AN EXTENSION OF BOX’S RESULTS ON THE USE OF THE
F DISTRIBUTION IN MULTIVARIATE ANALYSIS
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‘1. Introduction and summary. The mixed model in a 2-way analysis of vari-
ance is characterized by a fixed classification, e.g., freatments, and a random
classification, e.g., plots or individuals. If we consider k different treatments
each applied to everyone of n individuals, and assume the usual analysis of
variance assumptions of uncorrelated errors, equal variances and normality,

an appropriate analysis for the set of nk observations zi;;, ¢ = 1, 2, -+ n,
j=1,2---kis
Source D.F. F

mean square for treatments

k—
;rg?:ﬁzglt: n— i mean square for T X I
Treat. X Ind. k—1(n-1)

where the F ratio under the null hypothesis has the F distribution with (¢ — 1)
and (k — 1)(n — 1) degrees of freedom. As is well known, if we extend the
situation so that the errors have equal correlations instead of being uncorre-
lated, the F ratio has the same distribution. Under the null hypothesis, the
numerator estimates the same quantity as the denominator, namely, (1 — p)s’,
where p is the constant correlation coefficient among the treatments. This case
can also be considered as a sampling of n vectors (individuals) from a k-variate
normal population with variance-covariance matrix

1 P co P
V=4d|"
: P
p e op 1

If we consider this type of formulation and suppose the &k treatment errors
to have a multivariate normal distribution with unknown variance-covariance
matrix (the same for each individual), then the usual test described above is
valid for k£ = 2. For k > 2, and n = k, Hotelling’s T” is the appropriate test
for the homogeneity of the treatmerit means. However, the working statistician
is sometimes confronted with the case where k& > =, or he does not have the
adequate means for computing large order inverse matrices and would therefore
like to use the original test ratio which in general does not have the requisite
F distribution. Box [1] and [2] has given an approximate distribution of the test
ratio to be F[(k — 1)e, (k — 1)(n — 1)e] where € is a function of the popula-
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tion variances and covariances and may further be approximated by the sample
variances and covariances. We show in Section 3 that ¢ = (k — 1), and there-
fore a conservative test would be F (1, n — 1).

Box referred only to one group of n individuals. We shall extend his results
to a frequently occurring case, namely, the analysis of g groups where the ath
group has n, individuals, @« = 1, 2, --- ¢, and D 417, = N. We will show
that the treatment mean square and the treatment X group interaction can be
tested in the same approximate fashion by using the Box procedure.

2. Extension to g groups. Consider a mixed model, k treatments, each applied
to N individuals where the N individuals are subdivided into g groups so that
we have chosen a random sample of n, individuals from the ath group. The

observations are Zija, %2 = 1, Na,j=1,--+-,k,a=1,---,gand
0
D> ne=N.
a=1

Therefore we get the following array for the ath group

Tila *** Tika

Lngla * * * Togka

We may consider the joint distribution of the z:j. to be represented by the
vector variable
z = (xlll co e Takp vt Tmga1 tc Tmgkr vt Taig ttt Tikg 0t Tnglg Tt x‘n,ky)
where Ez’ = p’ and 2’ has a kN multivariate normal distribution with variance-
covariance matrix

Vi 0 0
10 :
A= . 0
0 0V,
and
vV o 0
0 :
Ve =1|. L
0o --- 0V

where V is a matrix of order &, V, is of order kn, and. A is of order kN.
Let E’x,-,-., = Wja and

[
N7' D" Nanja = pj. is the mean of the jth treatment,
a=1
k
T E Mi« = M. is the mean of the ath group, and
i=

k g
KD 4. = N'D Napa = p.. the grand mean.
a=1

i=1
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TABLE 1

Source D.F. S.S. F
Treatments.................... k-1 Q |Fi= (N — ¢)Q1/Qs
GroupPS. . .oevveeeriinennnannnn. g-—1 Q: | Fa= (N — ¢)Q/(g — 1)Qs
Ind. Within Groups............ N—-g Qs
Treat. X Groups............... k—-1)(g—-1) Q | Fs= (N — 9)Q/(g — 1)Qs
Treat. X Ind. Within Groups...| (k — 1)(N — ¢) | Qs
Total.....oovveiiiiniienenanns Nk -1

We will now partition the total sum of squares into 5 constituent sums of
squares, as one would usually do with a mixed model that satisfied all the usual
analysis of variance assumptions.

