DETERMINATION OF SAMPLE SIZES FOR SETTING
TOLERANCE LIMITS

By S. S. WiLks
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1. Introduction. In the mass production of a given product or apparatus
piece-part, Shewhart' has discussed a practical procedure for detecting the exist-
ence of assignable causes of variation in a given quality characteristic of the
product as measured by a variable z. For example, £ may be the thickness in
inches of a washer or the tensile strength in pounds of a small aluminum casting
made according to a given set of specifications; z varies in value from washer
to washer or from casting to casting. Now suppose assignable causes of vari-
ability in z have been detected by Shewhart’s procedure and have been suffi-
ciently well eliminated by making appropriate refinements in the manufacturing
process so that for all practical purposes the remaining variability may be con-
sidered “random,” thus allowing us to assume that we have a statistical universe
U in which z is a random variable with some distribution law f(z). f(z) is, in
general, unknown and cannot be determined until long after the refined manu-
facturing operation has been under way. Two types of situations arise in prac-
tice, one in which z is a discrete variable taking on only certain isolated values
as for example 1, 2, 3, - - - , ete. with corresponding probabilities p(1), p(2), - - -,
the other being that in which z is essentially a continuous variable over some
range with a corresponding probability density function f(x). In this paper we
shall consider the latter type of variable.

The problem now arises as to how we should calculate a tolerance range
(L, L) for z from a sample, and how large the sample should be in order for
the tolerance range to have a given degree of stability. More specifically, for a
giwen method of calculating tolerance limats, how large should our sample be in order
that the proportion P of the universe included between L, and Ly have an average
value a, and will be such that the probability is at least p that P will lie between
_ two given numbers, say b and ¢? For example, if a tolerance range is obtained
by using a truncated sample range, that is by letting L; be the greatest of the r
smallest values in a sample and L, the smallest of the r largest values, r being
chosen so that E(P) = .99, how large should the sample size, say n, be in order
for the probability to be .9 that P would lie between .985 and .995? A similar
question can be asked when the setting of only one tolerance limit is under
consideration.

1W. A. Shewhart, Economic Control of Quality of Manufactured Product, D, Van Nos-
trand Company, New York, 1931.
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2. Tolerance ranges from truncated sample ranges. Suppose that nothing is
known about the distribution function f(z) except enough to enable us to assume
that it is continuous. Let a be the average value which P is to have, and suppose
a sample of size n is drawn from the universe U so that [(1 — a)(n + 1)]/2 = 7,
say, is a positive integer. Let z;,xs, - .-, 2, be the sample values of x arranged
in order of increasing magnitude. Let L, = z, and Ly = z,—»;;. The distribu-
tion law, say g(P) of P the proportion of the universe included between these
values of L, and L, is given by

I'(n 4+ 1) (n+D—1 (1—a) (n+D) -1
1 P)dP = - P 1—-P 7T dP.
O (PP = T - ooy, 0D
This follows at once from the joint distribution law of z, and ,_,,, which can be
derived as follows: Consider the z axis as being divided into £ mutually exclusive
intervals I,, I, ..., I+ with p;, pa, .-+, pr as the associated probabilities

k

<Z P = 1). In a sample of size n the probability that =i, ny, ---, m
1
k

(E n; = n) values of z will fall into Iy, Is, --- , I; respectively is given by
1
the well-known multinomial distribution law

n! ny, . ne nE
———— D1 P2 - Pk . -
il e g PP P

@

To get the distribution of z, and 2,1 we take &k = 5 and for I, I, ..., Is
we take the intervals (— «, z,), (2., z. + dz,), (@ + dzr, To—rp1);, (Ta—ry1,
Tnrp1 + ATp—ry1), @n—rg1 + dTnrp1, ) respectively. The values of pi, pa, -« -,
ps are the integrals of f(x) dx over these five intervals respectively and the values
of ny,ng, .- ,ngarer — 1,1, n — 2r, 1, r — 1 respectively. By substituting
these values of the p’s and »’s in (2) and neglecting terms of order higher than
dz, dz,_..1 the probability element for x, and ,_,, is found at once to be’

[r—1) ']”2'(” — 2n)! ( [ :rf (x) dx)r—l ( fz :m 1@ dx)r—l

( [ e dx)"_2’ @) f@nrss) s dnrsr -

T

@

Now let [ ’ fl@) dz = u, f f(x) dx = v, then since du = f(z,) dz, and dv =
L Zp—r+1

—f(@n—ry1) dTn_ry1 , the probability element of u and v miay be written as

I'(n + 1) g
v POt —2r + 1) © " (A —u—0)""dud,

2 For a discussion and a rather complete bibliography of the probability theory of ‘‘ex-
treme values’’ such as z, and 2,_r.1 see E. J. Gumbel, ‘‘Les valeurs extrémes des distribu-
tions statistiques,”’ Annales de U'Institut H. Poincaré (1935).
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the region of u and » of non-zero probability being the triangle bounded by the
w and v axes and the line v 4+ » = 1. Making the change of variables
1 —u — v = Pand u = Q, integrating with respect to @, and setting r =
(1/2)(1 — a)(n + 1) we find the distribution of P, the proportion of the uni-
verse included between z, and x,_41 to be (1). It should be remarked that even
if Ly and L, are obtained by asymmetrical truncation by taking L; = z,, Ly = z,

where t — s = n — 2r + 1, the distribution of P = f f(x) dz remains unchanged.

