BAYESIAN BIO-ASSAY!

By CuaARLES H. KRAFT AND CONSTANCE VAN EEDEN
University of Minnesota

1. Introduction. The basic bio-assay problem can be stated as follows. Let F be
a distribution function and let ¥ = (Yy, ---, Y;) be a set of k independent
random variables, each of which is binomial with parameters (n;, F(¢;)). The
numbers ¢, - - -, & are called dosage levels. The experimenter knows the n; and
the t;, can observe Y and wants to make some inference about F.

The approach we discuss here is Bayesian, that is ' is random and the dis-
tribution of Y just described is taken to be the conditional, given F, distribution
of Y.

In the following sections a characterization of the class of all (a priori) dis-
tributions for F is given, the corresponding Bayes’ estimates for a class of loss
functions are found and the results of LeCam [5] are applied to show complete-
ness of the closure of this class of estimates for a certain topology. A special case
is given for which the estimates are explicitly computed.

2. A priori distributions for F. The set of distribution functions, F, is often
taken to be a parametric family. In such a case an a priori distribution can be
given for the parameters. It is, however, possible to be completely general.
Namely let D = {d} be a countable dense subset of the real line, and let a
sequence of probability laws £[F(dy)], L[F(dz) | F(dy)], - -+, L[F(dn) | F(dy),
-+« , F(dn,2)], - - - be given such that P(F, on D, is a distribution function) = 1.
Then, defining for 2o 2 D, F (%) = lim,»s} zep F (), defines P for F with P(F is a
distribution function) = 1. It is clear that this construction yields a separable
process and, also, that any process that produces, with probability one, dis-
tribution functions will have such a separable representation.

The above given construction specifies an a priori distribution for F by giving
the joint distribution of the ordinates of F at certain fixed abcissa. Another way
to specify a distribution for F is to give, consistently, the joint distribution of the
percentiles of F.

3. The loss functions. The loss functions we wish to consider are the following,.
Let W () be an arbitrary (fixed) distribution function. If @, a non-decreasing
bounded between 0 and 1 function on the real line, is the statistician’s decision
and F the distribution determining the distribution of Y, then the loss
L(F,G) = [ (F — G)*dW. For this loss the Bayes’ estimate is the conditional,
given Y, expectation of the process. The proof follows immediately from the
usual pointwise (in Y') construction of Bayes’ procedures.
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4. Completeness of the set of Bayes’ rules. The space of decisions G is the
Helly space and is compact in the usual relative product topology (cf. e.g.
Kelley [3] p 164). Decision functions, F, are maps from the observation space to
the decision space and the space of decision functions is given the product
topology in the product space whose coordinate spaces are the spaces of decisions
indexed by the finitely many points in the space of Y.

For the question of completeness of the set of rules it will be shown that the
Assumptions 8, 9 and 10 of LeCam ([5] p 77) are satisfied and concluded, from
his Theorem 4, that the closure of the class of Bayes’ procedures is a complete
class.

For the loss L(F, @) at the decision G and nature’s strategy F we have
[(F-a@ )2 dW, so that, for a decision rule F and a strategy of nature F, we take
R(F,F) = Ey [ (F — Fy)? dW, where Ey denotes average with respect to the
binomial distribution given to Y by F.

AssumprioN 8. infs R(F, F) > — « for every F.

Proor. Obvious.

AssumpTioN 9. For every pair (Fi, F;) of decision functions and every c,
0 £ o £ 1, there exists a decision function F such that

R(F, F) < aR(F, ;) + (1 — &)R(F, ).

Proor. Take F = afy + (1 — a)F,.

AssumpTioN 10. The set of decision functions is a compact topological space and
R(F, F) is, for each F, lower semi-continuous on this space.

Proor. The topological space of decision functions is a finite product of com-
pact spaces and is therefore compact.

That R(F, F) is continuous on this space can be seen as follows. Write
W = Wa + W., where the only points of increase of W, are jumps and W, is
continuous. Since

R(F,F) = Ey [[(F — Fy)dWa + f(F — Fy)? dWc:I

it suffices to prove that for each of the finitely many values of Y,
(a) f(F — P)?dW, is continuous and (b) f(F — F)?dW, is continuous.
(For simplicity the subscript Y is omitted.)

(a) Let Ay = (21, -+ , ov) be the set where the first (in order of magnitude)
N jumps of Wy occur, where N is such that [aydWas > 1 — ¢/4. Then if
& = {F'||F'(z) — F(z)| < ¢/4 for all z ¢ Ay} we have [IF' — FldW, < ¢/2
forall ' e and so | [ (F — FYaw, — [ (F — F)*dW,| < efor all F &9,

(b) Let x, and o be continuity points of F so that

[m df — inf, F(z) < ¢/6 and sup, F(z) — fw dF < ¢/6.

