ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE
LOCATION PARAMETER!

By MarTiIN Fox anp HermaN RuBIN

Michigan State University

1. Introduction and summary. Let B be the o-algebra of all Borel subsets of
the real line & and @ be a s-algebra of subsets of a set Y. Let » be a probability
measure on @. Let P be a B X @ measurable function on X X <Y such that
P(-,y) is a distribution function for each y £ Y. As usual, B X @ is the o-algebra
generated by sets C X A for C ¢ Band 4 ¢ @. We observe (X, ¥) where » is the
marginal distribution of ¥ and, for some unknown 6, the conditional distribution
function of X — @ given Y is P(-, V). It is desired to estimate  with loss function

L(o,d) = a(8 — d) ifd <6
=b(d — 0) if d > 0.

(1.1)

For any statistical problem, let p(8, §) be the risk when é is the decision pro-
cedure used and 6 is the value of the parameter. In all that follows, u will be
Lebesgue measure on the real line. In a problem involving a real parameter, we
say that & is almost admissible provided that, given any other procedure &', if
p(0,8") < p(6,8) for all 6, then p(8, 8") = p(6, 6) a.e. (u).

The purpose of the present paper is to prove the

TueoreM. Suppose that, in addition to the above assumptions,

(i) for each y &, the unique (1 — a)th quantile of P(-, y) is O where o =
a/(a + b) and

(ii) fdv(y) fxz d.P(z,y) < .

Then, under the loss function given in (1.1), X is an almost admissible estimate of 6*

The proof of the theorem will be given in Section 2. Section 3 contains the
proof of the

CoROLLARY. If, in addition to the assumptions of the theorem, P (-, y) ts either
absolutely continuous for all y € Y or has its points of increase in a fixed lattice for
all y € Y, then X 7s an admussible estimate of 0.

If 6 has “uniform” a priori distribution on X, then X is the ath quantile of the
a posteriori distribution of ¢ given X. Hence, X is the best invariant estimate of
6. Farrell [3] has shown that when the unicity assumption in the theorem is
violated X cannot be almost admissible.

The Theorem and Corollary are analogous to Theorems 1 and 2 of Stein [5]
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1020 MARTIN FOX AND HERMAN RUBIN

for the case of loss function (§ — d)” In Stein’s theorems (i) is replaced by
E(X|Y) = 0 and (ii) is replaced by [dv(y)[[ «* doP(z, y)]} < . Thus,
Stein’s result, as well as ours, requires one moment more than is intuitively
necessary. In Stein’s case, contrary to ours, the extra moment is not required if
Y contains only one element. Similar results for the case of hypothesis testing
were obtained by Lehmann and Stein [4] under the assumption of a first moment,
again one more moment than is intuitively needed.

The proofs in Sections 2 and 3 are similar to those used by Stein. The method
is originally due to Blyth [2]. Since the passage from our corollary to the case of a
sample of size n is similar to Stein’s, it will be omitted here.

Section 4 contains examples which show that the conclusion of the theorem
cannot be strict admissibility. These examples are analogous to Blackwell’s [1]
example for the case of the loss function (§ — d)°.

2. Proof of the theorem. Without loss of generality, assume o 4+ b = 1. Sup-
pose the theorem is false. That is, suppose there is a real valued function ¢ on

o X Y for which

[ [ 106,6(5,9)) &P = 0,0)
(2.1)
= [ @) [ L6, 2) &P~ 0,)

with strict inequality on a set S of ’s for which u(.8) > 0 where u is Lebesgue
measure.