Thus for a given p, by taking L, = z, and Ly = x:where t—s=n—2r+1=

a(n + 1), and choosing the smallest value of n for which f g(P)dP > p
b

and such that (1 — a)(n + 1) is a positive integer we have provided the answer
to the italicized question for one method of calculating L, and L. ; a method
which is valid for any unknown continuous distribution f(z).

As an example, suppose we take a = .99, b = .985, ¢ = .995 and p = .99.
The size of sample required is found to be 1000 (999 to be exact). In fact in
this case the probability of P being between .985 and .995 is .992. In this
example, we may therefore make the statement that if x is a continuous variable
under statistical control, and if samples of size 1000 are taken, the tolerance
limits L, and L, taken as the fifth smallest and fifth largest values of x in the
sample respectively, will, on the average, include 999, of the universe between
them and furthermore, the tolerance limits calculated in this way for samples
of size 1000 will, in about 99.2%, of the samples, include between 98.59%, and
99.5%, of the universe between them.

If L, and L, are taken as the smallest and largest values of z in the sample
respectively (corresponding to r = 1, i.e. sample range with no truncation),
then in samples of size 1000, these tolerance limits will, on the average include
99.89, of the universe between them and the probability is .996 that L, and Ls
will include at least 99.5% of the universe between them. If the largest and
smallest values of z in samples are used as tolerance limits and if we wish to
state that the probability is .99 that such tolerance limits will include at least
999, of the universe, the size of sample required is 660. If the probability is
lowered to .95 of including at least 999, of the universe, with such tolerance
limits, the size of sample required is 130. Engineering statisticians® have
pointed out on basis of practical experience the need of using samples of 100 to
1000 on even more cases in order to set tolerance limits which will include at
least 999, of the universe with a satisfactorily high degree of certainty. The
examples we have given based on sizes 1000, 660 and 130 will indicate the degree
of stability to be expected for tolerance ranges for samples in this range of sizes.
The degree of stability of the tolerance limits for samples of the size range 500
to 1000 appears to be of about the order of that demanded by the engineering
statistician.

3Cf. W. A. Shewhart, Statistical Methods from the Point of View of Quality Control, The
Gaduate School of the J.S. Department of Agriculttre, Washington (1939). P. 63.
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In some cases it may be desirable to determine the size of samples so as to
control the tolerance limits L, and L, individually, that is so that the probability
is at least p that the proportic s of the universe contained in the tails of the
distribution cut off by L, and L. are in both cases between two given numbers,
say d and e. In this case we would determine the least value of n so that

) f:f;h(u, W duds > p

where h(u, v) du dv denotes the function given by (4). For example, suppose
p=.99,d=0e=.005 r=1 The size of the sample needed.is 1060.
Thus in samples of size 1060, the probability is .99 that L, and L, taken as
the smallest and the largest values in the sample respectively will cut off tails
of the universe such that each tail will include not more than 0.5%, of the universe.

If it is desired to set only one tolerance limit, say L, then the distribution
of u would be used. This can be found by integrating (4) with respect to v.
The distribution is

F(n + 1) r—1 n—r

(6) NONCETESY v (1 —uw)" " du.
The probability p that the proportion of the universe in the tail which will be
cut off by L, is between d and e is given by integrating the expression (6) from
d to e. The value of n required to obtain any given value of p can then be
determined. For example, in the case where p ='.99,d = 0,¢ = .005, r = 1,
the size of the sample needed is 920.

3. Tolerance range for a normal universe. The method of setting tolerance
limits discussed in Section 2 assumes nothing about the distribution f(x) except
that it is continuous. If f(z) can be assumed to have a given functional form
involving unknown parameters, methods based on the theory of statistical es-
timation and having.greater efficiency than those already discussed could be
used for setting tolerance limits. We shall not go into a general discussion of
such methods here although it does appear desirable to consider one very im-
portant example of the application of the methods. Suppose f(x) can be assumed
to be a normal distribution function with unknown mean m and variance ¢°.

