THE PROBLEM OF m RANKINGS
By M. G. KenpALL AND B. BABINGTON SMITH

1. Introduction. If n objects are ranked by m persons according to some
quality of the objects there arises the problem: does the set of m rankings of n
show any evidence of community of judgment among the m individuals? For
example, if a number of pieces of poetry are ranked by students in order of
preference, do the rankings support the supposition that the students have
poetical tastes in common, and if so is there any strong degree of unanimity or
only a faint degree?

The problem in its full generality permits of no assumption about the nature
of the quality according to which the objects are ranked, other than that ranking
is possible. No hypothesis is made that the quality is measurable, still less
that there is some underlying frequency distribution to the quantiles of which
the rankings correspond. The quality is to be thought of as linear in the sense
that any two objects possessing it are either coincident or may be put in the
relation “before and after.” A metric may, of course, be imposed on this linear
space by convention; but the relationship between objects is invariant under
any transformation which stretches the scale of measurement. In particular,
it is not a condition of the problem that the ranking shall be based on a distri-
bution according to a normal variate.

It is permissible to denote the rankings by the ordinal numbers 1, 2, - .. n;
but it is not permissible, without further discussion, to operate on these num-
bers as if they were cardinals. This point seems to have been inadequately
appreciated. For instance, when m = 2 we have the familiar case of rank
correlation between a pair of rankings; and this is frequently treated by sub-
tracting corresponding ranks, squaring, and forming the Spearman coefficient

6S(d*

n—n

1) p=1-— .
To justify this procedure it is necessary to explain what is meant, for example,
by such a process as (4th minus 8th), or what the square of this difference of
ordinal numbers represents.

It is worth stressing that the necessary transition from ordinals to cardinals
can be made without invoking a scale of measurement. When we rank an
object as first we mean, in effect, that no member of the set of n is preferred
to it; when we rank it as the rth we mean that (r — 1) objects are preferred
to it. The ordinals of the ranking are then biunivocally related to the cardinals
expressing the number of objects which are preferred. It is thus legitimate
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to apply the laws of cardinal arithmetic to them. For example, if an object 4 is
ranked r; by Brown, r; by Jones and r; by Robinson we may form the sum
(r1 + 72 + 13), which is to be interpreted as meaning that, taking the preferences
of the three persons together, there were (1 + 72 + r3 — 3) cases in which
some other object was preferred to A. The point is of some importance, in
view of the prevailing practice of replacing ranks by quantiles of the normal
distribution—a practice which cannot always be regarded as justifiable and is
sometimes little short of desperate.
To fix the ideas, consider the following three rankings of six objects

Object: A B C D E F

5 4 1 6 3 2

2 3 1 5 6 4

4 1 6 3 2 5

Sum of ranks 11 8 8 14 11 11

We may sum the ranks for each object, as shown. These sums (which must
add to 63, and in general to mn(n + 1)/2) reflect the degree of resemblance
among the rankings. If the resemblance were perfect the sums would be 3,
6, 9, 12, 15, 18 (though not necessarily, of course in that order) and in such a
case would be as different as possible. On the other hand, when there is little
or no resemblance, as in the example given, the sums are approximately equal.
It is thus natural to take the variance of these sums as providing some measure
of the concordance in the rankings. If S is the observed sum of squares of the
deviations of sums of ranks from the mean value m(n + 1)/2 (i.e. is n times
the variance) we may write
128

&) W= m(n® — n)
and call W the coefficient of concordance. Here m*(n® — n)/12 is the maximum
possible value of S, occurring if there is complete unanimity in the rankings,
so that W may vary from 0 to 1. In the example given, S = 25.5, W = 0.16.

The coefficient W has arisen in several ways.

(a) W is simply related to the average of the (g‘) Spearman rank correlation

coefficients between pairs of the m rankings. It is easy to show that the average
p is given by

128
_n—n

(3) Puv—-—‘m
mW — 1
4) =1

Pay has been considered by Kelley [3] as a measure of average intercorrelation in
rankings, but he gives no results for testing the significance of observed values.



