A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULATION
WITH THE LARGEST MEAN FROM ¥ NORMAL POPULATIONS!

By Epwarp PaurLson
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1. Summary. In this paper sequential procedures are given for selecting the
normal population with the greatest mean when (a) the k populations have a
common known variance or (b) the k& populations have a common but unknown
variance, so that in each case the probability of making the correct selection
exceeds a specified value when the greatest mean exceeds all other means by at
least a specified amount.

The procedures in the present paper all have the property that inferior popula-
tions can be eliminated from further consideration as the experiment proceeds.

2. Introduction. A problem which seems to be of considerable practical interest
may be described as follows. An experimenter is concerned with comparing &
categories, such as k new drugs, £ new machines, ¥ new alloys, k£ new teaching
methods, etc. We suppose that all k& categories are of an experimental nature
(that is, no standard or control is being used). The experimenter is practically
certain that the & categories differ among themselves, and his objective is to
select the “‘best” category on the basis of the information supplied by taking
measurements with each category. It is assumed that all measurements are
normally and independently distributed and each category is characterized by
its population mean. The best category is defined (for convenience) as the cate-
gory with the largest population mean.

What the experimenter requires then is a statistical procedure which will tell
him what measurements to take and what population to select so that the prob-
ability of making a correct decision is controlled at some preassigned level when
the largest mean exceeds all the other means by at least a specified amount.

This problem was formulated and solved by Bechhofer [2] for the case in
which the k variances are known, and the experimenter is restricted to a fixed-
sample size procedure. The result in [2] was extended by Bechhofer, Dunnett,
and Sobel [3] for the case of a common but unknown variance when the experi-
menter is restricted to a two stage procedure. The case of a common but unknown
variance is treated sequentially in [4], [5] where numerical illustrations (but no
mathematical details) are given. Bechhofer, Kiefer, and Sobel are making a
detailed study of sequential multiple decision procedures and plan to publish a
monograph on this topic.

In the present paper the writer has modified some of his recent work [6] to
arrive at sequential decision procedures for the present problem which differ
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POPULATION WITH THE LARGEST MEAN 175

substantially both from the Bechhofer-Kiefer-Sobel approach and from another
approach suggested by Stein [8].

3. Notation and formulation of the problem. The k categories or popu-
lations are denoted by m; , 72, - - -, m . Let X, denote the sth measurement with
category m; (¢ = 1,2, --- k,and s = 1, 2, - - - ). We assume throughout the paper
that X, is normally distributed with mean m;, and variance ¢°, and that the
measurements { X;;} are independent random variables for all values of 7 and s.
We restrict our attention to the following two situations:

A (one way classification) where m; = u;

B (randomized block design) where m;; = u; + ¢ .

We assume that u;, ps, - - -, ux are unknown parameters and the best category
is the one with the largest u. Denote the ranked u’s by

by S op S M@,y S M@ -

The problem of this paper is to design a sequential procedure for selecting the
best category so that when up; — pp-yy = A the probability of making the
correct decision and selecting 7y is = 1 — a. Here A and « are constants which
are specified by the experimenter in advance of the experiment on the basis of
practical considerations, and ;) is the category with parameter u(; .

4. The case of a common known variance. We will start by specifying a class
Sy of sequential procedures depending on a parameter X where 0 < A < A, and
then show that for each value of N in this range the corresponding sequential
procedure has the required property that Plry is selected | ppy — pp—y = A] =
1 — a. Let ax = [0°/(A — N)]log((k — 1)/a), where all logarithms are to the base
e, and let W) = the largest integer less than a,/\. At the first stage of the experi-
ment we take one measurement with each category, obtaining measurements
(Xu, Xa, -+, Xu). Then we eliminate from further consideration any category

m; for which
Xj < max{Xy, Xo, -+, X} — aa + \.

If all but one category are eliminated after the first stage of the experiment, we
stop the experiment and select the remaining category as the best one. Other-
wise we go on to the second stage of the experiment and take one measurement
on each category not eliminated after the first stage. Proceeding by induction,
at the rth stage of the experiment (r = 2, 3, - - -, W)) we take one measurement
on each category not eliminated after the (» — 1) stage, and then eliminate any
remaining category =; for which

E X;: < max, {Z Xn} — a) + 7A,
s=1 s=1

where the max is taken over all categories left after the (r — 1) stage. If only
one category is left after the rth stage, the experiment is terminated and the
remaining category is selected, otherwise we go on to the (r + 1) stage. If more
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than one category remains after the W) stage, the experiment is terminated at
the (W + 1) stage by selecting the remaining category for which the sum of the
(W + 1) measurements is a maximum.