Assign a priori distribution (1/0)q(6/c) to § where ¢(u) = 1/[x(1 + u*)].
Let & stand for expectation with respect to », P, and the a priori distribution. By
the same proof as that used by Stein, (2.1) and the strict inequality on S imply,
for ¢ > 0 sufficiently small and some x > 0, that

(2.2) g8L(8, (X, Y)) = eL(6, X) — ex/2m0.
Tt will be shown that
(2.3) inf, 8L(9, (X, Y)) = &L(8, X) — f(o)/o

where f(¢) — 0 as ¢ — . This contradicts (2.2) and will complete the proof.
Let 6*(z, y; o) denote any ath quantile of the a posteriori distribution of 8
given X = z and ¥ = y. Since 6%(z, y; o) is the Bayes estimate of 6, it follows

that
(2.4) inf, 8L(6, ¥ (X, Y)) = &L(6, (X, Y;0)).

We now wish to take a jointly measurable determination of 6*. Let

o(u, z,y; 0) = f_j q (%) deP(z — 0,y) /f_: q (%) deiP(z — 6, y)

and let 6%(z, y; ¢) = min {uie(u, z, y; ¢) = o}, that is, 6% (z, y; o) is the smallest
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ath quantile of the a posteriori distribution. In all that follows this determina-
tion of 6*(z, y; o) is used.
Let

19) _ a1, %) — infy, L(o, $(X, 1))

g

@5 =L[o(Q)a [ a0 [we - 1666 s0nape—op

— L faw) [as [ g (g) [L(6,) — L(6,6*(2,43.0)) ) deP( — 6,).

By Assumption (ii) of the Theorem, the integrand in (2.5) is absolutely integ-
rable so that the change in order of integration is valid.

We wish to show f(¢) — 0 as ¢ — o,

For z = 6*(z, y; o) we have

L(07 x) - L(oi 0*(3;: Y ‘7)) = b[.’l} - 0*(1;7 Y ‘7)] if 6 < 0*(:”: Y U)
~afz — 6%(z, y; )] + (a 4 b)(z — 0)

(2.6) i
if 0 (z,y;0) S 02
= —az — 6*(, y; 0)] if ==
so that
0 %
[ o(2)1260,2) = 160, 6°(z, 3 o1 aPla — )
0* (z,y;0)
e == @ual|o [ oY) are -0

- af q <§> doP(z — G,y)] + f (x—6) ¢ <9> dsP(z — 6,y)
0*(z,y;0) g 0*(z,y:0) g

since we have assumed a 4+ b = 1.

In (2.7) the point 6*(z, y; o) may be included in the range of integration of the
first integral or of the second and third integrals or partially in both. In all that
follows, integrals with the (1 — a)th or ath quantile as a limit (which will be
obvious in the context) are taken with that limit included to the extent that
makes that quantile exact. Thus, if ¢ is the ath quantile of the distribution
function F, then

[ 1@ ap@) = [ 1@ dF @) + 50) [~ 7o)
for d < c and

[ 1@ ar) = [ 1) ar@ + 50 F@) — o
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for d > c. With this convention, the first term of (2.7) is 0 since 6*(z, y; o) is
the ath quantile of ¢(8/¢)P(x — 6, y). Thus,

[ (") [L(6, 2) — L(6, 6*(s, y; )] doP(x — 0, )
(2.8)

z

= (x — 0)q< )doP(x - 6,y).

6*(z,y30)

Similarly, for z < 6*(z, y; o), we have

fq <~§> [L(6, ) — L(8, 6%(z, y; 0))] deP(x — 6, y)

(2.9) - fm””) 0 — x)q( )deP(x — 6,y)

=f (x—o)q<>doP(x—0y)
0*(z,y;0)
From (2.5), (2.8), and (2.9) it follows that

fle) = fdu(y) fdx fo oy (z — 8)q < )doP(x —9,y)
(2.10) fdv(y) fdx /-w—o'(zuv) uq( )d P(u, y)

= fdy(y) fdx ~/(;a:—oo(x.z/,cr)i_:l___&:l——_uj?/_;?duP(u, Y.