PROBLEM OF M RANKINGS 277

It is to be noted that whereas W may vary from 0 to 1, p,, may vary from
—1/(m — 1) to 1, i.e. it is asymmetrical like the coefficient of intraclass correla-
tion, to which it bears some resemblance.

(b) Friedman [1] has considered a quantity x} related to W by the equation

(5) xr = m(n — )W.

(¢) Welch [6] and Pitman [5] have considered the problem of the distribution
of variance in an array

1,03, -+ Qn
by, by, -+ ba

etc., for permutations of the numbers a, b, etc. in rows.

This is more general than the ranking case, in which a; --- @, , b, - - - b, ete.
‘reduce to permutations of the numbers 1 ... n. Since S’, the total sum of
squares in an array of m rankings of n, is m*(n® — n)/12, we have

_8
® W=z

i.e. the ratio of variance between columns to the total variance.

2. Significance of W. To test whether an observed value of W is significant
it is necessary to consider the distribution of W (or, more conveniently, of S)
in the universe observed by permuting the n ranks in all possible ways. No
generality is lost by supposing one ranking fixed, and the others will then give
rise to (n!)™* values of S.

The actual distribution of W (or S), as will be seen below, is irregular for low
values of m and n, and likely to be quite irregular for moderate values. It
may, however, be shown that the first four moments of W are

(7)  pu1 (about 0) = 1
m

_2(m—1)
®) m= mn = 1)
_8(m—1)(m—2)
9 = m(n — 1)
e R e LR TR R
(10)
+"+3(m—2)(m—3)}-

2

1 The Spearman rank correlation coefficient is the product-moment coefficient of correla-
tion between the ranks considered as ordinary variate values. p..is the intraclass correla-
tion coefficient for the m sets of ranks, also considered as variate values.
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Results equivalent to these for the first three moments were given by Fried-
man [1]; and for the first four moments by Pitman [5].

In a valuable contribution to the subject Friedman showed that the distri-
bution of x? tends to that of x* with (n — 1) degrees of freedom as m tends to
infinity and suggested the use of x; (equation (5)) for an ordinary test of sig-
nificance in the x* distribution. This is satisfactory for moderately large values,
but for small values it is subject to the disadvantage inherent in any attempt
to represent a distribution of finite range by one of infinite range—the fit near
the tails is not likely to be very good. An improvement is obtained by noting
that the first four moments of the Type I distribution,

_ 1 =101 __ (]
(11) df B(p. 0 w1 - W)

are approximately those of W if m and n are moderately large, and

n—1 1
n—1 1
(3) o= m-n {7111
For practical purposes it is most convenient to put
(14) z = % ].oge M

1-w

so that z can be tested in Fisher’s distribution with (n — 1) — = (= n;) and

SR

(m —1) {(n -1) - %} (= ng) degrees of freedom.

There can be little doubt that this test is quite reliable for moderate values
of m and n; but it has hitherto been far from clear how reliable it is for low
values of m and n. This point we attempt to clear up in the present paper.

3. Distribution of S. For the case m = 2 the distribution of S is the same
ax the distribution of the S(d”) used in calculating Spearman’s rank correlation
coefficient. A table showing the distribution up to and including n = 8 has
alrcady been given (Kendall and others, [4]). Tables giving probabilities that
specified values of x2 would be attained or excceded were given by Friedman [1]
forn =3, m = 2-9;andn = 4, m = 2-4. We have taken this work somewhat
further and obtained the distributions for n = 3, m = 2-10; n = 4, m = 2-6;
and n = 5, m = 3. Tables 1-4 give the probabilities based on these distri-
butions.

