢ 81,k41 5 1
T 1 Sk41,1 **° Sk, k4l -'z'k+1 1
=T D
T Zrq1 0 0
1 - 1 0 0
where
Sn 81, k1 1
D = Sk41,1 Sk 1
1 ee 1 0
and where
1 1 & _ _ ..
:E,-:—Exil; si)‘:‘z:(xil_xi)(xil“‘xi)y (Z,]=1,2,"°,k+1)
N =1 n =1

Therefore T is independent of which variable has been taken as the (k + 1)st.
Un1versiTy COLLEGE, LoNDON.
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