COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE
ESTIMATES OF REGRESSION PARAMETERS!
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1. Introductory summary. The basic problem dealt with here is the estimation
of linear regression parameters from a set of observations obscured by correlated
noise. Two well-known solutions to this problem are minimum variance (or
Markov, MV) and least squares (LS) estimation. Although MV is, by definition,
an optimal method, LS possesses two distinct advantages which cause it to be
used more frequently in practice: (1) computational simplicity and (2) the fact
that it does not require knowledge of the correlation matrix of the noise, which
in many cases is actually unknown. Therefore, a comparative study of these two
methods to determine how much is lost by use of LS instead of MV is of value. In
this connection, Grenander and Rosenblatt [1] have derived important asymp-
totic properties of LS and MV estimates when the noise is a stationary random
process. The approach here is somewhat different from theirs, and no assumption
regarding stationarity is made. The essence of this analysis is to re-formulate
LS and MV in terms of the spectrum of the noise correlation matrix. This pro-
cedure offers some new insights into the nature of LS and MV and the differences
between them. For example, it shows when they yield the same result and when
LS performs worst compared with MV. It also exhibits the roles played by the
maximum and minimum eigenvalues of the noise correlation matrix in setting
bounds on the covariance matrices of both LS and MV estimates.

2. Special case: estimating a scalar parameter. We are concerned here with
estimating the scalar parameter « in the linear regression equation

(1) Yy = ¢a + z,
where the observations y, the coefficients ¢, and the noise x are column n-vectors.

The noise « has zero mean and non-singular n X 7 correlation matrix p. For the
_present, we shall assume further that

(2) ¢ =1 and  Ezxi =1, i=1,- m
These do not constitute real restrictions, as seen later, but are a convenience in

isolating the effects of correlated noise. Primes denote transposes of vectors and

matrices.
We now introduce the spectrum of p: A; , - - - , \, are the n positive eigenvalues
of pand ¢1, ---, ¥, are the associated orthonormal eigenvectors. Thus py; =
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Ni and Yil; = 84, 4, Jj =1, ---, n. Itfollows that the y¥; are eigenvectors of
p " with eigenvalues 1/\;. We can express the regression vector ¢ as a linear
combination of the ¢, ,

As a consequence of (2), 2.1 87 = 1.
Since the basic theory of LS and MV regression analysis is well documented

(e.g., see [1] or Scheffé [2]), we shall merely re-state the formulas here:
Least squares. The least squares estimate of « in (1) is

(4) as = (6'9) ¢’y = ¢y.
Note that this formula does not involve p. The variance of apg will, of course,
depend on p and is given by

(5) ois = (¢'9) "¢'pd(¢'9) " = ¢'pp.
substituting for ¢ from (3) leads to

(6) ois = 21: BN .

Minimum variance. The minimum variance linear unbiased estimate of «
(also called the Markov estimate) is

(7) amy = (¢'p '¢) ¢’ Y.

The variance of ayyv is
2

(8 oy = (¢'079) .
By definition, oy =< 015 . Substituting for ¢ from (3) leads to

(9) ok = (ZI) ‘é)ﬁl.

The remainder of this section is devoted to a comparison of o1.s and oy , as
defined above, for different regression vectors ¢ when the noise correlation matrix
p is held fixed. In this connection, we present first two special cases which it is
instructive to consider. As a standard of comparison we shall include the estima-
tion of « in the uncorrelated case, i.e., with p = 7. In that event, LS and MV
yield the same estimate having unit variance.

(a) When 8; = 1/n,¢ = 1, .-+, n, then, orvs = (1/n) 2t \i = 1. In this
event, noise correlations do not “hurt’’ or “help” LS compared with the uncorre-
lated case. However, MV can do better, since oxy = [(1/2) D7 (1/A)]" £ 1.
Thus we have an example of a situation in which MV does better than LS by
virtue of the fact that MV does better than the uncorrelated case.

(b) When 8} = \;/n,i =1, --- ,n, thenor1s = (1/n) D A} = 1. Here, noise
correlations “hurt”” the LS estimate. On the other hand oy = [ D1 (1/n)] ™" =1,
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so that correlations do not help or hurt the MV estimate, compared with the un-
correlated case.