These distributions were obtained by two mecthods. The first consisted of
building up the distribution for (m + 1) and n from that of m and n. For
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TABLE 1

Probability that a given value of S will be attained or exceeded, for n = 3 and values
of m from 2 to 10

Values of m
S 2 3 4 5 6 7 8 9 10
0 {-1.000| 1.000{1.000 |1.000 [1.000 (1.000 [1.000 {1.000 |1.000
2 .866| .944| .931 | .954 | .956 | .964 | .967 | .971 .974
6 .500f .528( .653 | .691 .740 | 768 | .794 | .814 | .830
8 .167| .361| .431 | .522 | .570 | .620 | .654 | .685 .710
14 .194| .273 | .367 | .430 | .486 | .531 .569 | .601
18 .028 .125 | .182 | .252 | .305 | .355 | .398 | .436
24 .069 | .124 | .184 | .237 | .285 | .328 | .368
26 .042 | .093 | .142 | .192 | .236 | .278 | .316
32 .0046| .039 | .072 | .112 | .149 | .187 | .222
38 .024 | .052 | .085 | .120 | .154 | .187
42 .0085 | .029 | .051 .079 | .107 | .135
50 L0377 | 012 | .027 | .047 | .069 | .092
54 .0081 | .021 | .038 | .057 | .078
56 .0055 | .016 | .030 | .048 | .066
62 .0017 | .0084 | .018 | .031 .046
72 .013 | .0036 | .0099 | .019 | .030
74 .0027 | .0080 | .016 | .026
78 .0012 | .0048 | .010 | .018
86 .0%32 | .0024 | .0060 | .012
96 .0832 | .0011 | .0035 | .0075
98 .0%21 | .0%86 | .0029 | .0063
104 L0326 | .0013 | .0034
114 .0%1 | .0%66 | .0020
122 .0%61 | .0%35 | .0013
126 .0%61 | .0%20 | .0%83
128 .0%36 | .0%97 | .0%51
134 L0454 | .0%37
146 , L0411 | .0%18
150 L0411 | .0%11
152 L0411 | .0%85
158 L0411 | .0%44
162 .0%60 | .0%20
168 .0411
182 .0%21
200 .0799
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TABLE 2
Probability that a given value of S will be attained or exceeded for n = 4 and
m = 3and b
S m=3 m=25 S m=25
1 1.000 1.000 61 .055
3 .958 .975 65 .044
5. .910 .944 67 .034
9 JT27 .857 69 .031
11 .608 771 73 .023
13 .524 .709 75 .020
17 .446 .652 77 .017
19 .342 .561 81 .012
21 .300 .521 83 .0087
25 .207 .445 85 .0067
27 .175 .408 89 .0055
29 .148 .372 91 .0031
33 .075 .298 93 .0023
35 .054 .260 97 .0018
37 .033 .226 99 .0016
41 .017 .210 101 .0014
43 .0017 .162 105 0%64
45 .0017 .141 107 .0%33
49 .123 109 .0%21
51 .107 113 0%14
53 .093 117 0448
57 .075 125 0°30
59 .067

example, with m = 2 and n = 3 we have the following values of the sums of
ranks, measured about their mean:

Type
0

1
0
0

(= )

Frequency

1

2
2
1

Here —2,1, 1, and 2, —1, —1 are taken to be identical types, for they give the
same value of S and will also give similar types when we proceed to m = 3 as

follows.