Let

K, = f lz| :P(z,y); K = ny dv(y);

K= [#aP@y; K = [ K ow.
We wish to break up the range of integration in (2.10). The first term is

z—0* (z,y;0) u
Jl(o) = ‘[K;/>€202 dl/(y) /dxf ]WduP(u, y)

(2.11) <45 /;z;>ez dv(y) / |u| duP(u, y)f m2

o
=T fK s T )

But K,/K, < 1/(K,)! < 1/(e0) in the range of this integration. Hence,

(2.12) Ji(e) =% | Kydu(y) >0

2e K, >e20?
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as o — o since K’ < .
In the remaining part of this section we assume K, < ¢’o". In order to bound
the remainder of f(s) we need bounds for the quantity

1 R 1
fA(x7 Y, ‘7) = a‘[; 1 + (x _ u)2/02 duP(u7 Z/)

° 1
(213) - b [—w m/—o‘z duP(u7 y)

z—0*(z,y;0) 1
= fo R —— d P(u,y).

In the defining formula for A(z, y; ¢) we include 0 in each term to the extent that
makes 0 the exact (1 — a)th quantile of P(-, y). In the definitions of ¢ and H
given below we do the same. For E C [0, =), let G(E, y) = oP(E, y) —
bP(—E, y) and H(E, y) = aP(E, y) + bP(—E, y). Then, 2P(E, y) =
(1/a)lH(E,y) + G(E, y)]and 2P(—E, y) = (1/b)[H(E, y) — G(E, y)] so that

“© 1 1
A uso) = [ [1+(x_u>2/02—1+(x+u)2/62]duH(u,y)

- fo [1 Fe—wd T TT @+ u)ﬁ/oz] dG(u, y)

4 :I:u/¢72

- f 1+ 2@ + @)/0] + @ — wp/ot

® 2 4+ 2[(a* + v /4]
+ jo. 1+ 2[@ + w)/e’] + (a2 — u)?/o* G, y)-

To verify (2.14) we must see that the inclusion of 0 is correct in the two terms.
In the definitions of G and H we have G({0}, y) = a[P(0, y) — o] —
bPla — P(0—, y)] and H({0}, y) = a[P(0,y) — o] + bla — P(0—, y)].
Multiplying both sides of the first equality in (2.13) by 2, in the first integral 0
is included to the extent 2a[P(0, y) — o] = H({0}, y) + G({0}, y) which ac-
counts for the first term of each integral in the first expression for A(z, y; o)
in (2.14). The second integral includes 0 to the extent 2b[a — P(0—, y)] =
H({0}, y) — G({0}, y) which accounts for the second term of each of the inte-
grands in (2.14). With this computation of G and H the limit 0 is fully included
in all the integrals in (2.14).

Let

(2.14)
duH (u, y)

0

N au/c” .
hovio) = ), e 4/ @ — ey eV

) _ @© x2u2 0_4 )
10 = [ G G T @ e = a0
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and

‘ B o u2/0_2
o) = [ e + @ e &0 v

Elementary algebraic manipulation yields A = 4I; + 81, — 2I; since the fourth
term is

f d P(u, y)—b/ d. P(u,y)]
—o.

du G(u, y) =

fo 1T1x2/—02 1+x2/a2[

On the right side of the preceding expression, the limit 0 is included in each
term to the extent given in the previous conventions concerning integrals with
respect to P(-, y).

Bounds for I, , I; and I; are given by

le| [
. <
lll(x,y,6)|=02+2w2 A u dy H(u, y)
_ Kol _ Ky
02+2x2_T’
2

lI2(x’ Y; 0')| ) u* ldu G(u’ y)l
(2.16) (e® + & )(02 + 22%) f ,

(2.15)

K
< - 2 = 2.
_202[) w dy H(u, y) 52
L, ; 0)| = _I__f” o | Glu, )|
T T @1+ 2t/ ) “e
(2.17) . .
< - 2 = ¥
== w dy, H(u, y) -
From (2.15), (2.16), and (2.17) we obtain
(2.18) |A(z, y; 0)| < 2K,/ + 13K,/c".

