UNBIASED ESTIMATES WITH MINIMUM VARIANCE

By CHARLES STEIN

Unaversity of California, Berkeley

Summary. Subject to certain restrictions, a characterization of unbiased
estimates with minimum variance is obtained. For two fairly broad classes
of problems, solutions are given which are more readily applicable. These are
used to obtain such estimates in some particular cases. The applicability of
the results to problems of sequential estimation is pointed out. The problem
of unbiased estimation is not at present of much practical importance, but
is of some theoretical interest and has been treated by many statisticians. Also,
the method used in this paper may be applicable to other problems in statistics.

1. Introduction. Let R be a space of points z, B an additive class of subsets C
of R and p a measure over B such that R can be represented as the union of a
countable collection of elements of B each of which has finite u-measure. Let ©
be a set called the parameter space and let X be a random variable distributed
in accordance with the probability density function p(x|6) for some 6 €,
so that for any C ¢ B

PIXeCl0) = [ p|0) du(o.

A measurable real-valued function f(x) on R is called an unbiased estimate of the
real-valued function ¢g(8) on Q if, for every 6 e Q

™) BGX) [0) = [ f@p]0) dua) = 9.

The problem considered in this paper is that of finding an unbiased estimate
f* of g which minimizes the variance at 6, . Since this variance is

E([f(X) — g(60)]" | 60)

- = [ 1@ — g@Tp( |0) du(@)

- [U@rse10 w@ - | [ s@peln ae |,

this problem is equivalent to minimizing

® [ @1 p@| 6 duto
subject to (1). It will be convenient to introduce the measure
@ v(@) = [ p|0) du)
C
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and the probability ratios

_ p|0)
5) (x| 6) P60
We suppose w(z | 6) finite for almost all z, and all 6. When we say “for almost
all z,” we mean “‘except for a set of u-measure 0.”

In most practical problems, the set B is a subset of some finite-dimensional
Euclidean space and u is either ordinary Lebesgue measure or, in the case where
R is countable, counting measure which makes the measure of a set the number
of points it contains. An exception is the application to sequential analysis
considered in section 3 below, in which R is a countable union of sets, each of
which is a subset of a finite dimensional Euclidean space. For the basic notation
and concepts of the theory of integration see Saks [2], Ch. I.

We shall define

®) 46,00 = [ =@ |o)n@|0) d(@),

and suppose
) A6, ) < o forall 6.

By Schwartz’s inequality this implies that A(8;, 6;) < « for all 6;, 8.. If (7)
is not true then it may happen that there exists no unbiased estimate with
minimum variance even though there exist unbiased estimates. Consider, for
example, the case where £ consists of two point, 0 and 1, and g() = 6, and

_Jlfor0 <z <1
P | 0) = {0 otherwise

%x"*forO <z<l1
0 otherwise

p(xll)={

and p is ordinary Lebesgue measure. It is clear that there exist unbiased estimates
of 8 with arbitrarily small positive variance at § = 0 but there exists none with 0
variance.

2. The principal theorem. In accordance with the usual terminology we de-
note by L, the class of all measurable functions ¢ such that

®) [b@F dr@) < =.
Finally, G is the class of all functions y expressible in the form
©) 40 = [ $@n@|0) bl with ela,

TuEOREM 1. If (x| 0) is finite for all 6 and almost all x, and (7) is satisfied,
and there exists an unbiased estimate of g, then there exists an unbiased estimate
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I* of g which minimizes (3). If f* has finite variance then any other unbiased esti-
mate of g with minimum variance at 6y is essentially equal to f*, that is, differs
from f* only on a set of p-measure 0. A function f is an unbiased estimate of g with

minimum variance at 6o if and only if there exists a real-valued functional T on G
for which

(10) TA(@, 01) = 9(01) fOT all 0, ¢ Q,
1) T f 6@ (x| 0) dv(z) = f 6@)f(@) dv(@) for all ¢ ¢ Lo.

(The preceding sentence does not assume the existence of an unbiased estimate of g.)
The minimum variance is Tg(8) — [g(60)]’.
Proor. Let {f;} be a sequence of unbiased estimates of g such that

im [[f@F d@) = glb. [ (@P d)

i I
where f ranges over all unbiased estimates of g. Then by the weak compactness
of every sphere in L, (see [1], p. 10) there exists f* ¢ L, and an increasing sequence
{n:} of integers for which

[ o* dv = tim [ gfu dv for all ¢ ¢ L.