In both of these examples in which MV out-performs LS, the regression vector
¢ is a “mixture” of all of the eigenvectors of p. The theorem below shows what
happens when ¢ is itself an eigenvector.

TaEOREM 1. The MV and LS estimates of a in (1) have equal variances if and
only if ¢ is an eigenvector of p, in which case

(10) O'is = 0'12\4\7 = A,
where \ s the eigenvalue associated with ¢.

Proor. If ¢ is an eigenvector of p, then direct substitution into (5) and (8)
will verify (10). To prove the converse, let ¢ be any -unit (regression) vector.
Then one can always express
(11) pd = >‘¢+ﬂ¢*’
where A and u are scalars and ¢ is a unit vector perpendicular to ¢. Multiplying
(11) on the left by ¢’ leads to
(12) oLs = ¢'pp = A.

Since p is positive definite, A > 0. Now solve (11) for ¢ and multiply on the left
by o

(13) P = (1/N)g — (/N)p 6"
Multiplying (13) on the left by ¢’ and taking reciprocals leads to
(14) aav = (¢'079) " = [(1/N) — (u/N)e'p 6"

Now set omy = org. This implies either x = 0 or else ¢* is perpendicular to
p_'¢. However, the second alternative implies the first. For, multiplying (13) on
the left by (¢™)’ leads to

(15) (¢) 76 = —(u/N)(6Y)'0 ¢

The coefﬁcient of —u/\ in (15) is positive because p " is positive definite. There-
fore, (¢*)’p "¢ = 0 1mp11es o= 0. Consequently, ¢ must be an eigenvector of p
with eigenvalue A = oig = ony .

The maximum eigenvalue Amax is the maximum value that either kg or oay
can achieve, since it is the maximum value that o3 in (6) can achieve, and it is
achieved by both LS and MV when ¢ is an eigenvector going with Amax . Similarly,
the minimum eigenvalue Amin is the minimum value that either o%.g or ooy can
achieve, since it is the minimum value that o3y in (9) can achieve, and it is
achieved by both LS and MV when ¢ is an eigenvector going with Amin . ‘To
summarize, for any regression vector ¢,

2 2
(16) Amin é oMV é JLs _S_ )\max,

and in the limiting cases, LS and MV agree.
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Consider now the ratio ot.s/omv = (2.7 BA:) (D7 B2/A:) as a function of ¢,
p being fixed. Its minimum value is, of course, one, which it assumes when ¢ is
an eigenvector of p. The question arises, what is the maximum value of this
ratio and when does it occur? The problem of finding the regression vector ¢
which maximizes this ratio may be formulated as follows:

Let A1, -+, A\, be a set of n positive numbers and let

(17) Fon, ) = () (28).

We wish to maximize F subject toy:(=p7) = 0and D7, = 1. First, consider
the conditional maximum with respect to any pair of coordinates v, and v, when
all other coordinates are set equal to zero. Subject to these constraints and sub-
stituting v, = 1 — 75, F = (vodp + (1 — 75)A) X (va/2p + (1 — 715)/A0).
If A\, = A,, then F = 1 and the problem is trivial. If A, £ A,, then F takes on
its maximum value (A, + Ay (1/A, + 1/A,) when vy, = v, = 1.

Next, introduce a third coordinate v; and let vy, = v, = 3 — €, vx = 2¢, where
¢ is small and positive. As a function of these three coordinates only,

(18) F=1[(F— &M+ A) + 2] X [(5 — ) (1/0p + 1/7g) + 2¢/Ni].
Now expand (18) in powers of e:
= i'()\p + )\q)(l/)\p + 1/)\q)

(19) (A4

— — 2
+ € o Mo = M)\ — Ne) + O(€).

The first term on the right in (19) is just the conditional maximum in v, and v, .
Hence we shall have a local maximum in the three coordinates v, , v, , v& at the
point v, = v, = %, v = 0 if the coefficient of e is negative. This coefficient is
negative if and only if A, < M < Agorelse Ay > N > A,

Let us assume temporarily that there is a unique maximum and a unique
minimum among the A’s. Then by the above argument, F will have a unique
local maximum at v, = v, = % where A, = Anax and Ay = Amin . We assert this
local maximum is the over-all maximum. Proof is by induction. First, let n = 3.
Suppose our local maximum is not the over-all maximum, but the over-all maxi-
mum is attained at some vector v°. Then 4° must be an interior vector, since we
have already investigated the boundaries in the 3-dimensional case. Pass a
plane through v’ and our vector, v, = v, = 3. Since F, when restricted to this
plane and the surface defined by >t vs = 1, is expressible as a second degree
curve, it is impossible for it to have an interior maximum at v’ and an “inside”
maximum at the boundary. Therefore there can be no interior maximum, either,
and our conjecture is proved.

