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1. Summary. This paper is concerned with a matrix method of deriving the
sampling distributions of a large class of statistics directly from the probability
law for random samples from a multivariate normal population, that is without
assuming the Wishart distribution or the distribution of rectangular coordinates.
Two techniques are proposed for evaluating the Jacobians of certain transforma-
tions, one based on a theorem on Jacobians [1], and the second based on the intro-
duction of pseudo or extra variables. This matrix approach has a geometrical
analog developed in part by one of the authors [2]. Section 3 is concerned with a
discussion of these two techniques; in Section 4, the former is applied to obtain
the joint distribution of the rectangular coordinates [3], and in Section 5, the
second method is applied to obtain the joint distribution of the roots of a determi-
nantal equation [4], [5], [6], and [7].

2. Introduction. Much work on the sampling distributions connected with
multivariate normal populations is based on the Wishart distribution as the
starting point, from which analytical or geometrical arguments are applied to
obtain the desired results. This presupposes that the Wishart distribution is
available and that it was somehow derived from the probability law for the raw
observations. When the Wishart distribution is unavailable, as in the case of a
sample of N observations from a p-variate normal population with p > N — 1,
other techniques must be applied.

When considering the roots of the determinantal equation | XX’ — Y'Y’ | = 0,
where X and Y are p by n and p by m matrices, respectively, consisting of the
observations from p-variate normal populations with n < p < m, a lemma may
be employed [6] to the effect that the nonvanishing roots of | UU’ — 6I, | = 0
are the roots of | U'U — 6I, | = 0, where U is anr by s matrix, r > s. However,
by starting with the raw observations, the availability of the Wishart distribu-
tion need not be considered. A discussion of the above examples is given in
[8] and [9]. The present approach is based on matrix algebra and is proposed as
an alternative and unified procedure to obtain most multivariate distributions.

As the shape and properties of the matrices are of importance, the following
notation is adopted.

(i) A matrix is denoted by a capital letter, and a column vector by an under-
lined lower case letter, for example ¢’ = (z1, -- -, x,).

(ii) X:p X n means that the matrix X has p rows and n columns.
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(iii) A triangular matrix with zeros above the main diagonal is denoted by
a superior tilde, for example X.

(iv) A skew-symmetric matrix is denoted by a superior karat, for example X.

(v) An orthogonal matrix is denoted by a capital Greek letter.

(vi) The absolute value of the Jacobian, (¥ *-* Ypn)/0(X1u1 +++ Tpn) I
denoted by J(Y; X). ’

3. General procedure. Let X:p X n be pn random variables following the
multivariate normal probability law as defined by the density function

p(X) = 2r) "2 A7 exp[—} tr(47XX")]

where 4 :p X p is the population covariance matrix, and the means have already
been integrated out. If X = ¢(Y) is a one-one transformation in the pn variates,
the density function of Y is given by

p(Y) = p(g(Y)) J(X; V).

In most cases, we are only interested in the distribution of a subset Z of the pn
variates, and we may achieve this by integrating out those variates which are
in Y but not in Z. Thus the problem consists in (a) finding an appropriate trans-
formation, (b) evaluating the Jacobian of the transformation, and (c¢) integrating
out any extraneous variates. This paper is concerned with (b) and (c); the requi-
site transformations (a) are assumed to be available [8].

In the process of evaluating the Jacobian, a difficulty arises whenever the
transformation involves an orthogonal matrix, and in particular when the ortho-
gonality is with respect to rows alone, for example I'ip X n, T'TY = I,,p £ n.
Such a matrix contains pn — p(p + 1)/2 independent variates, and the usual
procedure for evaluating the Jacobian requires the solution of p(p — 1)/2 equa-
tions so that the dependent elements may be expressed in terms of the
independent elements. This is troublesome even if p = 3. The two techniques
proposed avoid this arduous task. The first makes use of the following theorem
on Jacobians.

Taeorem 1. If yi = fi(@, &), ¢ = 1---m), & = (@ - ), &
(®m41 *** Tmyn), wWhere £ and & are subject to n constrainis fi(Z, &) =
G=m+1,---,m -+ n), then

J@y - Ym; &) = J(fr o fogn s &, §)/J(fm+l”’fm+n; ),

L

provided that. the numerator and denominator exist and do not vanish [1].