Since 7 (x | 6) € L, by (7), this implies that f* is an unbiased estimate of g. Also

§ >0

(12) f [f*Pdv < lim | fa, dv = g.lf.b. f f* do.

Thus f* is an unbiased estimate of g with minimum variance.
Let ¢; € L; be such that

(13) [ #:@@|0) dv@ = 0 for all 6 ¢ 2
Then, using the f* defined in the last paragraph, we obtain for any real e
19 0 [¢*+ e v — [[54F v = 2 [oufrav+ & [l

since f* + e¢; is an unbiased estimate of g. Dividing (14) by € and letting e — 0
we obtain

(15) fqolf* dv = 0.
If a function in G can be represented in two ways,

[s@r@10 d@ = [o/@r@l0 ),
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and consequently ¢, = ¢’ — ¢ satisfies (13) and (15). Thus (11) defines a func-
tional on G in a consistent way. Also, this functional satisfies (10) since

TA®B,0) = T f 7z | 0)7(z | 6) dv(@)

= f (@ | 0)f* (@) dv(z) = g(6y).
By (2) and (11) the minimum variance is
T [ @ |6) dvla) — lgGoF
Ty(6) — lg(@)

To prove the converse, let f* be any function in L. for which there exists a
functional T satisfying (10) and (11). By (11) with ¢(z) = = (z | 6,),

f F@r(z|6) db@) = T [ (x| Oz |6) dv(@)

[1r@P aw - her

= TA(0, 6:) = g(61)

by (10), so that f* is an unbiased estimate of g. Any other unbiased estimate f
of g with finite variance at 6, is an element of L.. Thus from (1) and (11)
we obtain

T9@) = [ 1% av
= [T
Applying Schwartz’s inequality to the middle expression we obtain
[rra < [irae

with strict inequality unless f is essentially equal to f*.

COROLLARY 1. Suppose w(z | 6) is finite for all 6 and almost all = and (7) holds.
Let Hy(x, d) be the set of all 6 € Q such that =(x | 6) > d, and let H be the smallest
additive class containing all Hy(z, d). Suppose there exists an additive set function \
over H such that there exists a finite collectioh of parameter points 6, and positive
number ¢ such that

16) [+@101 20| < T o6
for almost all x, and
a7 [ 46,00 26 = 9.
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Then the unbiased estimate of g(6) with minimum variance at 6, is

(18) 7@ = [ =)o) &)
and the minimum variance 1s
(19 [ 90 a® ~ 96T,

Proor: We need only show that (10) and (11) are satisfied by

790 = [ 4@ a6
and (18). But
(20) 746, 6) = [ 46,00 DO = 96
by (17) and

T f o@D |0 dv(z) = f N0 f sz |6) dv(x)
(21)
- [s@d@ [+@10 a6 = [s@r+@) b,

Since each of the functions ¢(z), m(x | 6) considered as a function of z and 4 is
measurable (BH), their product is also. The interchange of order of integration
in (21) is justified by Fubini’s Theorem (Saks [2], p. 87) and (16) which by (9)

implies that f | dA(6) | f o(@)m(z | 6) dv(zx) < o.The equations (20) and (21)

are equivalent to (10) and (11) respectively.

CoroLLARY 2. Suppose w(z | ) <s finite for all 8 and almost all x and (7) holds.
Suppose also that Q s a set of real numbers and:

(i) for some m, either a positive integer or + o, w(x|0) is, for almost all z,
differentiable m times with respect to 6 at 6 = 6, ,

(ii) for each n < m there exists a finite collection of parameter values 8, ;. and
positive constants ¢, . such that

T(n)(ﬁl} l 0o + 5) bt w(")(x | 00)
6 ‘

(22)

S LZ Cn,kﬂ'(x l on.k)

for all & whose absolute value is sufficiently small and almost all z,
(ii1) there exist constants a, such that for all 6, ,

(23) o(0) = é o [690_ A0, 01)]H ,

(iv) there exists a fintte collection of parameter values 6, and positive constants
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cx such that

m

(24) g

Then the unbiased estimate of g(6) with minimum variance at 6, s

" |
an I:a— (x| 6):| < > cen(@] 6.
o™ =8¢ &

(29 7@ = Sa| Zaein] .