In the case m = 3 each of the above type will appear added to the six permuta-
tions of —1, 0, 1; e.g. the type —2, 0, 2 will give onc cach of —3,0,3; —3,1, 2;
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TABLE 3
Probability that a given value of S will be attained or exceeded for n = 4 and
m = 2,4and 6
S m =2 m = 4 m =6 S m =6
0 1.000 1.000 1.000 82 .035
2 .958 .992 .996 84 .032
4 .833 .928 .957 86 .029
6 792 .900 .940 88 .023
8 .625 .800 .874 90 .022
10 .542 .754 .844 94 .017
12 .458 .677 .789 96 .014
14 .375 .649 772 98 .013
16 .208 .524 .679 100 .010
18 .167 .508 .668 102 .0096
20 .042 .432 .609 104 .0085
22 .389 .574 106 .0073
24 .355 .541 108 .0061
26 .324 .512 110 .0057
30 .242 .431 114 .0040
32 .200 .386 116 .0033
34 .190 .375 118 .0028
36 .158 .338 120 .0023
38 .141 .317 122 .0020
40 .105 .270 126 .0015
42 .094 .256 128 .0%90
44 .077 .230 130 .0%87
46 .068 .218 132 .0%73
48 .054 .197 134 .0%65
50 .052 .194 136 .0%40
52 .036 .163 138 .0%36
54 .033 .155 140 L0328
56 .019 127 144 .0%24
58 .014 .114 146 .0%22
62 .012 .108 148 .0%12
64 .0069 .089 150 .0%95
66 .0062 .088 152 .0462
68 .0027 .073 154 .046
70 .0027 .066 158 .0%24
72 .0016 .060 160 .0'16
74 .0%94 .056 162 L0412
76 .0%94 .043 164 .0580
78 .0%94 .041 170 .0524
80 L0472 .037 180 .0813
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TABLE 4
Probability that a given value of S will be attained or gxceeded, for n = 5 and m = 3
S m =3 S m =3
0 1.000 44 .236
2 1.000 46 .213
4 .988 48 172
6 .972 50 .163
‘8 .941 52 127
10 .914 54 117
12 .845 56 .096
14 .831 58 .080
16 .768 60 .063
18 .720 62 .056
20 .682 64 .045
22 .649 66 .038
24 .595 . 68 .028
26 .559 70 .026
28 .493 72 .017
30 .475 74 .015
32 .432 76 .0078
34 .406 78 .0053
36 .347 80 .0040
38 .326 82 .0028
40 .291 86 .0390
42 .253 90 .0469

-2,-1,3;-2,1,1; =1, —1,2;and —1,0, 1.

-3
-3
-2
-2
-1

0

Type
0

1
0
1
0

0

O = = NN W

These types are then counted
for each of the four basic types of m = 2 and we get:

Frequency

1
6
6
6
15
2

The case m = 4 is treated by considering the numbers of types obtained by
adding the six permutations of '—1, 0, 1 to the types for m = 3; and so on.

This method is quite convenient forn = 2and n = 3. For n = 4 it becomes
difficult owing to the labour of considering 24 permutations at each stage and to

the increase in the number of types.

the labour becomes excessive.

For n = 5 there are 120 permutations and
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The second method employed is a generalisation of a procedure we used for the
Spearman coefficient. Taking first of all the case m = 2, consider the array

a2 a3 a4 .. a(n+l)
as a4 a& .. a(n+2)

........................

a(n+l) a(n+2) a(n+3) . a2n

Any permissible set of values of the sums of ranks is obtained by selecting n
entries from this array so that no entry appears more than once in the same row
or column. If then, subtracting from each index the mean (n 4+ 1) and squaring,
we write

—1)2 —2)2
(.1,('l v a(" 2. al a°
—2)2 —3)2 0 1
(15) E = a® P oL 4 a
—2)2 —1)2
0 1 I =) ](ﬂ 1)

the values of S are the powers of a in E when it is expanded as a sum of n! terms
each of which is obtained by multiplying » factors which do not appear in the
same row or column. The distribution of S is arrayed by the expansion of E,
the number of values of any S being the coefficient of a® in the expansion.