We require another bound on A for the case |z| > ¢. It will be necessary to
split I; into two terms, I3 and I1 , the former being the integral from 0 to |z|/2.
Then, for |z| > o, we obtain

2 l=z]/2
4 . < || &
(2.19) s 0l = ot + 222> + 924/16 Jy wd, Hlu, )
' o 164K, _ o (16K,,>‘
IEE 9¢
oy <2l [T
(2.20) sl = 5 + 222 ‘/Ix|/2 wdy Hu, y)
. 2 ® K, o (K,
< 2 By _ o (Ay),
e ~/;x|/ W Hw,y) < a? x2<02>’
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2 ©
Lz, y;0)| £ —% 2 \d,
1o, 43| S o [ o I Gl 0)]
(2.21) o A
<2 T (2v).
x? x2(u2>’
and

? “ / 2 ’
z 2 K, _d (K,
s T ARl <%2_;(2_>.

Thus, for |z| > o, from (2.19), (2.20), (2.21), and (2.22) we obtain
|A(z, y; 0)| < (o°/2")(8K,/o + 13K,/d")
< [¢%/(o* + &")I(16K,/o + 26K,/s").

(2.22) |Ii(z,y;0)| <

(2.23)

For |z| £ o, it follows from (2.18) that

(2.24) |A(z, y; 0)| < [°/(" + 2")](4K,/o + 26K,/5")
so that, for all x, we obtain
(2.25) Az, y; 0)| < [6°/(" + 29)](16K,/c + 26K, /c").

From (2.25), for e sufficiently small,
(2.26)  |A(z, y; 0)| < [6/(d" + 27)](16¢ + 26¢°) < 17ed’/(o" + °)

uniformly in y such that K, < 0"
Take 0 < |u| < pcand 0 < p < 1. Then,

(227) 1+ (z —w)’/e® £ 2 + 2*/d" + 2 |2|/0 < 3(1 + 2%/d°).
Thus,

+po 1 1 0—2 tp0
—_— > | —

1 o . é
gg T min(a, 1 — a) — 3

uniformly in y by the Tchebyschev inequality. But e can be chosen sufficiently
small so that 3 [min (a, 1 — &) — €/p’] > 17¢. For e sufficiently small, from
(2.26) and (2.28) it follows that

(2.28)

+po 1
fo T¥ e -wye el y)’ > |A(z, y; o)

(2.29)

uniformly in y.

The inequality in (2.29) still holds if both limits are entirely included. Thus,
it follows from (2.13) that |z — 6*(z, y; ¢)| < po for all y.

We seek a bound on |z — 6¥(z, y; ¢)|. From (2.13), (2.25), and (2.27) we

obtain



1026 MARTIN FOX AND HERMAN RUBIN

o2 z—0* (z,y;0) P 16K, 26K, "
230 g || d“P(“’y)<a2+w2< ;T )
so that
z—9* (2,y;0) 13K
(2.31) f du P(u, y)' < 6( Ct )
0
Hence,

) i 13K,
(2.32) fz—o*(z,y;,) dy P(u,y) > min (¢, 1 — a) — 6 ( )

> min (o, 1 — ) — 6(8¢ + 13¢).
For e sufficiently small, it follows that

(2.33) f du P(u,y) > 3 min (a1 — &)
z—0*(z,y;0)

SO

(2.34) Ky > imin (o, 1 — a)[z — 6%(x, y; o)

and hence

(2.35) [z — 6%z, y; ¢)| < |2Ky/min (o, 1 — ).

Let B, = {y:K, < €6 and |z — 6%(z, y; ¢)| > r for some z} with r > 0
fixed. Fix 6 > 0. By the unicity of the (1 — «)th quantile of P(-, y), for A
sufficiently small,

(2.36) »y:P(r—,y) — (1 —a) <N and (1 —a) — P(—1,y) <A <.