The conditions I'T’ — I, = 0 constitute the constraints of the theorem.

The second procedure involves the introduction of pseudo or extra variates
as follows. Let T'y :p X n, p = n, Ty = I,, and write

Ty = (7,0) (R) = @0,

where 0:p X n — p, and Ty:n — p X n isso chosen so that I':n X n is orthogonal.
If | I + T'| # 0, there is a one-one correspondence between I' and a skew-sym-
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metric matrix S given by 8 = (I + )™ (I — T') [10]. This § has the desirable
property that allA its elements are independent. The transformation may then
directly involve S rather than T.

4. Distribution of rectangular coordinates. The existence of the desired trans-
formation is given by the following theorem.

THEOREM 2. If X:p X n, p < n, there exists an orthogonal matriz T:p X n,
and a triangular matriz T:p X pwitht; 2 0, (G =1 --- p) such that

(1) X = Tr.

If X is of rank p, then ti; > 0 (i = 1 -- - p), and the representation s unique [8).

We note that X is of rank p with probability 1, and hence the representation
is unique with probability 1. The elements of 7' are the rectangular coordinates
[3]. Before proceeding to the evaluation of the Jacobian, we will have occasion
to use the following lemma.

Lemma 3. Let T:p X n,p < n, T’ = I, , and denote the set of pn — p(p + 1)/2
independent elements by T; . If no v; of T s zero, then for each T'; there are 2°
matrices T' which can be formed.

Proor. Without any loss in generality we can let T'; consist of

vi@=1-p;j=1-n—1),

and the dependent set T, consist of v;;(¢ = 1 - - - p;j =n—1t+1,:--,n). The
matrix T' has the form

Y Y2 tee ce R 4 W | Y1i,n—1 l Yin
Y o Y2 - t Y22 | Y2,n—1 Yen
T = ,
l_'Ypl Y p2 *tt Ypo—p l ctt Ypon—2 Yp,n—1 Yopn
where T'; consists of all elements to the left of the vertical lines. By the ortho-
gonality conditions on the rows, v., can take two values &=(1 — > 7 73,»)%
(¢ = 1--- p). Because the inner product of any pair of row vectors is zero, all

the other elements in T', are determined. _
We now obtain the Jacobian of (1) using Theorem 1, where X = 7'T' and
I'T’ — I, = 0 take the place of y; = f; and f; = 0, respectively. Thus

(2) - J&XT, 1) = J(X, TT; T, 1)/J(TT; To),

where the right-hand side is expressed in terms of Tand T'; . Let TT = K:p X D,
where K is symmetric. We note that K and 7 are unrelated, and hence the scheme
of partial derivatives for the numerator of (2) is

Tpp + 1/2) T(pn)
3 Kpp+1/2) | 0 M
X(pn) ]'[21 1]{22
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the determinant of which is | My | | MM M |. Write X = (z1 - - - 2,)’, where
1= @a -+ ) and T = (y1 -+ v,)’, where 1 = (ya * -+ vin). Then

(4) Q,1=(t1'17"')t’51'707"') 0)P7 $=1'p.

My and My arise from (4), that is 8x.,/0t:; and 9z:;/dv:;, respectively, and
have the following forms:

tn  ta el b2 e lpg ot fpagpa1 lpp-1 lpp
Zi|lvy 0 - O o - 0 - 0 0 0
2|0 4y - 0 9 -~ 0 --- 0 0 0
M21 = 2
Tp-1 0 0 . Yp-1 0 0
Tp 7 Y2 0 Yo-1 Vo
21 Y2 ct Y1 V»
1 Dgu 0 s 0 0
T2 Dz 1 Dzu oot 0 0
My = ) ,

:Pp—l D‘:a-l,l D‘p-lﬂ e Dtp—l,p—l O
Tp D tp1 D tp2 te D tp,p—1 D n,p

where Dyg;in X n(t=1---p;j=1---1) is a diagonal matrix with diagonal
elements ¢;; . From K;; = viv;(3,5 = 1 - -+ p) we have

