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from which we can find

o _ 2n(1 — m)
Pre*?vie® = min + 2)(m + n)

and

e o (+3)m+HYm+n —1)
Puc? =Pve = (" DYm +n + D(m + n + 2)°

If n/m = v (a fixed constant) and = is large

2 n

= m
p° will be near 1 when n is much larger than m. This corresponds, in com-
puting C°, to dividing the smaller sample into subgroups by the larger. In
this case U and C” give essentially the same information. When m and n are
more nearly equal the two criteria are quite different. For n > m, C* has
fewer possible values than for » < m, and is therefore a more sensitive test
when n < m.

While it is doubtful that this test is biased for large samples, this question

will not be considered in the present note.
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SIGNIFICANCE TEST FOR SPHERICITY OF A NORMAL #-VARIATE
DISTRIBUTION
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1. Introduction. This note is concerned with testing the hypothesis that a
sample from a normal n-variate population is in fact from a population for
which the variances are all equal and the correlations are all zero. A popula-
tion having this symmetry will be called ‘‘spherical.” Under a linear orthogonal
transformation of variates, a spherical population remains spherical, and conse-
quently the features of a sample which furnish information relevant to this
hypothesis must be invariant under such transformations.

A situation for which this test is indicated arises when the sample consists
of N n-dimensional vectors, for which the variates are the n components along
coordinate axes known to be mutually perpendicular, but having an orientation
which is, a priori at least, quite arbitrary. A specific application for two
dimensions, treated elsewhere [1], may be mentioned. Each of N days fur-
nishes a sine and a cosine Fourier coefficient for a given periodicity, and these,
when plotted as ordinate and abcissa, yield a somewhat elliptical cloud of N
points. The sine and cosine functions are orthogonal, and their variances have
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equal expectancies for a random series. The arbitrary nature of the orientation
of axes appears here as the arbitrary choice of phase, or origin of time. Of the
five ellipses studied, three could easily have come from circular populations
(random), and two showed highly significant ellipticity.

2. Likelihood ratio criterion for sphericity. The method of Neyman and
Pearson [2] will be used to derive a test criterion which seems entirely suitable.
Let Q be the class of all normal n-variate populations, and let w be the subclass
of all normal n-variate populations satisfying the hypothesis of “sphericity.”
The likelihood ratio criterion is obtained by taking the ratio of the maximum
of the likelihood for variation of all population parameters specifying w, to the
maximum of the likelihood for variation of all population parameters speci-
fying ©. That is,

_ P(w max)
W M= P@man)

For the set Q, the probability law for a single observation of the n variates
may be written:

(2) P=K l @i I—} e—}‘,‘.",i cij(zi—ai)(zj—aj) (’i,j = 1, 2... n),

where ¢;; is an element of the matrix || a.;||™, the a;; being variances and
covariances, a; is the mean value of the variate z; in the population, and K is a
constant the value of which does not concern us here. Then a sample”of N
from Q has the probability,

(3) P=K" I i l—-hv e—}’;’:ic;;ail (I.'a—a;)(z,-m—a,-).
Letting
N N
W Zl T« = NZ; and Z} (%ia — %) (Tja — ;) =N sij,
a= a—

differentiating the logarithm of P with respect to the parameters a: and a,;,
and setting these derivatives equal to zero, the maximum likelihood estimates,

) i = %5 dij = 8ij,

are obtained. Substituting these values in equation (3) we find that the maxi-
mum value of the likelihood is

(6) P(2 max) = K" | s; [ e .

The derivation of P(w max) proceeds upon similar lines, but is simpler, for
the probability law for the set w is obtained from (3) by setting

(7) Ci; = 65.-,‘ ,
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where ¢ is any positive constant, and §;; = 0if 7 £ jand 1if ¢ = j. The result
is found to be

(8) P(w max) = K"(so) e

where s is defined by

(9) ng = Z} Sii .

/

The likelihood ratio criterion is therefore

(10) Ae = [l Sij [%]N
8 (80);" .
It will be convenient to designate the Nth root of this statistic as L, , where
the second subscript indicates the number of variates:

(11) Ly, = |_S£7_'|_*.

in
80

3. The moments of the distribution of L,, when the population is spherical.
The distribution of L., cannot be easily obtained in explicit form for a general n,
but the moments of L., when the hypothesis tested is true are easily found.

Note first that L,, may be resolved into two factors which are, when the
population is spherical, statistically independent:

(51828384 « -+ 8a)}
(12) Lsn - —s'g;r—

|7 |§~

The first factor is just the one appropriate for testing the equality of the n
variances when the orientation of the coordinate axes is fixed in advance, while
the second factor is the square root of the determinant of correlation coefficients.
The moments of the distributions of these two statistics are known (3], and
since the two are independent (for zero correlation in the population), we may
write:

(13) Mw(Len) = My(A)Mi(B),
where A and B are used to indicate the two factors, and M, indicates the Ath
moment. The moments are given by

[tV =+ )] pu TNV — 1)
(14) Mh(Lcn) = H[_T%_(N———‘_Z)_] ! I‘%(?’l(N — 14+ h))

=1

4. Significance test for n = 2. For n = 1, M)y(L,1) = 1 for any h, as it
should, since L,; is then identically 1, and the concept of sphericity is meaning-
less. For n = 2, the expression (14) reduces to,

'N—24+RNI(N—-1 _ N-—2
I'(N—1+RNI(N—-2) N-2+h

(15) Mi(Ly) =
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and the distribution is thus found to be

(16) D(Lg) = (N'— 2)L35 "dLs .