Now we proceed to show that for each \ the corresponding sequential pro-
cedure has the required property. First let 6, denote the parameter configuration
B = pp—n + A, and let 55 denote the parameter configuration u, = u; + A
forj=1,2, ---, k — 1. It is obvious from the symmetry of the sequential pro-
cedure that it is sufficient to prove that the probability of a correct decision is
=1 — a when [k] = k and the parameter point belongs to 85. When ; is elimi-
nated before the (W + 1) stage it follows from the specification of the sequential
procedure that for at least one valueof » (v = 1, 2, - - -, k — 1) there must exist
an integer n(v) < W, so that

n () n(v)

Zst < ZXys — ax + n(V)>\

Where ;. is eliminated at the (W, + 1) stage, it is clear that for some value of
v(p=12 -k —1)

Wtl Wtl W+l

ZI st < Zl Xu é Z].‘X” — a\ + (WX+ 1))\
since (W + 1)X — an = 0 from the definition of W) . Now

P [incorrect decision | 85] = P [r is eliminated | 85]

for at least one value of »(» = 1,2 -+ «-. ,k—1)
there exists an integer n'(v) < Wi + 1 so that *
<P 0’ (v) 0’ (v) , 82
D X< 2 Xw—an+ 0
s=1 s=1

k—1
<ZP[ZXk.<ZX,,—a>‘+n)\ for some n = W\ +1

o7 ]
y=1 s=1
5],

Now we make use of the known result (see for Example [1] Section 2.1) that
if { ¥} is a sequence of independent and identically distributed random variables
with a negative expectation and b > 0,

P[E Y:>b forsomen < oo] <

1=1

k—1

ZP[EXk, <ZX,..—a>‘+n)\ for some n <

y=1

where £, is the non-zero root of E(¢’) = 1. We find that

a;*]

=P[Z (Xys — Xis + A) > an forsome n < «

8=1

PI:ZXk. <> X, —ar+n\ forsome n < =
8=1 8=1

62‘]

< exp {[(s — m + N)/d’lan} = exp ([(=A +N)/olan}
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since u, — pwx < — A for all points in ;. Therefore P[m; is eliminated |83] <
(k — 1) exp{[(—A 4 \)/o%lar}. Since by definition ax = [0*/(A — \)]
log((k — 1)/a), we find that P[r, is eliminated | 67] < a, so that

Pl is selected | 51 =21—a

and by symmetry Plry, is selected | 8] = 1 — o

At present the “optimum” choice of A is unknown. Some preliminary calcu-
lations indicate that A = A/4 should be a reasonably good choice. At present we
recommend using A = A/4, and conjecture that any loss in efficiency using
N = A/4 rather than the “optimum’’ value of A\ will be small from a practical
point of view. The resulting sequential test when A = A/4 can be summarized
as follows: at the rth stage eliminate any remaining category =; for which

r r 2
> X; < max {Z X,,} _ i log ((k — 1)/a) + Ié,
s=1 s=1 3A 4.
where the max is taken with respect to all the categories not eliminated after the
(r — 1) stage.

In order to get some idea of the efficiency of the resulting sequential procedure
when A = A/4, a number of sampling experiments were carried out. (The Compu-
tations were programmed by Kurt Fuchel and done on the Merlin computer of
the Brookhaven National Laboratory.) The results are summarized in Table I,
where T, denotes the mean of the total number of measurements from all popu-
lations required to make a decision when up = pg = -+ = pp (the & con-
figuration), T; denotes the mean when ppy = p@ = -+ = pp-y = pm — A
(the 8, configuration), and N denotes the number of measurements with each
category required by the fixed-sample size procedure. The values of N were
obtained from the tables in [2].

In Table II, the empirically determined average sample size for the procedure
of this section with A\ = A/4 (abbreviated the P procedure) was expressed as a
percentage of the corresponding single-sample size. The table indicates that the

TABLE I
A summary of the results of experimental sampling*
Number Number
k « of Trials To of Trials T kN
for Ty for T,
4 .05 50 755 100 443 850
@7) (16)
4 .01 50 1178 100 644 1442
(47) (24)
10 .01 50 3226 50 1982 4506
(81) (86)

* The values ¢ = 1 and A = .2 were used throughout. The estimated standard deviation
of each mean is written in parenthesis below the mean.
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TABLE II