Let S be defined as the matrix of the quadratic form representing the correc-
tion factor which is the square of the grand total of all the observations divided
by kN. S is a kN X kN matrix whose elements are all (kN)™. Further let a
matrix M of sub-matrices M s be denoted as

Mll e Mla
{Ms} = : .
My - M,

If Mo = 0, for @ = B, let the resulting matrix be denoted by

My 0 --- 0
oy =| ;
0 --- 0 M,
Now let
Q = v'Az = N]g (#.j. — &...)°
and

A = {N'4.4) — 8,

where A .5 is the matrix of n, X ng matrices each of which is the & X k identity
matrix.
Let

g
Q: =2'Bx = kD na(&..a — £...)%,

a=1

where B = {n7;'B,} — 8 and B, is the matrix of n, X n, matrices each of
which is of order & X k, and is of the form

E = k1,1,
where 1; = (1, --+, 1).
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Let
g No
Qs =2Cx =k D (Fia— F..q),
a=1 i=1
where C = {n;'C.} and C, = n.E, — B, , where
E 0 - 0
0 :
E, = : ol
0 --- 0 E
Let
a k
Qi =2Dx =2 e, (Fja— Fa — &j. + Z...)%
a=1 7=1
where

D = {n7'(Aa — Ba)} + (N7 (Bag — A},
and here M .5 is a matrix of n, X ng matrices each of order ¥ where here 4.5

refers to the matrix of identity matrices and B refers to matrices of E’s.
Let

g k na

Qs = 2'Fx = E E Z (xi.ia — Tjo — Tia + z~-az)2y

a=1 j=1 i=1

where F = {n3'F,} and Fo = no(Io — Eo) + B, — A, where

I-E - 0
Io— E.={ : N
0 - I—-E

Now it is easy to show even for arbitrary V, the basic matrix of A, that
AAF = DAF = BAC = BAF = CAD = 0.

Hence by a result due to Carpenter [3], Q; and @, are independent of Qs , Q;
is independent of @; and Qs , and @; is independent of @, . Further as Box has
shown if @ = (x — p)’M(z — u) where 2’ has variance-covariance matrix A,
the sth cumulant of Q, K.(Q) = 2°7'(s — 1)! Tr (AM)* where Tr stands for the
trace of a matrix. Hence by straightforward algebra we get

Ki(@)=TrV—TrEV + N.}_:1 (i, — 1.)2,

Ki@) =@~ D TeEV + 2 e (ha — )%,

Ki1(Q) = (N — ¢) Tr EV,

Ki(Q) = (g —1)(Tr V —TrEV) + 2 na ; (ja = Bjo — oo + p.)%

a=1
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Ki(Q) = (N —g) (Tr V — Tr EV),

and

Ko@) = 2Tr (A4)' =2 Tr (V — EV) if ;. = u.,

Ky(@) =2Tr (AB)’ =2(g — 1) Tr (EV) if poo = p..,

K3(Qs) = 2 Tr (AC)* = 2(N — g) Tr (EV)’,

Ky(Qs) = 2Tr (AD)' = 2(g — 1) Tr (V — BV)' if pja — wj. — i + .. = 0
K;(Qs) = 2 Tr (AF)’ = 2(N — g) Tr (V — EV)".

From the first cumulants it is clear that under the null hypothesis of no treat-
ment differences, the Expected Mean Square (E.M.S.) for (k — 1)7'Qis (k — 1)™
(Tr V — Tr EV); under the null hypothesis of no group X treatment interac-
tion, the EM.S. of (g — 1)k — 1)7'Qsis (¢ — 1)™(Tr V — Tr EV), while
the E.M.S. of (N — ¢)7'(k — 1)7'Qs is just (k — 1)™(Tr V — Tr EV). Hence
under the hypothesis that the treatment means are equal, the numerator and
denominator of F; estimate the same quantity; and under the hypothesis of no
interaction, the numerator and denominator of F; estimate the same quantity.
Similarly under the hypothesis of no group differences, the numerator and de-
nominator of F, estimate the same quantity.