The minimum variance s

i @n [éi g(ﬁ):Leo.

n=0 a6™

Proor. We need only show that the functional 7' defined by

(26) Tf'qb(a:)r(x 16) dv(z) = 2 an ?—;' f o@) (x| 6) dv(x)]

a=0 00 9=0
satisfies (10) and (11) with f* given by (25). Equation (23) yields (11) immedi-
ately. Also

7 [ o@nte ) dla) = éan % [ s@nl0) dy@)]

=0

- za [ o) 2 7r(x|0)} ()

ao" =04
by (9), (i), (22) and Lebesgue’s Theorem on term by term integration (Saks
[2] p. 29.). Using (24) and Lebesgue’s Theorem, we find that this is equal to

n

5‘% r(xlﬁ):L=oo ) = f S@)f*(z) dv(3).

f ¢(@)X a,
which completes the proof.

There is an obvious combination of Corollaries 1 and 2 which will not be
stated explicitly. Also Corollary 2 can be extended to involve differentiation
with respect to several parameters. It would be of considerable interest to
obtain a characterization of all possible functionals T in terms of the usual
operations such as integration and differentiation. Also, the methods used here
should be applicable, with some modifications, to other problems of minimization
subject to an infinite set of side conditions.-

CoroLLARY 3. Suppose that subject to the condition of Theorem 1, for i =
1,2 f¥ are unbiased estimates of g; with minimum variance at 6, . Then i+ f: 8
an unbiased estimate of g1 + g with mintmum variance at 6, .

This follows immediately from (11) and (12) in Theorem 1. Actually, the
restriction to problems satisfying the conditions of Theorem 1 is unnecessary,
but we shall not prove this here.
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3. Some special cases. We first consider a problem which is of little practical
interest but serves well as an illustration of Corollary 1. Let X be a single obser-
vation from a uniform distribution on the interval (6, § 4 1), i.e.

lifg<z<64+1
p(x]6) =

0 otherwise.

We suppose 6 lies in the interval (—N, N — 1) where N is a given positive
integer, and take as the distribution for which the variance is to be minimized

(1.

o if =N <z <N
pz| ) = | 2N

10 otherwise.

This is the same as using the original p.d.f. p(z | 8) with 8 a random variable
taking on the values —N, —N + 1, --- , N — 1 with equal probability. The
measure p is of course ordinary Lebesgue measure. Then

2Nifo <z <@8+1
(27) (x| 0) = .
0 otherwise
and
0 ifo, <6, — 1
A8, 0,) =
N ey — 6 k10 < 0y < 0y + 1

0 if6.+1<89,.
For —N < 6, < N — 1, equation (17) becomes
]
/ 0 — 6, + 1) dr(9)
max (—N, 0;—1)

(29) min (N—1, 141)
+ . 6 — 0+ 1) dn@e) = 9(01)/2N

and (18) becomes
(30) f*@)/2N = AMmin[N — 1, 2]) — A(max[—N, z — 1]).

The reader will not be confused by the use of A as a point function here, and
as a set function in Corollary 1. Using (30) and integration by parts (Saks [2],
p. 102) we can rewrite (29) as

61+1
(31) j; F*@) dz = g(6y),

which is merely the condition that f* be an unbiased estimate of g. It is clear
from (31) that g admits an unbiased estimate if and only if it is absolutely
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continuous. Differentiating (31) we obtain

(32) f*0 + 1) — f*(6) = ¢(6).
Consequently the general solution of (31) is

[CARR:S
(33) /e = 2 g6 -9 +0),

where v 1s a function of period 1 such that

- 1
(34) [ +@®a =o.
0
Here, contrary to the usual convention, [0] denotes the largest integer less than 6.
The one of (33) which minimizes the variance at 6, is determined by the condition
that there exist A satisfying (30). Let ¥ be any number on the half-closed interval
(=N, =N + 1), and sum (30) forx = y,y + 1 --- y + 2N — 1. This yields

2N—1

(33) oy 2 T+ D) = M = 1) = M=),

Carrying out the same computation on (33) we obtain

2N—1 j+N

B oy X X CWHT DG = AV =1 = A=),

=1

Combining (34) and (35) we find that the proper choice of v is that which gives

[£]4+N+1 .
f*@) = é; lzng'(x — [z = N +9)

o + e=z;m (l%f - 1) g@ —[x] — N + 1)

2N—

+ o X 106G = M) - o=},

If the limit of (37) as N — « exists, it agrees with Nérlund’s simplest definitions
of the principal solution of (32) (see Milne-Thompson [3] formula (2) p. 201)
whenever the latter is applicable. The author has not checked the agreement
with Norlund’s more general definitions.

