ASYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH
INCREASING FAILURE RATE AVERAGES!
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1. Introduction and summary. Birnbaum, Esary and Marshall (1966) have
shown that the class & of distributions with increasing failure rate averages
(IFRA) characterizes the concept of wear-out in the sense that & is the smallest
class that contains the exponential distributions and is closed under the forma-
tion of coherent systems.

In this note, statistical inference for models in which the distributions are
unknown and IFRA will be considered. Let F and G-be defined by

(1.1) F(t) = H(t/8) and G(¢) = H(t/v)

where H is an unknown IFRA distribution with H(0) = 0. Then, for the two-
sample problem where one tests the equality of the means of F and @, it is shown
that the Savage (1956) statistic maximizes the minimum power over IFRA dis-
tributions asymptotically. This asymptotic minimax solution is extended to
censored samples and it turns out that the Gastwirth (1965) modified version of
the Savage statistic is asymptotically minimax for this case. Asymptotic unique-
ness of these minimax solutions holds only in a class of rank tests. The results are
extended to obtain an estimate of the ratio of the means that minimizes the maxi-
mum asymptotic variance over IFRA distributions.

Moreover, the results are shown to hold also for distributions with increasing
failure rates (IFR), extensions to the k-sample problem are given, and asymptotic
efficiencies of the best test for exponential models are given.

2. The two-sample life-testing problem. X;, :---, X,, and Y3, .-, Y, are
independent random samples from populations with distribution functions F and
G. N =m+ n, F(t) = H(t/6x), G(t) = H(t/vn), H has the density A and is
IFRA, i.e.,, H(0) = 0 and for each ¢t > 0,

(2.1) d/dt{—log[1 — H()]/t} = In[1 — H(t)]/& + h(t)/tl — H(t)] = 0.

71, -+, n denote the ranks of the #’s in the combined sample. The level «
Savage (1956) test Yw of Hy : Ay = (0x/vy) = 1 against Ay > 1 rejects for large
values of the statistic (see Remark (iii))

(2.2) Sy =m 2ty —In (1 — /(N + 1)).
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It is assumed throughout that

(2.3) 0 < limy.e (m/N) =X < 1.
Let 0 = ¢ £ » and consider sequences of alternatives {Ax} satisfying
(2.4) limy.o N} Ay — 1) = ¢

Then the asymptotic power function B(c; ¢, H) of a test ¢y is defined as the limit
of the power for such alternatives, i.e.

(2.5) B(c; ¢, H) = lim infyo Bu(ex | H),

where Bv(¢x |H) = E(¢n|Fx, Gy) denotes the power of oy when Fy(t) =
H(t/0x), Gu(t) = H(i/vyn) and Ay = Ox/vy satisfies (2.4).
Let ® be the standard normal distribution function. Then the results of
Chernoff and Savage (1958), Fatou’s Lemma, and a few computations yield.
LemMA 2.1. Suppose H has a denstty h and that H(0) ‘= 0, then the asymptotic
power function of the level o Savage test Yy is given by

(2.6) B(c; ¥, H) = ®(&7(a) + N1 — N [Tth(t)/) 1 — H(¥) dH(1)).

The next result shows that ¥ and the exponential distribution 'K,(x) =
1 — exp (—x/c) is a saddle point for the asymptotic power function 8(c; ¢, H).
In other words, ¢ is worst for the exponential distribution, but is better than all

other tests for this distribution.
TuEOREM 2.1. For all 0 £ ¢ £ » and all ¢ > 0,

(2.7) sup, B(¢c; ¢, Ko) = B(c; ¥, K,) = infw B(c; ¢, H),

where H ranges over the class of IFRA distributions with a density, and ox ranges
over the class of all level a tests.

Proor. The left hand equality was proved by Capon (1961) by essentially
comparing ¢y with the Neyman-Pearson test for K, . To prove the right hand
equality, note that (2.1) yields

(2.8) th(t)/(1 — H(t)) 2 —In[1 — H(?)],
thus
[eth(t)/(1 — H(t))dH(t) 2 [7 —In[l — H(t)]dH(¢) = 1.

The equality signs hold if and only if H has a constant failure rate average,
i.e., if and only if H is exponential, thus

CororLrarY 2.1. If H is IFRA, has a density, and is not exponential, then
(2.9) B(c; ¥, Ko) < B(e; ¥, H).

The minimax property of the Savage statistic now follows at once from

Theorem 2.1.
TaeorEM 2.2. The level o Savage test Yy is asymptotically minimazx over the class

Q of all IFRA distributions with a density, i.e. if H ranges over Q, then
(210) iIlfH 6(0; ‘l/’ H) = infﬂ B(c; 2 H)
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for all level o tests ox.