Now using the results of Box ([1], Theorem 6.1) on the approximate distribu-
tion of linear sums of chi-square variates, it is clear that F, is approximately
distributed like F[(k — 1)e, (K — 1)(N — g)e] and F; is approximately like
Fl(g — 1)(k — 1)e, (k — 1)(N — g)e] while it is obvious that F, is exactly
distributed like F(g — 1, N — g), where (Box [2])

k k

k
e =k @, — 5.)/(k — 1)( vie — 2k 2 Bi. + k%;?.)
1 t=1

t=1 s=

I

and v;, are the elements of V, ,, is the mean of the diagonal terms, 7,. is the mean
of the fth row (or /th column) and .. is the grand mean. This result is easily
extended to the fixed interactions in an r-way classification where one of the ways
is individuals divided into g-groups and the other r — 1 classifications are fixed,

3. A lower bound on e. Clearly, the formulation of the degrees of freedom
with which we enter the F-table requires the computation of the elements of
the variance-covariance matrix. We now present a lower limit on ¢ independent
of these elements: This limit, although obvious and simple, may be too con-
servative. ‘

From Theorem 6.1 Box [1], it is easy to show that

e= (k- 1)7[Tr (Vv — EV)I'/ Tr (V — EV)’,
k — 1)"1_(]2:; x,-> ; A3

where \;(7 = 1 - - - k) are the latent roots of (V' — EV) and are non-negative.
But (3_A;)° = > A% Therefore ¢ = (k — 1)™. Hence, F; is conservatively

Il

€
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distributed like F(1, N — g) and F; is conservatively distributed like F(g — 1,
N — g). We also note that if V = ¢’ (the usual analysis of variance assump-
tion) all the roots of V. — EV are equal except for one which is equal to zero so
that ¢ =1 in this case.

4. A joint test of groups and treatment X group interaction. In psychological
problems it is sometimes necessary to test whether several groups form one
cluster. This is equivalent to testing jointly groups and group X treatment
interaction. The proposed test here is

Fo= NN —-9Q /(@ -1,
where

Q=Q+ Q and Q=0+ Q5.

It is clear from Section 2 that the numerator and denominator are independent
and

K@ =07+ E =4 S

2 (e = by = poa + 1) K1 (@ = (N —g) Tr V5

i=1

and if p.o = u.., #je — #j. — p.a + u.. = 0, then
K(Q) =29 - 1)TrV’,
KyxQ) = 2(N — g) Tr V°,

and again by using (Theorem 6.1 [1]), Fo is approximately distributed like
Fl(g — 1)ké', (N — g)ke'], where

13 13
¢ = Icﬁft/;z:vf,.
8

Further it is easy to show that ¢ = k™ independent of the population vari-
ances and covariances and a conservative test would be F(g — 1, N — g).
The rationale for this test is that the numerator and denominator of F, estimate
the same quantity under the null hypothesis of no group effects and no treat-
ment X group effects.

It is of interest to point out and make more explicit the relationship between
the foregoing discussion and the general hypothesis in multivariate analysis of
the equality of vector means among g populations where all the variables are
measured in the same metric. This latter is

Ho(ur = p2 = -+ = m),

where pa = (t1a, H2a, -+ , Hka) is the vector mean of the ath group (i.e., multi-
variate normal population). But the joint test on groups and group X treat-
ment interaction just presented is in effect also a test for the equality of the g
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vector means, since the joint null hypothesis of no interaction and equal group
means is equivalent to

Mje — Bj. — Mot p.=0 for all j, e,
B = p. for all a,

which is easily seen to imply u;. = w;. for all @, which is equivalent to uy = p2 =
-++ = u, . Therefore, if the variance-covariance matrices in the g groups can
be assumed equal, an approximate test on the hypothesis of equal vector means
in multivariate analysis is the F, test with ¢ approximated from the sample
variances and covariances. It is clear that the conservative F-test which is
independent of € can also be used in this case. Furthermore we shall show that
if the variance-covariance matrices are not assumed equal, the conservative
F-test can be used with the restriction that n, = n.

5. Remarks on unequal variance-covariance matrices. One of the basic as-
sumptions was that each of the N individuals had the same variance-covari-
ance matrix. However if n, = nfora = 1, - - - g, then we need only assume that
individuals in the same group have the same variance-covariance matrix while
these variance-covariance matrices may vary from group to group. In this case
we get unbiased numerators and denominators of the test ratios as before and
the same approximatc-distributions can be derived, but now the numerator and
denominator degrees of freedom have different adjustment factors, each depend-
ing upon the different covariance matrices. However it can be easily shown that
the lower bounds on these ¢’s are such that Fo, Fy, F,, and F; all have the
same conservative F-test, namely, F(1, n — 1).
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