Yr Y2t Yp-1 p
ku 2’_)’1 0 e 0 0
kzz 0 22'2 e 0 0
kpp | O o .- 0 2v5 |

Mlz == ---—]-""— == —=-'—-= - - - = - -
ke {v2 v -+ O 0
klp Yo 0 e 0 Y1

kp—1,51 O 0 U Yp1

Hence | Ma| = [I? | Dy | = | T|™ Writing T = (%), G = 1--- p;

j = 1---14), with " = 0 for i >, M35 M, can be shown to be equal to
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vt 0 0
. t12 ve t22 e O Ve t22
1p 2p P 2p P PP
th _‘){zt f}{lt 'Z2t Zzt 'ypt
T, 0 0
=Mu| 0 T. 0 |= MuN,
0 0 T,

say, where N:p(p + 1)/2 X p(p + 1)/2, and
" 0 .- 0 _ , .
T = y Tit(p —3) X (p — 7).

tip ti+1.p R

Thus | MuMuMa | = | MMy | | N | It s easily verified that | MuMa | = 2°
and |[N | =|T[™ [12 27" = TI? tii . Combining our results we have

p .
(5) JX; T, 10) = 2° 11 ¢37/J (015 To).
1
Consider the multivariate probability law
(6) p(X) = @r) "™ | AT exp [ tr (A7'XX")] dX.

Using transformation (1) and the Jacobian (5), we have the joint distribution of
T and T;:

p(T, 1)) = @r)™" | A"
™ cexp [—% tr (A7 TT)]2? I:I T (T To) (T} {dT )

To obtain the distribution of T alone, we must integrate out the variables of
T; over the domain T'T’ = I, that is we must evaluate

) Ln, p) = fﬂ JNIT; Tp) dTy,

where Q:TT” = I. Since the integral is unity over the space of Ti—w <
ti; < o (2#7),0 <ty < o, we obtain

p . o~ o~ o~
9) p(T) =cld [ L& exp [—5 tr (A7 TT))] dT,
1

where ¢ = 27"t P VAT (0 — ¢ + 1)/2. Incidentally, L(n, p) can now
easily be evaluated, namely,

(10) Lin, p) = o2 @0 IjI I (n — i+ 1)/2.

With respect to the integral (8), it should be noted that if the probability density
_ involves T, it will be necessary to add up the probability densities for the 27
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points in T (subject to I'T” = I) which correspond to a particular point of
I';, by virtue of Theorem 3. If the probability density is free of T' a factor of
2% is sufficient.

6. Distribution of the roots of a certain determinantal equation. The existence
of the requisite transformation is given by the following theorem.

TuEOREM 4. If X:p X n(p £ n) and Y:p X m(p £ m) are of rank r <
and p, respectively, then there exist matrices Z:p X p, Dgir X 7, T1ip X n, Arip X
such that

p
n

) X = Z(l())’)rl, Y = Za,

where Z 1is nonsingular, Dy is diagonal with elements 6, = 6, = --- = 6, > 0,
the 6;(i = 1 - - - r) are the nopvanishing roots of | XX’ = YY" | =0, and Ty and
Ay are row orthogonal. If in addition (a) X is of rank p, (b) the roots are distinct,
and (c) the elements (Zy, - - - Z1,) of Z are positive, the representation is unique [8).

We note that (a) and (b) are satisfied with probability 1, and hence we need
only guarantee (c). Assuming (a) and (b) we rewrite (1) and introduce pseudo
variates.

2) X = ZDO)T, Y = Z(I0)A
84 = 34, T4 = T4;

“’here FI — (I\;I\;).n X n and A/ = (A;A;) m X m, are orthogonal S= (g:g2)
4

1s a skew-symmetric matrix (Si:p X p, Siin — p X n — p) related to T' by
= (I + I)™'(I — T), provided the inverse exists; T' is similarly related to A.
We note that the left-hand side contains

pn+pm+ (n—p)n —p—1)/2+ (m — p)(m — p — 1)/2
=p +p+nn—1)/2+ mm — 1)/2

variates as does the right-hand side. We now proceed to obtain the Jacobian
of (2). Familiarity with the technitues in [11] is assumed. In particular, the
Jacobian of a transformation is equal to the Jacobian of the transformation in
the differentials. Taking differentials in (2), we have

(3a)  (@X) = (dZ)(DO)T + Z(DuO)T + Z(Di0)(dT),
(3b) (dY) = (dZ)(I0)A + Z(I0)(dA),

(3c) @Sy = (dSy),

(3d) dTy) = (dTy).