Similarly, for m rankings, the distribution of S is given by the expansion of an
m-~ dimensional E-function. For example, with m = 3 there would be a three-
dimensional E-function the bottom plane of which would be

a{a_a(n;-l) }2 a{‘_s(n;-l) }2 - a{ ”+2_3(n2+l) }2
a{4_3(n2+l) }2 a{5_3(n2+1) 2 a{ ”+3_3(n2+l) }z
{ +2_3(n2+l) }z a{ +3_:4(»2-(4) }a - a{z"“_a(?n }2

The plane above this would be

{4_3(1!;-1)}2 o a{"+3_3(n2+l)}2

(n+1)
a{n+a—3-——2 ! }3 .
and so on.

The E-function is difficult to handle in more than three dimensions, but for
the two and three dimensional case it is manageable and we used it to obtain
the distribution of S for n = 5 and m = 3.

4. Adequacy of the z-test. Tables 1-4 provide exact tests for the values of
m and n there given. It remains to be seen how good the ordinary z-test applied
to W would be for higher values. It may be presumed that if the test is satis-
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factory for any particular value of m and n for which exact results are available,
it will be so for higher values of m and n. Singe, for ordinary purposes the
significance points of z as tabled by Fisher and Yates [2] would be employed,
the most useful comparison would seem to be between those tables and the
extreme values of tables 1-4.
Forn = 3, m = 9, the 19, level is given approximately by S = 78. We have,
16 128 .

A 9 m= g By linear
interpolation of reciprocals in the tables of z we find for the 19, point and these
degrees of freedom z = 0.954. The correspondence is hardly satisfactory, and
the z test might lead to incorrect inferences in practice. Matters improve a
good deal, however, if we make continuity corrections, by subtracting unity
from S before calculating W, and increasing by two the divisor m*(n® — n)/12,
so as to allow for the finite range. In this case z = 0.979.

For n = 4, m = 6 the 19, point is approximately S = 100. We have W =
0.5556, z = 0.916; n, = 8/3, n, = 40/3. By linear interpolation as before we
find z = 0.888.

Continuity corrections again materially improve the agreement, giving a
value of z = 0.893.

For n = 5m = 3 there is no very convenient value of S close to the 19, point.
For P = 0.015 S = 74 and for P = 0.0078 S = 76.

For S = 74 (with continuity corrections) z
S . 76 ( (13 113 {1 )z

By interpolation from the tables z = 1.075. The use of the z test would lead
to the correct conclusion that a value of S equal to 74 falls below, and that of
76 above, the 19, point.

For values of m and 7 not included in Tables 1-4 it thus appears that the z-
test with continuity corrections will give sufficiently accurate results, if n is
greater than 3, at the 19 points. It may be presumed that the results at the 5%,
points are equally good and probably better. But for finer values of signifi-
cance, such as 0.1%, it is doubtful whether the test is sound. The tails of the
distribution of S for moderate values of m and n are very irregular.

For instance, the following is the tail of the distribution of S forn = 3,m = 10
(the total distribution being 10,077,696):

testing for such a value, W = 0.4814, z = 1.002, n; =

S Frequency ‘ S Frequency
96 11,340 146 740
98 30,090 150 252
104 13,830 152 420
114 7,380 158 240
122 4,200 162 90
126 3,240 168 90
128 1,450 182 20

134 1,860 200 1
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and the following is the tail for n = 4 m = 6 (the total being 7,962,624):

S Frequency S Frequency S Frequency
100 5536 122 4100 146 810
102 8160 126 4480 148 225
104 10260 128 240 150 264
106 8850 130 1152 152 120
108 3920 132 660 154 180
110° 13344 134 1980 158 60
114 5460 136 300 160 36
116 3870 138 600 162 30
118 3900 140 312 164 45
120 2472 144 100 170 18

180 1

Irregularities of this kind run all through the distributions we have obtained,
and frequency diagrams present the same sort of features we have noticed in
the case m = 2 (Kendall and others, [4]). The representation of such distribu-
tions by continuous functions, no matter how close their lower moments, is
obviously to be used with some care. Although the B-distribution or the asso-
ciated z-distribution will give reasonable significance tests at levels of 19, or
greater, they will probably be inadequate to represent frequencies occurring in
narrow ranges.