Now assume the conjecture is true for » = N and consider the casen = N 4 1.
If \; = Amax and Ay = Amin , then v, = v, = % yields a unique local maximum.
If this is not the over-all maximum, then let the over-all maximum occur at 4.
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By the same reasoning as used in the case n = 3, v° cannot be an interior maxi-
mum. Moreover, v° cannot occur on the boundary, since in that event the problem
reduces to an N-dimensional case where, by hypothesis, our conjecture is true.
Therefore v, = vy, = % yields a unique over-all maximum when An.x and Amin
are unique.

On the other hand, if there is more than one Amax and/or Amin , the maximum
value of F is clearly the same as above but the point at which the maximum is
attained is no longer unique. We have therefore proved the following.

TaEOREM 2. For given noise correlation matriz p,

‘(20) O'is/o'lzuv é % ()\max + >\min)(]-/)‘max + 1/>\min);

and this upper bound s attained when the regression vector ¢ is of the form
@ < Ymax + ¥min , Where Ymax and Ymin are (normalized) eigenvectors of p associated
with the maximum and minimum eigenvalues, Amax NG Amin -

Thus for the estimation of a scalar parameter, Theorem 2 puts an upper bound
on how much is lost by using LS instead of MV

While the article was in proof, it was brought to the authors’ attention by
Dr. G. H. Golub that the inequality on which Theorem 2 is based was proved
by L. V. Kantorovich [3].

3. General case: estimating a vector parameter. We now turn to a more general
regression equation in which the parameter to be estimated is a column p-vector v:

(21) : z=07+w’

where the observations z and the noise w are column n-vectors, n > p, and where
0 is a n X p matrix of regression coefficients. The p columns of # are assumed
to be linearly independent. The noise w has zero mean and non-singular n X n
covariance matrix R. The estimation of v in (21) includes, of course, the estima-
tion of a scalar parameter when restrictions such as (2) are no longer imposed.

Least squares. We shall consider the so-called ‘‘weighted least squares” estimate
of v, gvs , which minimizes the sum of squares of weighted residuals, each residual
being weighted inversely as the standard deviation of the corresponding noise
component. To compute grs , it is necessary to know (within a constant factor)
the diagonal n X n matrix M whose elements are (R;) ~* Then gy is given by
(see [2]):

(22) gus = (0'M°0) "0’ M’.
The covariance matrix of grg is
(23) Gus = (O/'M*0) 'O’ M’RM9(6'M’0) .

Mingmum vartance. To compute the minimum variance linear unbiased esti-
mate of v, gmv , it is necessary to know R (within a constant factor; see [2]) :

(24) guv = (RT'0)TOR 2.
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The covariance matrix of guy is
(25) GMV = (O’R_IO) _1.

In order to study the relationship between Grg and Guv , we shall transform
(21) into a “canonical” form analogous to (1). Multiplying (21) on the left
by M and letting y = Mz, z = Mw, we have y = M6y + z. The new noise
has covariance matrix p = MRM, which is the correlation matrix of w. (As in
Section 2, A\; and ¢ will denote eigenvalues and eigenvectors of p.) Since we can
always find a (non-singular) p X p matrix B which makes B'0’M*6B = I, we
shall set M6B = ¢ and B™"y = « to obtain the canonical equation

(26) Yy = ¢a + 7,

where ¢'¢ = B¢’ M?6B = I. Estimating o in (26) is statistically equivalent to
estimating vy in (21). Since (26) is the analogue of (1) for regression on a vector
parameter, the corresponding LS and MV formulas are analogues of the formulas
in Section 2. We shall prove the following result for Apg = ¢'p¢p and Ayy =
(¢'p '¢) ", the covariance matrices of LS and MV estimates of .