Pre- and post-multiply (3a) by Dy'Z™" and I”, respectively, and (3b) by Z7*
and A’| respectively.
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(42)  Dy'Z7'(@dX)T" = Dy'Z7'(dZ)(Di0) + Dy (Du0) + (10)(@D)T,
(4b) 27 @Y)a" = 27(dZ)(10) + (10)(da)a’,

From d(T'T") = (dI)I' + T(dT’) = 0, it follows that (dT)T” is skew-symmetric,
and hence we can let

Il

(5a) A= @Dr = -2 + 87'@dHa — 87,
(5b) B = (da)a = —2(I + T)'@ha — ™
Let

U =Dy'Z7'@x)r', V = Z7'@y)a’,
(5¢) » .

W = Z27'aZ), D, = D;'D,, .

Transtormation (4) becomes easily

(6a) U = Dy'WDy(I0) 4+ D,(I0) + (10)A,
(6b) V = W{I0) + (I0)B

(6¢) d8) = 3 + SpA (I — 8) + -+,
(6d) @dTs) = 3T + TYB(I — Ty) + -

where the additional terms in (6¢) and (6d) are independent of A, and B,
respectively. The Jacobian can be written as follows:

JX, Y, 8,T:;2,6,8T) = JAX, dY, dS, dT, ; dZ, e, dS, dT)
(1) =JdX,dY,dSs,dTs; U, V, Ay, B)J(U, V, A, B.; W, 2, 4, B)
J(W,n, &, B; dZ, de, dS, dT) = JiJ.J; .
We now evaluate the components using [11]. J, arises from (5):
J(@dX; )Y ; V)J(dSs ; A)J ATy ; By
= (D" [Z]"I TN Z["| AP PUDE L 4 §y "
(2—(m~r)(m—p—l)/2 ' I + 7“14 lm—p~1 .

Ji
(®)

For simplicity the last two terms will be denoted by a(Ss, n — p) and
a(Ty, m — p), respectively. J. arises from (6) yielding the scheme of partial de-
rivatives shown in Figure 1, where I1 = I pyo—pns2, Io = Iimep)yim—p-1y2 , and
all other identity matrices I are p(p — 1)/2. The determinant of the matrix
given in Figure 1 is equal to

I 0 0 /T 0 o\/oo 0)\]
o 1 ofl-{0o D ol{o o 1 !=|D1—D2}.
N -1 0/ Vo o pJVo o -1/
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D, arises from that part of (5a) which contains u;; = (6;/6;)z;; + terms inde-
pendent of z;;. du.;/dz;; = 6,0; and hence Di:p(p — 1)/2 X p(p — 1)/2 is
diagonal with elements

O2 00 . 0p 05 0, 6
6.’ 6’ 6,8, ' 6y ’01)—1.

Since Dy = D7,
0; 0; 2 oy TT a——D
(9 Jo=][(Z -2 =H(0j—'0i)H01 .
<i \0i B3 i
Finally,

Jy = J(W; dZ)J (n; d0)J(A; dS)J (B; dT)

(10) - Ty o0g oy i
= (1Z )| Ds [)a™(8, n)a™ (T, m).

Combining our results (8) to (10):
(i 7= o L@~ 6 | 21 o e,

where ¢(8) and h(T) are functions of § and T, respectively.
Consider p(n + m) random variables X* and Y* following the multivariate
normal probability law as defined by the density function

(12) p(X*, Y*) = crexp [—1 tr (AT X*X¥ 4 B'Y*y+))],

wherec; = (2m) P | A |TVE BT X*ip X nip < n), Y*:p X m(p < m),
A:p X p, and B:p X p are the population covariance matrices and are positive
definite. The roots of | X*X* — ¢’Y*Y* | = ( are invariant under a nonsingular
transformation X* = LX, Y* = LY, where X:p X n, Y:p X m,and L:p X p
is nonsingular and is chosen so that LAL’ = D,, LBL’ = I,and py, - -+ , pp > 0
are the population roots of | A — pB | = 0. The Jacobian J(X*, Y*; X, ¥) of

the transformation is | L [™"**™ and |4 | = |D,|| L[} | B| = | L [}, which
yields the density function of X and Y:
(13) p(X, Y) = crexp [—} tr (D, XX’ + YY)],

where ¢, = (2r)""*™" | D, ™. We now make use of the main transforma-
tion (2) and the Jacobian (11) which leads to the density function of Z, 6,
S, T :