Further let By = (1, - -+ , Zy) be the set where the first (in order of magnitude)
N jumps of F occur in the open interval (zo, z¢) and B = limy-s By . Choose
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N so that [p_sy dF < ¢/6. Then choose (a1, - - - , ay) so that the open intervals
{(_w7x0)7 (561 — Qi, X + at)i = 1; e ;Nr (xé, oo)}

are disjoint and W.(z; + a;) — W.(x; — a;) < ¢/6N. Now choose & > 0 so that
|P(x) — F(y)| < ¢/6 forallz, y with |z — y| < & in the same one of the finitely
many disjoint closed intervals whose union is the difference A of the closed inter-
val [zo, o] and the union of the intervals {(z: — as, z: + @), =1, --- , N}.
Finally let

& = {F'||P(z) — F'(z)| < ¢/6 forall zeC},

where C = {9 < v, < -+ < v,} is any finite set of points in A which contains
the points o, 2o, ©; 2= a; (¢ = 1, -+ , N) so that v;.; — v; < 8 if v; and v;,; are
in the same closed interval of A.

For F' ¢ ¢’ it follows that [ |F — F'| dW, < ¢/2, so that

<e

U(F — Py aw. — [(7 — P) aw.

6. Special case. The class of examples we want to describe will depend on a
method we will call z-interpolation. Let z be a random variable with a distribution
on the unit interval and let Ez = u, o7 = o". Let {2;} be a sequence of independent
random variables each distributed like 2. A process F' on the unit interval is now
defined as follows. The distribution of F (1) will be that of z; . The conditional,
given F(%), distribution of F(%) is that of zF(%). The conditional, given:
F(%) and F(%), distribution of F(£) is that of F(%) + 2(1 — F(%)). The dis-
tributions of F (%), F(2), F(%) and F(%) are defined, in the same manner, by
interpolation between 0, F(}), F (%), F(2) and 1, and those for F(k/2") (k odd,
n > 3) are defined by the obvious induction.

For processes whose law is given by z-interpolation the mean m(u, ) at x
can be found by noting that

1. m(u, x) = um(u, 2z) forz = 3,

2. m(u,z) =1 —m(1l — p, 1 —2x).

These functions have been discussed by Dubins and Savage [2]. It is interesting
to note, as have they, that {m(u, )} is a family of mutually singular distribution
functions. In particular, if u 5 %, m(u, z) is singular with respect to Lebesgue
measure.

The variance var (u, o, ) at z of the process can be found by noting that

1. var (g, o, 2) = (o + u°) var (g, o, 22) + o’{m(u, 22)}* for z < &,

2. var (u,0,z) = var (1 — p, 0,1 — 2).

6. Example. We have computed the Bayes’ estimates, E(F | Y), for a process
defined by z-interpolation, with z taken to be uniform (0, 1). The dosage levels
are at 1, 1, 2, and the observations at these points are, in this order, (2, y1, ¥3).
Further N = D_%_; n; . These estimates are
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The estimate for any point between the dosage levels is found by linear inter-

polation between these estimates. This is clear since E(F | F(}), F(3), F(}), Y)
is linear, so that E[E(F | F(1), F(3),F(£),Y) | Y] = E(F|Y) is linear.

7. Remarks.

1. In the example just preceding we have used as an a priori distribution
for F' a process whose mean value is the cumulative of the uniform distribution
on (0, 1). This process can be adapted to a process, whose mean value is any
given continuous cumulative H, . The corresponding estimate H is defined by
H(z) = E{F(Ho(z)) | Y}, where F is the estimate of the above example.

2. In the foregoing example we have assumed that the dosage levels were at
the (k/2")-tiles of nature’s average strategy. To apply this method of estimation
the experimenter needs some idea of this average strategy. The question of the
sensitivity of these estimates to this assumption needs further exploration.
However in Bayesian problems with simpler parameter spaces the performance of
the Bayes’ estimate is, for moderate n, relatively insensitive to the a priori dis-
tribution. It seems not unreasonable to expect the same here.

3. In many bio-assay problems the question is one of identifying Fy, where
Fo(z) = Fo(x — ) for some fixed F,. The usual loss for these problems is
L(Fs, , Fo,) = (6. — 0,)". Since (Fo,(u) — Fo,(w))* = (6 — 6,)° (Fe(u)) )
(6 < £ < 8y), it follows that our loss [ (Fo, — Fs,)* dW = (01 — 6)° f(Fg(u))de
so that the two functions are in local agreement if [ (Fi(u))*dW < M.

8. Some related results. Since we submitted this paper it has come to our
attention that there are further results relating to some of the problems raised

in this paper.
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Dubins and Freedman [1] have studied a class of processes constructed with a
method of interpolation which includes both the interpolation of Section 5 and a
percentile interpolation mentioned in Section 2. There they prove that, for a
priori distributions given by the interpolation of Section 5, the Bayes’ estimates
are consistent.

Kiefer and Wolfowitz [4] have given conditions under which the maximum
likelihood estimate has the asymptotic properties of normality when the param-
eter space is infinitely dimensional. As an example they consider the problem of
estimating a distribution function F.
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