REMARKS:

(i) H is said to have increasing failure rate (IFR) [1] if H(0) = 0 and
h(t)/[1 — H(t)] is nondecreasing in ¢ > 0. The class of IFR distributions con-
tains the class of exponential distributions and is contained in the class of IFRA
distributions. It follows that Theorem 2.1, Corollary 2.1 and Theorem 2.2 holds
also for this class.

(ii) The “lim inf”’ in the definition of the asymptotic power (2.5) can be re-
placed by a limit if one assumes conditions as in Lemma 3 of Hodges and Leh-
mann (1961). The results hold if “lim inf” is replaced by ‘“lim sup” or partially
replaced by “lim sup” as in [6].

(iii) An asymptotically equivalent form of the Savage statistic is (see [9, p.
1127]),

(2.11) Dot Jo(rs), where
Jo(k) = Z¥=N—k+1.7_l~

(iv) The results in this section hold if one, instead of considering level « tests,
considers tests ¢y with asymptotic level a, i.e. tests for which E(oy [0 = v) — «
as N — o,

(v) The one-sided alternative A > 1 can be replaced by the two-sided
alternative A = 1.

(vi) The asymptotic minimax result holds if one, instead of considering all
F and G with F(t) = H(t/9) and G(t) = H(t/v) for some IFRA distribution H,
one considers all F and G with F(¢) < H(t/8) and G(t) = H(t/v).

(vii) For the k-sample problem with model Fiz) = H(z/[1 4+ 6ci]);
t=1,---,k;the Puri (1964) extension of the Savage statistic is asymptotically
minimax for testing H*: = 0 against 6 > 0 (or 6 = 0).

3. Efficiency of the best test for exponential models. When H equals an ex-
ponential distribution K,(t) = 1 — exp ( —t/s), then the uniformly most power-
ful level « test [7] ox™ of 6 = v against § > v rejects when
(31) T = m_l Zz";l Xi/n_l Z?=1 Yi > F?m,?n(a);

where Fy,,2.(a) is obtained from the tables of the F distribution with 2m and 2n
degrees of freedom. In this section the performance of T is investigated when the
assumption of exponentiality is violated and H is an IFRA distribution. Upon
writing

(3.2) NY(T — A) = NY(X — AY)/7,

it is clear that N*(T — A) has an asymptotic normal distribution with mean zero
and variance

(3.3) A(T) = A%°(H)/N1 — N)*(H) where

w(H) = [TtdH(t) and o*(H) = [y £dH(t) — u*(H).
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When H is exponential, then o*(H) = u*(H). It follows that when H is such that
o’(H) 5 u’(H), then ¢x* does not have level « asymptotically, in fact

(34) E(en™ |6 = v) = (& (a)u(H)/o(H)) as N — =.

Thus when @ < % and u(H) > o(H), then the asymptotic level of on" is less
than «. Barlow, Marshall and Proschan (1963) have essentially shown that for
IFRA distributions, u(H) = o(H). The asymptotic power function of ox™ is

(3.5) B(c; %, H) = ®({87' () + N1 — N} u(H)/o(H))
on " can easily be modified to have asymptotic level a by dividing
N T — 1) by a consistent (when 6 = v) estimate of
r(H) = o(H)/u(H); esg.
f(H) = ¢(H)/4(H) with
GH)Y = N (X zi+ 2 y:) and
F(H) = N Xl + 2 v — £(H).
For this test, &y , one has
(3.6) B(c; 8, H) = (&7 (a) + M1 — N'u(H)/o(H)).
Since u(H) = o(H) [1] when H is IFRA, since w(K,) = o(K,) for the expo-

nential distribution K, , and since 8(c; ¢, K,) = B(¢, $, K,), then (2.7) yields.
TaroreEM 3.1. Forall0 = ¢ £ w and alle > 0,

(3.7) sup, B(¢; ¢, K;) = B(c; ¢, K,) = infuB(c, §, H)

where H ranges over the class of IFRA distributions and ox ranges over the class of

all tests with asymptotic level a < 3.

Thus ¢ is asymptotically minimax in the sense of Theorem 2.2 for the class
of IFRA distributions and the class of tests with asymptotic level o < %. To see
that this is not true for ox™, let H be an IFRA distribution with u(H) > ¢(H),

then for each & < 3%,
(3.8) Blc; o™ H) < B(c; 4, K,) for 0 =c< o.

Let Pitman asymptotic efficiency be as defined in [10]. It follows from (2.6)
and (3.6) that the Pitman efficiency of the Savage test Y to the modified classical

test ¢N is
(3.9) e(¥,$) = o’ (H)[[5 tq(t) dH(t)"/u*(H)

where q(t) = h(t)/[l — H(¢)]is the failure rate of H.
The Weibull distribution is defined by

(3.10) A =1-—¢" ab>0; t=0.
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If y denotes the kth moment about zero, then
(3.11) we = a**T(k/b + 1), q(t) = abt"™,

and R
[5 tg(t) dA(t) = abus = b.