.4
p(Z,6,8 1) =cJLor "] (6 — 02 |z
1 i<J

exp [—% tr (D, ZDy: Z' + ZZ7")],

where ¢; = (2r) 77" | D, 7% (8)h(T). We now integrate out the extraneous
variates to obtain the distribution of 6; - - - 8, . The integrations will be indicated
for the null case, that is when A = B or equivalently D, = I. One of the inte-
grations involved is based on the following lemma.

(14)
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LEMMA.

10, K, 4) = f |\ WW' | exp [—} tr (AWW)] {dW}
Q

= |4 l—(2k+r)/227k+r2121rr2/"‘2 ﬁ (I‘ k4" 1+ 1) ! (7’ -7+ 1>’
i

2 2
where Wir X r; A:r X r is positive definite, and Q:—o0o < w; < ,
(j=1---7).
Proor. Since A is positive definite we may write 4 = U’TU and make the
successive transformations X = 7T, T = (I + 8)7'( — §) and V = UT. The
Jacobians [11] are

P . A —~ L~ p .
JX; T, 8) = [[ezrior® 2 |1+ 7%, J(T; V) = [] wii.
1 1
Hence

I(rkya) = [z

<

IT wil® ¥ exp [—% tr VV] {dV}
1

1

X 217211(11-—1)/2 II + SI—(p—l){dS}’

Q2

where Qi — w0 < v;; < ® (¢ # 7), 0 < v < », and 2 is the total space of
r(r — 1)/2 dimensions. The first integral is a product of gamma functions and
the second integral is evaluated in [12] and [13], giving

I(r, & a) = |A[7®8 ITI [2(2k+r——i+l)/2r (2]5_—[—_7;;_@-{;_1_)]
i

— L -1 1
9 r(r 1)/42r r(r+1)/4 I 1 <7;*__’t + )
X (2m) i I 2

The integral over the Z space is thus 2771(p, (n + m — p)/2, Dy2y1), where
the 27" arises from the restriction (z1 - - - 21,) > 0. The constants arising from
integrating over S and 7' can be obtained directly using [12] and [13], taking ac-
count of the introduction of the pseudo-variates, or indirectly from the distri-
bution of rectangular coordinates. They turn out to be 2”L(n, p) and 2"L(m, p)
of the previous section. Combining all results we obtain:

p®) =k III 6171 + 69~ T @ — 6,

i<y

where

k=2"1r”/2fII‘<n+m2—i+1)
1

Jr(= s (=) (= 5),




MULTIVARIATE DISTRIBUTION THEORY 339

noting that

[(2‘”) —p(nt+m)/ 2] [2—p2p (n+m—p)/2+p2/ 21l_p2 12

X III I‘(" + 7; PP _; + 1)1‘“‘(:" - ; + 1)] [27L(n, p)1[2"L(m, p)]

= k.

If we let 67 = o; or 67 = Bi/ (1 + B.), we may obtain other familiar forms for the
density function of the roots of related determinantal equations.

Added in proof. A. T. James, “Normal multivariate analysis and the orthog-
onal group”, Ann. Math. Stat., Vol. 25 (1954), pp. 40-75, obtained a similar re-
sult as an application of Grassman and Stiefel manifolds.

6. Conclusion. In the present paper the methods proposed have been illus-
trated by giving a new derivation of the joint distribution of rectangular co-
ordinates and the joint distribution of the roots of a certain determinantal
equation. These methods also apply to other situations, for example the singular
case in the above examples, the joint distribution of canonical correlations;
multiple and partial correlations; inverse and adjoint of certain matrices. In
essence, the problem consists in obtaining the requisite transformation which
will lead to the desired variates, and then applying the proposed techniques to

evaluate the Jacobian and integrate out any extraneous variates.
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