In (2.31) the inequality is certainly satisfied if we take the integral so as to
completely omit the limit x — 6*(z, y; ). In what follows, we will take P(r, y)
to exclude the probability concentrated at = if + > 0 and include that probability
otherwise. Then, (2.31) yields

(2.37) [Pz — 6%(z, y;0),y) — (1 — a)| < 6(8¢ + 13€) < A

for e sufficiently small. In order for (2.37) to not be a violation of (2.36) we must
have »(E,) < é. But, by increasing o, for any fixed ¢ > 0 we may decrease \ in
(2.37) hence decreasing 8 in (2.36). Thus, »(E,) - 0asc — .

Let

J2(0) _ va d,,(y) / s foz—ot(z,y;«r) ﬂﬁm d P(u’ y)

@l s o [ [ ] (16 10+ 2) ay)

.fwﬂ
-ooaz-l—x?

Then,

(2.38)
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by (2.13), (2.24), and (2.35). Thus,

2 i /
T a)] (16 + 26¢) fE K} do(y) =0

(239)  |Ja(o)] = ar,:
since K’ < o« and »(E,) — 0as ¢ — .

There remains one term of f(¢). Let Ef = (~E,) N {y:K, £ ¢o’}. The
remaining term is

z—0* (z,y;0) u
J3(O') =L:du(y)fdx£ ’]Wdup(u,y).
Then, from the definition of £, and (2.13) we obtain

(240) a(o)| = T/E. dv(y) f_: A(z, y; o)| da.

The first bound in each of (2.19), (2.20), (2.21), and (2.22) is independent of
the assumption that |z| > . Hence, they can be used to obtain

- . 2 ® ||
Lo (2, 5 0)| do = o'K, .[.eo ot + 2226% + &t de
(241) x
T gy = s
<2aKf S Pl
e * 2K,
" . < ’ - v,
242) [ HGuollde s 2K [ —osdo = 220,
0 0 2 7
. < / —.x = .@ M
(243) [_w |I(2, y; 0)| dz < K, [_w R dx 50
and
® © 1 K,
(2.44) L IL(e, y; 0)| do < oK, f_ Nerr Lt
Hence,
(2.45) f Az, y; 0)| < 3K, + 21K”.

From (2.40) and (2.45) we obtain
(246)  |Jy(o)] =~ fE ( 21K, ) d(y) = <3K + %11‘1)

But 7 was chosen arbitrarily and can be made as small as we please by taking o
sufficiently large. Hence, J3(c) — 0 as ¢ — .
This completes the proof of the theorem.

3. Proof of the corollary. The assumption in the corollary is equivalent to the
condition that P(-, y) has a density with respect to either Lebesgue measure or
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counting measure for each y ¢ Y. We will assume that for each y the density,
denoted by p(-, y), exists with respect to Lebesgue measure. The proof, in gen-
eral, is along the same lines provided we recall the convention adopted in Section
2 concerning integrals with quantiles as limits of integration.

We know that X is almost admissible. Suppose the risk when we use ¢(X, Y)
as an estimate is the same for a.e. 6 as that using X and that, on the exceptional
set, (X, Y') has smaller risk. Let ¢o(z, y) = 3[x + ¢(z, y)]. Then,

$L(0, ¢(z, y)) + L(6, )]

ald — 5 — 36(, y)l if =, ¢(z,y) <
blzr + 3¢(z, y) — 6] if = ¢(z,y) 2
z0[0 — ¢(z, y)] + 3b(z — 6) if ¢(z,y) <6 <2z
blop(z,y) — 01+ 2a(6 —2) if z<60<o(x,y)
L(6, ¢o(z, y))

with strict inequality if, and only if, 6 is strictly between x and ¢(z, y). From
(3.1) we obtain

fdv(y) fL(G, éo(z, ¥))p(x — 6,y) dx

0
0

(3.1)

v

62 =3[ [1L6661) + L6,Ip6 — 0,1) d

< [ aw) [ L0, 2)p(z — 6,9) .