Next we consider the problem of obtaining an unbiased estimate of ¢g(8) with
minimum variance at 6, when X consists of n independent observations, each
uniformly distributed over the interval (0, 6). Here 8 is an unknown positive
number. The result is independent of the choice of 6, . Clearly a necessary and
sufficient condition for the existence of an unbiased estimate of ¢ is that g be
absolutely continuous. Corollary 1 can be applied to obtain as the best unbiased

estimate g(Y) + z—z g'(Y) where ¥ = max(X, --- X,). However, this result can

be obtained much more simply by observing that, given any sufficient statistic Z,
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there exists an unbiased estimate with minimum variance which is a function
only of Z. A proof of this is given by Blackwell [4], But Y is a sufficient statistic,
and the condition that f*(Y) be an unbiased estimate of ¢ is that

0—”,', fo @y dy = g(o).

This has as its unique solution that given above.

A similar situation holds when the X; ,7 = 1 - - - n, are independently normally
distributed with unknown common mean 6 and unit variance. Here Corollary 1
is not applicable, but Corollary 2 is. The result can again be obtained more
simply as the unique solution of the integral equation

1 %/ b2
.\/—Z.r ffo (y) $(y—b/7) dy — g(())
with
f*(xlv"'yxn):f:)k(y); yz—\—}—;bixi'

It should be observed that the methods of section 2 are applicable also to
problems of sequential estimation. Let X;, Xs, - - - be a sequence of real-valued
random variables such that (X;, -- -, X,) have the joint p.d.f. p.(21, -+ , 2, | 0)
for some unknown 6 € Q. Suppose it has been decided to terminate the procedure
on the m™ observation if (X;, - -+, X) € B for some given sets R, in m space,
and suppose these sets are so chosen that the probability of termination is 1
for all 6. Then we can define the space R = U,R,,, the union of the R, the
measure

l‘(A) = ;#m(ARm)

for any set A C R for which the intersections A n R, are Borel sets, where u,, is
ordinary m-dimensional Lebesgue measure, and the probability density functions

@] 0) = pu(®s - 2n|0) if = (21 Tm) € RBm.

The previous results are then applicable. Most of the familiar results in the
theory of statistical inference can be extended to sequential problems in the
same way. Of course the interesting and difficult problems of sequential analysis
are usually concerned chiefly with the appropriate choice of the regions B .

4. Connections with the work of other authors. Many lower bounds for the
variance of an unbiased estimate were obtained by Bhattacharyya [5], and
some results were obtained earlier by others whose results are referred to by
Bhattacharyya. His work has been extended to sequential problems as indicated
in section 3 above by G. R. Seth in a doctoral dissertation at Columbia Uni-
versity. This leads to results analogous to, but in some respects more general
than those of Wolfowitz [6]. Among other papers on sequential estimation,
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there are the one by Blackwell [4] already referred to, and the one by Girshick,
Mosteller, and Savage [7]. These deal mainly with problems in which there is a
unique unbiased estimate based on a sufficient statistic.

The author is indebted to A. Wald, J. L. Hodges, E. Barankin, and H. Rubin
for some helpful suggestions and comments.

REFERENCES

[1] B. v. Sz. Nagy, ‘“Spektraldarstellung linearer Transformationen des Hilbertschen
Raumes,”” Ergebnisse der Mathemaiik, Vol. 5, No. 5 (1942).

[2] S. Saxs, Theory of the Integral, Monografie Matematyczne, Tom VII, Warsaw, 1937.

[3] L. M. MiLNe-THOMPSON, The Calculus of Finite Differences. Macmillan, London, 1933.

[4] D. BLackweLL, “Conditional expectation and unbiased sequential estimation,”” Annals
of Math. Stat., Vol. 18 (1947), p. 105.

[5] A. BHATTACHARYYA, “On some analogues of the amount of information and their use in
statistical estimation,”” Sankhya, Vol. 8 (1946), p. 1 and Vol. 8 (1947), p. 201.

[61}J. WoLrowrtz, “The efficiency of sequential estimates and Wald’s equation for sequen-
tial processes,” Annals of Math. Stat., Vol. 18 (1947), p. 215. '

[7] M. GirsHICK, F. MOSTELLER, AND L. SAVAGE, “Unbiased estimates for certain binomial
sampling problems,”” Annals of Math. Stat., Vol. 17 (1946), p. 13.