In a sample of size n let Z be the sample mean and let 8* = Y, (z; — £)*/(n — 1).
1

Let us consider as tolerance limits L{ and L, the quantities # & ks. The pro-
portion P’ of the universe included between these limits is

Y __IT ks —3(z—m)2/ac2
) P = v e dz.
T o Vi

—ks
We wish to determine k so that E(P’) = a. It can be verified by straight-

forward analysis that E(P’), defined by f f P'f(z, s) ds dz, has the value
'—o0 YO

I'(n/2)

‘ d — oy
®) V7 — 1)T((n — 1)/2) f_, 1+ 22/(n — 1))* L= M/n +1
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where f(Z, s) is the well-known distribution of Z and s given by

—1)/2 n—2
Vn(n — 1)@V — [ (8—m) 2+(n—1) 2] [o?

2" 6" /7T ((n —.1)/2)

Therefore the tolerance limits L; and L, which will inélude, on the average,
a proportion a of the universe between them are

(10) Z+teV(n+ 1)/ns

where {, is the value of ¢ for which the integral in (8) has the value a. The
value of ¢, can be found from Fisher’s t-table for n — 1 degrees of freedom, and
for certain values of a including .99, .95, etc. and for values of » up to 30. Al-
though the tolerance limits (10) will include, on the average, the proportion a
of the universe between them, we must now investigate the size of sample
needed to obtain a given degree of stability of P’. The exact distribution of P’
seems to be too complicated to be of any practical value. It is not difficult to
verify that to within terms of order 1/n, the variance of P’ is given by

(11) o = iae—tg/(vrn)

The variance of P, the proportion of the universe included between z, and
Znry1, to Within terms of order 1/n is given by

(12) s = a(l — a)/n.

Tor a large sample of a given size, say n = 100 or more, a simple comparison
of the stabilities of thé two tolerance ranges (., Zn—r41) and (& == ta\/ (n+1)/n-s)
can be made by comparing ¢% and o%:. For a = .99, the efficiency ratio o%//o%
is .28 indicating that for large n and when the universe is normal, samples of
size .28n have the same degree of stability in setting tolerance ranges (10) as a
sample of size n has when (z,, Z,—r41) is taken as the tolerance range. The same
thing may be viewed in another way: The fact that the range of values of P’ is
0 to 1 suggests that we may be able to get a fairly close approximation to the
true distribution of P’ by fitting a Pearson Type I function of the form

(9)

P(a + B) ra—1 nB-1
P11 -P
fre L TR
determining « and 8 by equating the mean and variance of the distribution (13)
to the mean and variance of P’ respectively. Accordingly we find

(13)

a = [d(1 — a) — ach/)/o

B = [a(l —a)’ — (1 — a)o?:)/c%:.
Thus it will be seen from (14) that in order for the ﬁtte;l El};stribution (13) to be
identical with the distribution (1) a sample of only W_%_a(t;e_“ o) (n + 2) cases is

needed. __
In case only one tolerance limit is to be set, e.g. £ — t:\/(n + 1)/n-s, the

(14)
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proportion, say ', of the universe which will be included in the tail has mean
2+ t2)

4mn

ratio of this variance to that of u, which is approximately (1 — a)/4n for

large n, gives the efficiency of using z, for the lower tolerance limit in case of a

normal universe. For example, if a = .99, the efficiency is .18.

It is perhaps appropriate here to point out the distinction between confidence
limits and tolerance limits. It is well-known that in a sample from a normal
universe with mean m the probability is @ that the confidence limits & == f.s
will include the population mean m between them. The tolerance limits
& =+ t,n/(n + 1)/n-s, on the other hand are used to estimate the middle 100a%
of the universe. Although the tolerance limits # = ¢t.\/(n + 1)/n-s are much
more stable for a given sample size than those given by x, and Z,_41, in case
of a normal distribution, it should be emphasized that in case of even slight
non-normality, particularly when skewness is present, the former pair of limits
are apt to give very erroneous results with reference to the proportion of the
universe included in the tails. Confidence limits estimating m are probably
much less sensitive to skewness than tolerance limits estimating the middle
100a%, of the universe, particularly when a is nearly unity.

Another important aspect of the problem of setting tolerance limits is the
following: Suppose small samples of a given size are taken from a universe
under statistical control. How many of these small samples should be taken
as a basis for determining tolerance limits L; and Ls of some function, say g,
of the samples (e.g. the sum of the measureménts in each sample) so that the
proportion of samples in the universe of such samples having values of g between
L, and L, will have a given mean with a given degree of stability? One obvious
approach to this question is to consider a universe of samples in the same manner
in which we have considered a universe of individuals throughout the present
paper. This approach, however, does not make very efficient use of the observa-
tions, but we shall not enter into a treatment of the problem here. This problem
and various related problems in the statistical methods of mass production
remain to be studied.

value (1 — a)/2 and variance ¢ ' (approximately) for large n. The

4. Summary. A method based on truncated sample ranges for determining
size of sample required for setting tolerance limits on a random variable z having
any unknown continuous distribution f(z) and having a given degree of stability
is given. A method for setting tolerance limits corresponding to a given degree
of stability in case f(z) is normal is discussed and a comparison of the stabilities
of the tolerance limits set by the two methods in the normal case is made.
Illustrative examples of the methods are given.