Ratio (in percent) of the experimentally determined average total sample size divided by the
corresponding total fixed-sample size*

k « Ratio for the I’ Ratio for the P
Procedure Under 8 Procedure Under &,
4 .05 89 52
3.2) 1.9)
4 .01 82 45
3.3) 1.7)
10 .01 72 44

(1.8) (1.9)

* The values ¢ = 1 and A = .2 were used throughout. The estimated standard deviation
of each ratio is written in parenthesis below the ratio.

sequential procedure with X = A/4 is substantially more efficient than the
fixed-sample size procedure.

b. The case of a common but unknown variance. In this section we shall some-
what tentatively propose a sequential procedure which we feel is probably fairly
adequate for most practical situations, although it is obviously far from being a
perfect solution.

We start by taking a sample of n, measurements with each category. Let

Xi= 200 Xi/no, Xy = 251 Xifley X = D s 2on% Xooflomg .

Under situation A, let s* = D iy D oty (Xis — X +)?/k(ny — 1) be the usual es-
timate of ¢” with f = k(ny — 1) degrees of freedom, while under situation B
let s = D 5 D% (Xiy — Xio — X.o + X)*/(k — 1)(no — 1) be the usual
estimate of o® with f = (k — 1)(no — 1) degrees of freedom, so that in each
situation fs’/o” has the x distribution with f degrees of freedom. Next let

g = [k — 1)/a)* — 1]f/2,

let a* = 45%g/3A, and let W* denote the largest integer less than 4a™/A..

Having obtained 7, measurements with each category, we compute s* and the
values of g, a*, and W*. If n, > W™ we stop the experiment and select the
category with the largest cumulative sum. If n, < W7, then we eliminate any
category ; for which

] n9
Z‘i X;s < max {Z‘i X,,} — a* + no A/4,
where the max is taken over all k categories. If only one category is left, the
experiment is terminated, otherwise we go on to the (no + 1) stage and take
one measurement with each category not eliminated after the nith stage. Pro-
ceeding by induction, after the (no + t) stage (t = 1, 2, ---, W* — ng) we
eliminate any category w; for which
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nott nott
Z; X < max{ Z{ X} — a* + (no + t)A/4,
where the max is taken over all categories not eliminated after the (no + ¢t — 1)
stage. If more than one category is left after the W* stage, we terminate the
experiment at the (W* + 1) stage by selecting the remaining category with the
greatest cumulative sum.

From the argument given in Section 4 it follows that

P [m, is not selected | 5]

5;“] )

Making use of the fact that the set of means {X.} is independent of s, and
that wp — u = A for all points in 85, and then following the detailed argument

given on page 553 of [7], it is a routine matter to verify that
P[m is not selected | 5] < a.

In practical applications, the choice of ny is very important in determining
the efficiency of the resulting sequential procedure. It is necessary to avoid
taking m, too small since the resulting large value of ¢ makes the sequential
procedure inefficient, and it is also necessary to avoid having no too large, as
this would obviously also reduce the efficiency of the sequential procedure because
no category can be eliminated or selected until the noth stage of the experiment.

Although an optimum procedure for selecting n, is unknown, it is hoped that
the somewhat tentative procedure for selecting my that shall now be described
will prove useful. Two cases are distinguished: (1) no information about ¢ is
available, and (2) an approximation ¢’ to the unknown common standard devi-
ation ¢ is known from previous experience. For Case (1) we suggest selecting
f (which determines 7o) so that g shall not exceed its limiting value by more than
a specified amount (say ten percent); that is, select f to be the smallest integer so

that [((k — 1)/a)®’ — 1]% < (1.D)log[(k — 1)/a). If we denote the solution to

k—1 n n
= EP[Est <> X,—d" +nA/4 forsome n, me=<n< ®
s=1

y=1 8=1

this inequality by f (and the corresponding value of no by 7) then for & = .05
and k = 2, 4, 10, 20 the corresponding (approximate) value of f is 30, 45, 55,
and 60 respectively, while for « = .01 and k = 2, 4, 10, 20 the corresponding
(approximate) value of f is 50, 60, 70, and 80 respectively. For case (2) let o’ be
an approximation to ¢ known from previous experience, and let N(s') be the
number of stages required by the fixed-sample size procedure corresponding to
¢ = o . Then we suggest taking n, = min{N (¢’)/3, 7is}. However, when N(s")/3
< 7y and the resulting value of g exceeds log[(¥ — 1)/a] by more than a specified
amount (say by more than 25 percent) it is suggested that then the procedure
of [5] should be preferred.
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