TuroreM 3. The LS and MV estimates of a in (26) have identical covariance
mairices if and only if the subspace spanned by the p columns of ¢ coincides with the
space spanned by p of the eigenvectors of p, tn which case both covariance matrices
are similar to a diagonal matriz whose elements are the corresponding eigenvalues of p.

Note that since Gr.g = BApsB’' and Gyvy = BAuvB’, Theorem 3 provides
necessary and sufficient conditions that Grg and Gy be identical.

Proor or THEOREM 3. Let the subspace spanned by the p columns of ¢ coincide
with the space spanned by the p eigenvectors ¢;, , - -+, ¥;, . If x denotes the
n X p matrix whose columns are ¥, , - -+, ¥;, , then by hypothesis there exists
a p X p unitary matrix C such that x = ¢C. If we set a = Co*, then the co-
variance matrices of LS and MV estimates of «* are

Niy "
Al = U4 C = C'¢/psC = X'ox = | -
o)

and
A
A;xv = C,AMVC = (Cld"ﬂ_ld’c)_l = (X'P_IX)_I =
‘p.

This implies

ALS=AMV=C .‘. C,,
L )"y_'
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which proves the first half of the theorem. Conversely, let Arg = Anmv . Let C
beap X p umtary matrix which diagonalizes Apg (i.e., C’Ays C is dlagonal)
and set @ = Ca™. Then the covariance matrices of LS and MYV estimates of o,
denoted by ALS and Asrv , are diagonal and equal. The regressmn matrix going
with o™ is ¢* = ¢C Cons1der now any component af of . The varlance of the
LS estimate of of equals ¢;"p¢; , where ¢; is the sth column of ¢*. Slmﬂarly,
since Anyv is diagonal, the variance of the MV estimate of af equals (¢7'p '67)
By Theorem 1, there can be equality between these variances only if ¢; is an
eigenvector of p, and in that event the value of ¢;/pe; is the corresponding elgen-
value. Thus, the columns of ¢" are eigenvectors of p and the elements of ALS are
the corresponding eigenvalues. Since ¢ = $*C’ and Arg = Amv = CA¥C, the
converse is proved.

We now turn our attention to a lemma which is the analogue of (16).

LeMMA. If Apgs and Ay denote the covariance matrices of LS and MV estimates
of o in (26), then

(27) )\minI é AMV é ALS é >\maxI7

where Amax ANd Amin are the marimum and minimum eigenvalues of the noise corre-
lation matriz p.

(We recall that one positive definite matrix is by definition less than or equal
to another provided the second minus the first is non-negative definite. Also, we
note that AMV < Ars by definition.)

Proor. If o* is related to a by a unitary transformation, & = Ca then the
corresponding covariance matrices of LS and MV estimates of o are AT =
C"¢ 06C and Axy = (C'¢'p “'¢C) ", Let us assume that C is chosen to make
A% diagonal. Using the notation ¢ for the n X n unitary matrix whose columns
are the eigenvectors of p, A = ¢/py for then X n dlagonal matrix whose elements
are the eigenvalues of p, and ﬁ = ('¢'y, we have Afs = C 'gl/A\//’daC = BAS/,
diagonal. Since 88’ = I, Z,.,l Bij=1,i=1,---,p,so0 that Z,,l B2A; = Amax
i =1, -+, p. Thus, every element of the dlagonal matrix Afg is less than or
equal to Amax and ALS < Amaxl. This immediately implies Arg = Amax, since
« and o* are related by a unitary transformation.

On the other hand, we could have chosen C to diagonalize Ayv . By an argu-
ment similar to the one above, this leads to the inequality Amind = Ayv =
C’AmvC, which implies Amin/ < Amv -

Returning to the estimation of v in (21), we recall that Gps = BALgB’' and
Guv = BAnvB'. We shall use the notation Gyc to denote Grs (or Guyv) evalu-
ated when p = I. Gyc thus corresponds to the covariance matrix of the LS (or
MV) estimate of y when the noise is uncorrelated. It follows that Gye =
(¢’M?%9)™" = BB'. Thus by multiplying (27) on the left by B and on the right
by B’, the inequalities are preserved and we have the following theorem.

