ON A MATCHING PROBLEM ARISING IN GENETICS
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1. Summary. A statistic useful for detecting deviations from the Hardy-
Weinberg equilibrium in population genetics is discussed. Both exact and
asymptotic distributions are given and a special case where there is misclassifica-
tion is discussed. The distribution obtained also arises from a certain card
matching problem.

2. Introduction. A system of multiple alleles behaves as follows under
Mendelian inheritance: There are r distinct forms or alleles, a1, --- , a,, of a
given gene. A given individual contains two genes and can be represented as
ai/a;. If © = j the individual is called a homozygote; if ¢  j it is called a
heterozygote. The representation a;/a; is called the genotype. In reproduction
each gamete produced by an a;/e; individual contains one gene which has a
probability 1/2 of being a; and 1/2 of being @; . In fertilization a paternal and a
maternal gamete fuse to form a new individual which contains two genes, giving
the well-known Mendelian ratios. We now consider a large random breeding
population of N individuals. This will contain 2 N genes, of which the propor-
tion ¢; will be of type a;(¢ = 1,---,r; Z¢; = 1). The probability that a
random individual from the next generation will be a;/a; is g3 (¢ = 7) or 2¢:q,(5 #5),
which are known as the Hardy-Weinberg equilibrium probabilities. The
statistical problem arose in testing (by means of a sample of n individuals) the
hypothesis that this Hardy-Weinberg ratio holds against the alternative hypothe-
sis that disturbing forces decrease the number of homozygotes. The actual
data has been discussed elsewhere [1].

3. The sample distribution of number of homozygotes. We shall assume
throughout this paper that N is so large that random fluctuations in the pop-
ulation proportions from generation to generation can be ignored. Let
z;;(t £ j =1, --,r) be the number of a;/a; individuals in the sample, and let
¥i = Zii + Zj=1i; be the number of a; genes in the sample. We have 23x;; =

and Zy; = 2n. Let A = Zz;; be the number of homozygotes, and z = n — b~

be the number of heterozygotes in the sample. The probability of the observed
sample is
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Since the ¢; are unknown we use the conditional probability when y1, -+ -, ¥,
are held constant. Whenever we use the word “conditional” hereafter, this
condition will be understood. The conditional probability is
122
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where the summation =’ is over all non-negative integral values of the z;; sub-
ject to the condition

x¢;+2,-x.-,-=y¢ (’L= 1,"',1').
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where the summation Z* is over all non-negative values of the z;; subject
to the condition Z;<;x;; = n. Evidently 1/K’ is the coefficient of IIt{* in (4);
but this must equal the coefficient of this term in the left member of (3); and
thus 1/K’ = (2n)!/Iy;!. Hence the conditional probability of the observed

sample is
_n L 2
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For any function wu(@u, **+ , %1, =+ * , %) We will now let E(u) and o’ (u)
denote the conditional mean and variance of « for fixed y; , and will refer to them
simply as the mean and variance. We first obtain the sth factorial moment of
i , that is E(x{?), where 2 =z@x —1)--- (x — s + 1). Consider
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where 7 = z;x except that zi; = z:; — s, and 2’ has the same meaning as in (2).
The right member of (6) is evaluated exactly as before, giving
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From this expression we obtain
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and
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where f; = y./2n is the sample estimate of ¢;. Similarly
(3+t) (2«) (2t)
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giving
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Other moments can be similarly evaluated, in particular E(z;;) = y;/(2n — 1).

4. Asymptotic distribution of number of homozygotes. From (8), (9), and
(11) we may easily obtain

(12) E(h) = ZE(xs) = (C — 2n)/(4n — 2),
(13) o(h) = Zo* (i) + 222 o (i, ;)

2 2n + 5 n + 2 1 1
(14) = {C(n+2)+0( S ) D( - )}"§+O<h)’

where ¢ = Zy? and D = Zy}. The formula (14) is a close approximation to
(13) and is easily computed. From (5) by means similar to those classically
used to prove asymptotic normality of the binomial distribution we can prove
asymptotic normality of the conditional distribution of h; more precisely, if

n — o« and y;/n — constant (z = 1, --- ,r), then
h — E(h) 1 {‘ —22/2
—_— < — =3 3
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b. Effect of misclassification. There is a further complication in the particular
case reported in [1]. All individuals of genotype ai/a; are correctly classified,
but an individual of genotype a;/a; (¢ # j) has a known probability p/2 of being
classified a:/a; and an equal probability of being classified a;/a;. As a result,
the observed proportion of homozygotes is a biased estimate of the proportion in
the population. Let &, x;; , y; denote the true sample values, and let &/, zi; , y;
denote the recorded sample values. Then h* = b’ — ¢, where e = (n — h')-
p/(1 — p), will give an unbiased estimate, i.e. E(h*) = E(h). In order to use h*
we must have its (conditional) variance. Since h* = np/(1 — p) + &'/(1 — p),

o = [1/(1 = p)fai .

Let h — A" = ¢, then for large fixed (n — h), € is approximately normally dis-
tributed with mean (n — h)p and variance
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(n = mp(l = p) = [n — EWIp( — p)I + 0,(1/4/n)].

Neglecting the remainder term in this variance, ¢ and k have a joint normal
distribution with parameters that are easily calculated. We thus have

a—,zl, = o'f + o2+ 20(h, €), or o;z,r =Mh—-EMWp1-p + 1A - p)zo_lz' ’
giving
(16) o = o + [n — E®)p/(1 — p).

In [1] o}« was given as o; + e for the sake of simplicity. This would tend to be
smaller than (16), but only negligibly so. Strictly speaking the calculation of
E(h) and o from (12) and (14) requires a knowledge of the true y;, but the
observed y; are unbiased estimates of the y; and their use should cause no
serious trouble.

6. Combinatorial statement of the problem. This problem can also be
expressed as one of card matching as follows: A deck contains 2n cards of r
different suits; with y; cards of the ¢th suit ( = 1, --- , 7). We draw = pairs of
cards at random without replacement, exhausting the deck. What is the
distribution of A, the number of twins (pairs in which both members are of the
same suit). If 2z = n — h, the probability of exactly k twins is given by (5), and
in the limit A is normally distributed with mean given by (12) and variance
given by (14). The card matching problem does not involve the notion of
conditional probability. By introducing variables u, equal to one if the ath
pair is a twin and zero-otherwise, the moments of k can also be obtained with-
out using generating functions.
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