To complete the proof it suffices to show the strict inequality in (3.2) holds for
6 in a non-null set. To do so we show that

(3.3) f do f d(y) fo sy PE=0,0) 28>0

because of the condition for strict inequality in (3.1).
Let M denote the left side of (3.3). Then,

¢ (zy)
L p(z — 6,y) dO‘

M = de(y) fdx
(3.4)
= fd”(?/) f |P(z — ¢(z,9),y) — (1 — )] da.

Note that the existence of a density has been used in obtaining the last expres-
sion in (3.4). But there exists a set A such that Av(A) > 0 and ¢(z, y) = z for
(z, y) € A. By the unicity of the (1 — «)th quantile of P(-, y), it follows that
|P(z — ¢(z, ¥), y) — (1 — )| > 0 for all (z, y) ¢ A. Hence, M > 0. This
completes the proof of the corollary.
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4, Examples. Two examples are presented in this section to show that a
condition such as that of the corollary is needed to guarantee strict admissibility.
For both examples we take Y to be a singleton and, hence, drop ¥ as an argument
of P. For both examples let L(6, d) = |0 —d.

Example 1. Let P assign probablhty to each of the points —1 and 41 and
assign its remaining probability according to any density with unique median
at 0. Then, the conditions of the theorem are satisfied. However, the estimate

o(z) =z —1 if z if a positive integer
=z +1 if x is a negative integer
=z otherwise

has smaller risk when § = 0, =1 and the same risk as z for all other 6.

Example 2. Let P assign the Cantor distribution with probability 3 to each of
[0, 1] and [—1, 0]. Then, P satisfies the conditions of the theorem. Let C be the
union of the Cantor set on [0, 1] and all its integer translates. Let Cy = {z:x e C,
z > 0} and C_ = {z:x ¢ C, z < 0}. The estimate

é(x) = [2] if zeCy
= ~[—x] if zeC_
=z otherwise

has smaller risk than 2 when 8 = 0. We will show that ¢(z) never has a larger
risk than does z.

Let ¥ = ¢, N[0, 1] and C* = C_ N [—1, 0] Suppose 6 is such
that (C* + 6) N C = ¢. Equivalently, 6 is such that ( Ct 4+ 6) N C = ¢. Then,
E|6 — ¢(X)| = E|6 — X| since ¢(X) = X a.e. (P).

Assume 9 > 0. The argument is similar otherwise. Let x £ (C_ +6).Ifz <0,
then |0 — ¢(z)| = 0 < |6 — z|. If x > O, then (z + 1) ¢ (C% + 6). In this case
0 — ¢(z)| — 16 — 2| = —(z — [2]) while [ — ¢(z + 1)| — 6 — (z + 1)| =
x — [z] so that the poorer estimate when we observe z is balanced by an improve-
ment when we observe z + 1. Finally, for allz > 6, [0 — ¢(z)| = 6 < [6 — z].
But this covers the case z & (CF -+ 6). Since with probability 1 we have
ze(C- + 6) U (Cy + 6), this implies |0 — ¢(X)| = E|6 — X|. Note that
equality occurs if § > 1 and if (C* 4 6) N Cis a P—null set.

5. Comment on the proof of the theorem. It is interesting to note why the
Cauchy distribution works so well in both Stein’s and our proofs. In our first
attempts to find a proof of our theorem we used the uniform distribution on
(=R, R). This approach failed due to the fact that the Bayes estimate differs
too much from X when |X]| is very large compared with R. Thus, the difference
between the Bayes risk using X and using the Bayes estimate is too large to go to
zero faster than 1/¢. However, the tails of the Cauchy distribution go to zero
slowly enough so that the Bayes estimate cannot differ too much from X. This is
exhibited in the bound obtained for |z — 6*(z, y; @)| in (2.35).
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