Thus for n = 2, the significance of the value of L,; obtained from a given sample
of N points in a plane is simply

a7 P(Lo < Ly) = L™

These results for n = 2 were obtained by another method in [1].

6. Significance test for n = 3. For n = 3 and higher values of n, no simple
expression for the distribution seems obtainable. In this case it appears reason-
able to fit a Pearson curve of the type,

(18) y = Kz"'(1 — )",

by adjusting p and ¢ so as to obtain agreement with the first two moments of
the actual distribution. The calculations were carried out for L}; rather than
L, itself, to simplify the moment expressions. The first moment of L is the
second moment of L., and is given as a function of N by the equation,

(BN — 6)(3N —9)

BN —2)3N — 1)’

Recurrence relations, similar to those noted by Lengyel [4] in carrying out a
similar task, hold for the moments of L; ; hence,

(20) wa () = @ + 2).
Explicit solution of the equations for p and ¢ in terms of N is possible:

_ (ON + 5(N — 2)(N — 3)
- 2(ON? — 8N —15) '’
_ 2(9N — 13)(9N + 5)
~ "9(9Nz — 8N —15) °

For values of N > 30, acceptable approximations to p and ¢ are obtained by
carrying out the division indicated in (21) and (22):

(19) #1(N) =

(21)

(22)

(23) p=3%N—4)+2/9+70/81(N + 1) -,
140
(24) q=2+§—(§ﬁ—_—2_)5' .

The values of p and ¢ are given in Table I so that those desiring other than
the standard significance levels may readily enter the Pearson tables.

For N a multiple of 4 from 8 to 48, and a multiple of 10 from 50 to 100, the
significance levels were taken from the Incomplete Beta-Function Tables, using
adequate interpolation. The final Table I was then prepared by filling in the
skelcton table by interpolation with respect to N.

From the results of Wilks [5] it follows that —2N log. L. 1s, for large N,



208 JOHN W. MAUCHLY

TABLE I

5%, 1%, and 0.1, levels of significance for the 3-dimensional sphericity criterion,
L% =AY and the values of p and q for the Pearson Type I curves used in
calculating these levels

N 5% 1% 0.1% P q
8 0.172 0.083 0.030 2.3239 2.0312
10 .278 .165 .080 3.3044 2.0194
12 .366 .243 .139 4.2911 2.0131
14 .436 .312 .197 5.2816 2.0095
16 .494 372 .252 6.2744 2.0072
18 .541 .423 .301 7.2688 2.0057
20 .580 .466 .346 8.2642 2.0046
22 .614 .504 .386 9.2605 2.0038
24 .642 .538 .422 10.2574 2.0032
26 .667 .567 .454 11.2548 2.0027
28 .689 .593 .483 12.2526 2.0023
30 .708 .616 .510 13.2506 2.0020
32 L7124 .637 .534 14.2488 2.0018
34 .739 .655 .555 15.2473 2.0016
36 .753 .672 .575 16.2458 2.0014
38 .765 .687 .594 17.2447 2.0012
40 776 .701 .610 18.2435 2.0011
42 .786 714 .626 19.2425 2.0010
44 .795 .726 .640 20.2416 2.0009
46 .804 .736 .653 21.2408 2.0008
48 .811 .746 .665 22.2400 2.0008
50 .819 .756 677 23.2394 2.0007
55 .834 776 .703 * *
60 .848 .793 .725 28.2365 2.0005
65 .859 .808 744 * *
70 .869 .821 .760 33.2345 2.0004
75 .877 .832 775 * *
80 .885 .842 .788 38.2328 2.0003
85 .891 .851 .799 * *
90 .897 .859 .809 43.2317 2.0002
95 .902 .866 .819 * *
100 .907 .872 .827 48.2308 2.0002

*No values for p and ¢ were calculated for these values of N; the levels were obtained
by interpolation (see text).

distributed approximately like x* with n(n — 1)/2 degrees of freedom. How-
ever, equation (24) above suggests that for large N one may get a very good
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approximation (for n = 3) by setting ¢ = 2; the significance test for n = 3
then becomes,

(25) P(Lg < Lis) = LN — 2) — (N — 4)L2).

Probably similar approximations can be found for other values of n. It is a
pleasure to acknowledge the helpful comments and advice which I received
from Mr. A. M. Mood of Princeton. Recognition is also due Mr. Wallace
Brey, a student assistant under the National Youth Administration, who aided
in the computations.
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A SIMPLE SAMPLING EXPERIMENT ON CONFIDENCE INTERVALS

By S. KuLLBACK AND A. FRANKEL

1. Introduction. In order to illustrate some of the notions of the theory of
confidence-or fiducial limits in connection with a course in Statistical Inference
at the George Washington University, we had the class carry out certain simple
experiments, following a suggestion in one of Neyman’s papers on Statistical
Estimation [1]. In the belief that the experimental data may be of interest
to others, we present the results herein.

2. The problem. We consider the problem of estimating the range 6 of a
rectangular population defined by p(z, 6) de = dz/0, 0 < « £ 6 and in par-
ticular, for simplicity, we limit ourselves to samples of two and four. We
consider three possible approaches to the problem, viz., by using (a) the sample
range (b) the sample average or total (c) the larger (largest) sample value.
Let us consider each in turn.

(a) Sample range. Wilks [2] has shown that for samples of n and confidence
coefficient 1 — «, the confidence or fiducial limits for the population range 6
are given by r and r/y, , where r is the sample range and . is determined by

1) Valn — (n — 1] = o

Forn=2,a=0.19andn = 4, a = 0.1792, (1) yields ¢, = 0.1 and ¢, = 0.4
respectively. Accordingly, for samples of two with confidence cocfficient