TaeoREM 4. In the estimation of v in (21),

(28) >\mirAGUC é GMV é GLS é >\maxGUC )
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where Grg , Guv and Gyc are covariance matrices of LS, MV and ‘“uncorrelated
case’ estimates of v, and where Amax aNd Amin are the maximum and minimum
eigenvalues of the noise correlation matrix.

In other words, if one computes the covariance matrix Gyc , which would apply
to the LS estimate of v in (21) if the noise w were uncorrelated, and if one multi-
plies Gyc by the minimum and the maximum eigenvalues of the noise correlation
matrix, one obtains lower and upper bounds, respectively, on both Gps and Gy .

The remaining question is, for given noise correlation matrix p, how much
greater than Gyv can Gpg be? It is seen below that the exact analogue of Theorem
2 holds for the general case of estimating a vector parameter. This places an
upper bound on how much is lost by use of LS instead of MV.

THEOREM 5. If Grg and Gyv denote covariance matrices of LS and MV estimates
of v in (21), then

(29) GLS é '}()\max + )\min)(l/)\max + l/xmin)GMV ’

where Anax aNd Amin are the maximium and minimum eigenvalues of the noise cor-
relation matrix.

Proor. We again refer back to the canonical regression equation (26). Letting
£ be any column p-vector of unit length, we wish to show that

(30) E,ALSE = }()‘max + )‘min) (1/)\max + l/xmin)f,Ava-

To do this, we let ¢ = 5 (7 is thus a column n-vector of unit length) and con-
gider the estimation of the scalar parameter e in the hypothetical regression
equation

(31) : y* = ne+ 2%,
where y* denotes an n-vector of observations and the noise z* has the same

properties as z in (26). The variance of the LS estimate of ¢ in (31) is 9oy =
Eo'opt = EArgt, and the variance of the MV estimate is

(no'm) ™ = (F¢oTeD) T = (Fhwy D
Therefore, from Theorem 2, we have
EIALB é '}'()\max + )\min) (1/)\max + 1/)\min) (f’Aﬁlvf)_l-

Moreover,

(32) (FAwvE) ™ S EAmvk.
For, consider another hypothetical regression equation
(33) v =8+ u,

where v is a p-vector of observations, 8 denotes a scalar pé,ra.meter to be estimated,
and u is unbiased noise with Euw’ = Ayy . Then (¥AmvE) ™" and #Ayvt may
be viewed as the variances of minimum variance and (unweighted) least squares
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estimates, respectively, of 8 in (33). Inequality (32) thus follows by definition
of MV.

We have therefore established a chain of inequalities verifying (30), or equiva-
lently,

(34) ALS é i’()‘max + Amin)(l/xmax + l/xmin)AMv .

Multiplying (34) on the left by B and on the right by B’ preserves the inequality
and proves the theorem, since Gpg = BAygB’ and Gy = BAuyB'.

ExampLE. To illustrate the strength of the inequality in Theorem 5, we include
here an example of a regression problem in which equality is attained.

Let the regression equation be given in canonical form with

1 r 0 0 1 1

| 1 0 0 _ 1 -1
p = O O 1 r y O < r < 1, and ¢ = % %
0 0 T 1 -1 1

Thus n = 4, p = 2 and ¢'¢ = I. Direct calculation shows that the covariance
matrix of the LS estimate of a is Arg = ¢'p¢p = I. Similarly, the covariance
matrix of the MV estimate of « can be computed as

Awy = (¢'07'¢) " = [(1 _OT ) (1 __07,2)—1] =1 -"7"L

Since the maximum and minimum eigenvalues of the noise correlation matrix
are Amax = 1 + 7and A\pin = 1 — 7, we have 3(Amax + Amin) (1/Amax + 1/Amin) =
(1 — 7*)™". Therefore equality in (34) is attained. It should be noted that an
important feature of the matrix p in this example is that it is reducible. If p is
irreducible and n > p > 1, we conjecture that equality in Theorem 5 cannot
be attained.

REFERENCES

[1] GRENANDER, U. and RoseENBLATT, M. (1957). Statistical Analysis of Stationary Time
Series. Wiley, New York.

[2] ScrEFFE, H. (1959). The Analysis of Variance. Wiley, New York.

[3] KanToRrovIcH, L. V. (1948). Funkcional’nyi analiz i prikladnaya matematika. Uspehs
Mat. Nauk 3 (28) 89-185.