5. Some Experimental Distributions. In some previous work we obtained a
number of random permutations of the numbers 1-10 and 1-20. These were
used to derive some experimental distributions of S which may be worth re-
cording. Table 5 gives the distribution for 200 sets of pentads of 10 and
Table 6 that for 100 triads of 20. In the distribution of Table 5, the mean of
the grouped distribution is 404. The theoretical mean is 412.5 with a standard
error of 12.3. 1In Table 6 the mean is 1936, the theoretical mean being 1995
with s.e. 53. The distributions accord quite well with expectation.

In conclusion we give two examples to illustrate some points of importance
in ranking work. The first is a case in which ranks appear as the primary
variate and in which the assumption of normality is clearly illegitimate.

6. Example 1. In some experiments in random series a pack of ordinary
playing cards was shuffled and the order of the 13 cards of each suit from the
top of the pack was noted. The pack was then reshuffled and again the orders
noted. This was done 28 times. The question we wished to discuss was
whether the shuffling was good, in the sense that the cards were thoroughly
mixed at each shufflle.

Here, for each suit, say diamonds, we have 28 rankings of 13. The sums of
ranks were 183, 137, 171, 207, 188, 160, 225, 174, 216, 192, 236, 239, 220. The
mean is 196, and S = 11522, W (without continuity corrections, which are not
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TABLE 5 TABLE 6
Ezxperimental Distribution df S in Ezxperimental Distribution of S in
200 sets (m = 6, n = 10) 100 sets (m = 3, n = 20)
S Frequency S Frequency
0— 1 800— 4
50— 2 1000— 8
100— 7 1200— 8
150— 9 1400— 6
200— 21 1600 — 12
250 — 22 1800— 15
300— 24 2000 — 20
350— 26 2200 — 12
400— 20 2400— 6
450— 17 2600 — 5
500— 12 2800— 0
550 — 11 3000— 3
600 — 10 3200— 0
650 — 4 3400— 1
700— 5
750 — 3 Total 100
800— 3
1000— 2
1250 — 1
Total 200

worth making for these values of m and n) = 0.08075, z (equation (14)) = 0.432.
This falls just beyond the 19, point.

Similarly for the clubs W was found to be 0.0535; for the hearts, 0.0245; and
for spades, 0.0342. None of these values is significant and we conclude that the
randomisation introduced by the shuffling was good, at all events, so far as this
test was concerned. It may be added that the shuffling was done with much
more care than would be taken in an ordinary game of cards.

In psychological work there has sometimes been a confusion between the
determination of a measure of agreement between subjects and that of an ob-
jective order based on experimental rankings. It may therefore be as well to
point out that in its psychological applications the test of W is one of concord-
ance between judgments. There may be quite a high measure of agreement
about something which is incorrect.
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7. Example 2. A number of students were given 12 photographs of persons
unknown to them, and asked to rank them in' what they judged from the photo-
graphs to be their intelligence. For 16 students the sums of ranks were

112, 94, 101, 84, 97, 75, 104, 84, 102, 146, 125, 124

The meanis 104. S = 4472, W = 0.1222. 2z = 0.368, and is barely significant,
being between the 19, and the 59, points.
For 111 students the sums were

818, 670, 908, 410, 706, 526, 780, 485, 596, 1044, 959, 756
W = 0.2378, z = 1.768

This is highly significant and it is to be inferred that community of judgment
exists between students or groups of students. But there was little relationship
between the judgments and the intelligence of the photographed subjects as
given by the Binet Intelligence Quotient.

Note added in proof:

While this paper was passing through the press Professor W. Allen Wallis, of Stanford
University, kindly drew our attention to some unpublished work of his own on this sub-
ject. Professor Wallis had also arrived at the coefficient W which, he points out, is the
ranking analogue of the correlation ratio. His paper is, we understand, on the point of
publication.
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