Thus for the Weibull distribution

(3.12) e(¥, %) = &y, $) = b'[T(2/b + 1) — I'(1/b + 1))/T*(1/b + 1).
For b = 1, the Weibull distribution coincides with the exponential distribution

and e;(¢, $) = 1. Forb = 2, one has the linear failure rate ¢(z) = 2ax and (3.12)

becomes

(3.13) e(y, ) = 16/ — 4 = 1.093.

Moreover, for b = 3,4 and 10, (¢, $) takes on the values 1.20, 1.27 and 15.3.

Using L’Hospital’s rule, one finds that

(3.14) limg.,o (¢, ) = .

When b < 1, the failure rate is decreasing. Stirling’s approximation shows that
if r = (1/b) is large, then (3.12) is approximately 2" %™ — ™% and that

(3.15) limgo €(¢, $) = .
If r is an integer, then
(3.16) es(¥, $) = (2r)1/r(r))® — 1/

Forr = 2,3 and 4 (3.16) becomes 1.25, 2.11 and 4.31 respectively.
It is easy to show ([15] and [9]) that ¢y is asymptotically most powerful and
locally most powerful for the Weibull distribution. Thus

(3.17) ea(Y,e) =1 forall b>0

and for all test ¢x for which this efficiency is computable. In particular (3.17)
holds for &y . Thus the Savage test ¥y is uniformly more efficient than the ad-
justed classical test ¢ for the Weibull distribution. Moreover, the Savage test is
much better when the failure rate parameter b is large or close to zero. It is con-
jectured that the Savage statistic is uniformly more efficient than &y for all dis-
tributions with monotone failure rate averages;i.e. e(y, ) = 1 for all IFRA dis-
tributions H with equality iff H is exponential. Here, e(y, ) is given by (3.9)
an H is assumed to have a density.

4. Censored Samples. Fix M < N and wait until the M smallest X’s and ¥’s
have been observed. Let m’ < m be the number of X’s observed, then the ranks
7y, ,Tm of these X’samong X; , -+ X,, , Y1, -+, Y, can be computed. The
Gastwirth (1965) modified Savage statistic is
(41) S = —m i n (1 — ri/(N + 1)) ‘

4+m +m—-—m)In(1 — M/(N + 1))
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It is assumed that
(4.2) 0 < limy,e (M/N) =p < 1.
The asymptotic power function of the level « test ¥ that rejects for large values
of 8) can be computed using [9] and [8]. One gets
(4.3) Blc; ¥, H)

= (& (@) + M1 = N)/pl [§77 th(1)/(1 — H(2)) dH(1)).
From (2.8), it follows that when H ranges over the class of IFRA distributions,
then
(4.4) infy B(c;¥p, H) = B(c;¥p, Ko)

= &(®7'(a) + M1 — N)/pllp + (1 — p) In(1 — p)])

Since Héjek (1962) and Gastwirth (1965) have shown that

(4.5) B(c; ¥p, Ko) Z B(c; 0, Ko)
for all level a tests ¢ , then the results of Section 2 hold for ¥ .

6. Asymptotic uniqueness. Stein (1956) and Héjek (1962) have shown that
one can obtain asymptotically optimal statistics by estimating the underlying
distribution. Although these statistics are impractical, they show that one can
not hope for asymptotic uniqueness in the class of all tests with asymptotic level

o,
Consider the class of one-sided level « rank tests 3 [5] based on statistics of the

form

(5.1) Tu = Tu(Jy) = m 2l In(r/ (N + 1)),

where there exists a function J which is continuous except for possibly a finite
number of jump discontinuities and which satisfies

(5.2) fﬁ J(u)du < o and limy,e fﬁ Un(uw) — J(w)du =0

and the conditions of Comment 3.8 of Hajek (1962). Let & be the classof IFRA
distributions H with a density # which has the Radon — Nikodym derivative A’
with respect to Lebesgue measure and satisfies

(5.3) I3 21 (z) /n(2)P dH (z) < oo.

TuaeoREM 5.2. The Savage-Gastwirth test ¥, is asymptotically uniquely minimax
for 3and F, i.e., if o = oo(Jx) €3, if H ranges over &, and if

(5.4) infy B(c; o, H) Z infg B(c; o, H)
for all ¢ £ 3, then there exist constants ay and by such that
(5.5) NSy — (axTul(Jn) + bx)] — 0

in probability as N — « provided (2.3), (4.2) and (2.4) hold with ¢ < .
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Proor. (2.7) and (5.4) show that 8(c; ¢o, K,) = B(c¢; ¥p, K,). Thus ¢o is
asymptotically optimal for the exponential distribution K, . From Héjek (1962),
it follows that the correlation coefficient py for Sy and T’y satisfies

(5.6) on(Su'y Tu | Ky 4 = 1) -1 as N — .
This implies that for regression coefficients ay and by ,
(5.7) E(N[Sx' — (axTN + by)’| K, ;A= 1) — 0.

Since S and T are distribution free, (5.7) holds not only for K,, but for
general H. The result now follows from the contiguity arguments of LeCam and
Hijek (e.g., [9]). ‘

ReMARK. As in [6], this asymptotic uniqueness result can be extended to the
class of all tests that are based on statistics that are appropriately asymptotically
normal and distribution-free (see [6], pages 623-624).

6. Estimation. Barlow and Proschan (1966) have shown that the estimates
of the mean that are optimal for exponential models are not robust for IFR dis-
tributions. Here an asymptotically robust estimate of the ratio ui/us of the means
of X and Y is constructed using the methods of Hodges and Lehmann (1963).

Write ¢ = (21, -+, %n), ¥ = (Y1, ", Un), 0 = (az1, -+, aTn) ete., and
let
(6.1) s(z,y) = Su’

be the Savage-Gastwirth statistic (4.1). u1/pe = Ou(H)/yu(H) = 6/y = A, so
one estimates A.
Note that N's(X, AY) asymptotically tends to be normally distributed about
the point 0 [9]. Let
*

(6.2) A* = sup {A: s(z, Ay) = 0} and
A** = inf {A: s(x, Ay) < 0}

and define the estimate A of A by

(6.3) A = Az, ) = H(A™ 4 4™).

Since s(ax, ay) = s(x, y) for each a > 0 by the invariance properties of ranks,

then

(6.4) Aax, ay) = A(z,y) forall a > 0.

Moreover, using this, the Definition (6.2), and noting that s(z, Ay) is decreasing

in A, one concludes

(6.5) A(az, by) = (a/b)A(x,y) forall a,b > 0;

i.e. A is scale invariant,

I

(6.6) Pa(A/a £ t) = Py(A 1),

(6.7) A* <A™,
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(6.8) P(A* < t) = P(s(z, ty) < 0),
(6.9) P(A™ = t) = P(s(z, ty) = 0),
(6.10) P(s(x,ty) < 0) £ P(A =t) £ P(s(z, ty) £0).
Lemma 6.1. If H satisfies (5.3) and H(0) = 0, then
limy,. Pa(N*[(A/A) — 1] < 1)
= ®(N1 — N)/pl! [T 2h(2)/(1 — H(z)) dH(x)).
Proor. (6.6) shows that one can let A = 1. From (6.10) it follows that
limyow PYNH A — 1) £ ¢) = limy. P(A £ 1 4+ tN7H)
= limy.. Pi(s(X, (1 + tN"HY) £ 0)
limyow Pay(s(X, ¥) < 0),

where Ay = 1/(1 + tN?). Since N*(Ay — 1) — t as N — oo, the result follows

from (4.3).
Lemma 6.1 shows that the asymptotic variance of N*[(A/A) — 1]is

(6.11) V(A H) = 1/[N1 — N)/pl [ th(t)/(1 — H(t)) dH(t).

Moreover, (4.4) shows that the maximum asymptotic variance over IFRA dis-
tributions is

(6.12) supxz V(4,H) = V(4,K,) = 1/IN1 = N\)/pllp + (1 — p) In(1 — p)].

Let & be as in Section 5, then the results of the previous sections yield:

TrEOREM 6.1. A is asymptotically minimax over & and the class & of scale in-
variant estimates that are asymptotically normal; ie., if V(A, H) denotes the
asymptotic variance of n*[(A/A) — 1] for each estimate A ¢ &, then

(6.13) supz {V(A, H): He'} < supa (V(A, H): He§'} for all Acs.
Moreover, V(A, H) has the saddle-point property
(6.14) supz V(A, H) = V(4, K,) = infi V(4, K,),

where H ranges over & and A over &.

A different approach to the problem of obtaining asymptotic minimax esti-
mates is given by Huber (1963). As in his case, the above minimax result can
be extended to the class of all non-superefficient estimates, e.g. the class of all
scale invariant estimates (see [12, pages 81-82]).

RemARK. One possible method of computing A will now be illustrated for the
situation in Section 2. Using Remark (iii), one writes s'(z,y) =
m™ D Jo(r) — 1, with Jo(4) = D jew_ss1 (1/§). A is computed by trial and
error as follows: Compute &; = (Z/g) and s'(z, Aw). If §'(z, Ay) > 0(<0),
adjust A; to obtain A, by multiplying A; by a number greater (less) than one. In
general, if s'(z, Ayy) > 0 (<0), adjust A to obtain A, by multiplying A, by a
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number greater (less) than one. Repeat until s'(z, Awy) is zero or sufficiently
close to zero. A is then A or approximately A.
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