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ON THE OPTIMALITY OF SOME MULTIPLE
COMPARISON PROCEDURES!

By EMIL Sri¢TVOLL
University of Wisconsin®

Optimality criteria formulated in terms of the power functions of
the individual tests are given for problems where several hypotheses
are tested simultaneously. Subject to the constraint that the expected
number of false rejections is less than a given constant y when all null
hypotheses are true, tests are found which maximize the minimum
average power and the minimum power of the individual tests over cer-
tain alternatives. In the common situations in the analysis of variance
this leads to application of multiple #-tests. In that case the resulting
procedure is to use Fisher’s ¢‘least significant difference,”” but without
a preliminary F-test and with a smaller level of significance. Recom-
mendations for choosing the value of 7 are given by relating 7 to the
probability of no false rejections if all hypotheses are true. Based upon
the optimality of the tests, a similar optimality property of joint confi-
dence sets is also derived.

1. Introduction. Although the literature on multiple hypothesis testing and
multiple comparison methods is vast (see e.g. Miller [20]), the literature on
the optimality of the methods is rather scarce. An important contribution
was made by Lehmann [16], [17]. Lehmann finds optimal rules among the class
of unbiased rules, where optimality means minimizing the expected loss, and
where the loss is the sum of the losses from the individual decisions.

It has been a common complaint that the powers of separate tests are small
when using multiple tests. Therefore, in this paper attention is directed towards
maximizing the power of the individual test. Instead of using the constraint
that the probability of at least one false rejection is smaller than a certain
number «, an upper bound 7 on the expected number of false rejections is
used. The latter is technically easier to work with (see [1], [6], [7], [8], [9]
for the amount of numerical work connected with the former constraint) and
the author personally finds it more instructive to think in terms of expected
number of false rejections than in terms of the probability of at least one false
rejection. Suppose a statistician uses y = .05, then in average for every twen-
tieth problem he makes one false statement. On the other hand if he uses
a = .05, then in average for every twentieth problem he makes false rejections,
but he does not know how many false rejections he makes. The author feels
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MULTIPLE COMPARISON PROCEDURES 399

that it is important to know this. It is also easily seen that the probability
of at least one false rejection is less than 7, hence one has an upper bound on
probability of at least one false rejection when y is known. The knowledge of
a, however, cannot be used to give an upper bound on 7.

2. Statement of the problem. Let X be a random variable with probability
distribution depending upon a parameter ¢, § ¢ Q. Consider a family of hy-
pothesis testing problems

(2.1) H,:0eQ, against K,:0¢Q,, teT,

where Q;, C Q,i =0, 1, and T'is finite with N elements. A test of the hypotheses
(2.1) will be defined to be a vector (¢,(x), - - -, $y(x)), where the elements of
the vector are ordinary test functions; when x is observed we reject H, with
probability ¢,(x), £e T. The power function of a test (¢,, - - -, ¢,) is defined
to be the vector (8,(0), - - -, B,(#)) where 5,(6) = E,¢,(X), tc T. For a related
definition of power of tests of a multiple hypothesis testing problem see Duncan
[3]. Let S(r) be the set of all tests (¢,, - - -, ¢,) such that

(2.2) i EpplX) <7, 0eQ,,

where Q, = [, Q,,. Hence S(y) is the set of tests such that the expected number
of false rejections under Q, is less than or equal to 7.

For each te T we would, subject to (2.2), like to have $,(¢) large when
0 eQ,. If we make B,(0), 0 € Q,, large for a fixed ¢, then 8,(), 0 € Q,,, will
often have to be small for other values of ¢, if (2.2) is to be satisfied. There-
fore we will have to compromise, and we will consider tests which maximize
the minimum power over certain subsets w, of Q,,, ¢ € T, and tests which maxi-

mize average power over certain subsets. A test (¢,, - - -, ) € S(y) will be said
to maximize the minimum power over w,, te T, if it maximizes

(2.3) inf, inf, E,¢,(X)

among tests (¢y, - - -, ¢y) € S(r). It will be said to maximize the minimum average
power over w,, te T, if it maximizes

(2.4) 2L inf, E,¢,(X)

among tests (¢y, - -+, ¢y) € S(7).

Note that the above optimality criteria are more directed towards the per-
formances of the individual tests, than towards their simultaneous performance.
Let, for example, X, and X, be independent N(g;, 1), i = 1, 2, and H;: p; = 0
against K;: p; >0, i = 1, 2. Furthermore let w;, = {(z,, 1t,): pt; = A}, i = 1, 2,

for some A > 0. Thena test of the two hypotheses satisfying (2.3) is such that if
one of the y, is greater than A, then we have a guaranteed smallest probability
of discovering this, and this smallest probability is the largest possible. The
optimality criterion does not tell us anything about the probability of rejecting
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both H, and H, when both g, and g, are greater than A. (For a more traditional
approach to this problem see Steffens [24]). The second criterion (2.4) is simi-
larly directed towards maximizing the minimum average of the powers of the
individual tests. The reason for studying individual powers is that a common
complaint about multiple comparison methods has been that the individual
powers are very small. It is the objective of this paper to find procedures
which maximize the individual powers of tests.
For later reference we state the following lemma.

LEMMA. Let w, be subsets of Q,,, t ¢ T. Suppose that there exists a test
(¢, - -+, y) such that (1) there exist points 0,* € w,, t € T, such that (¢,, - - -, ¢y)
maximizes inf, Ex¢(X) (X, Ep¢ (X)) among tests (¢y, - -+, ¢y) € S(y), (II)
inf,.,, E,0(X) = XNp9(X), teT. Then (¢, - - -, ¢y) maximizes (2.3), ((2.4))
among tests in S(r).

Proor. Obvious, since any other test has less or equal minimum (average)
power at the points 6,*, e T.

The following two theorems will be helpful when trying to find tests maxi-
mizing (2.3) and (2.4). Inthe followinglet f,,, - - -, fons fi, - - -, fi be integrable
functions with respect to a o-finite measure x defined on a measurable space
(27, 57). Let S'(7) be the set of all tests (¢, - - -, ¢) satisfying

(2-3) Zin S ¢ fol(x) dp(x) = 1 -
THEOREM 1. Suppose that there exists a test (¢,, - - -, ¢y) € S'(y) defined by
d(x) =1 when  f,(x) > cfy(x)
(2.6) =a, when  f(x) = cfo(x)
=0 when  f,(x) = cfo (%) -
Then (¢, - - -, ¢) maximizes
(2.7) Zi S 90 fu(x) dp(x)

among all tests (¢y, - - -, ¢y) €S'(7)-
Proor. Let (¢,, - - -, ¢y) be any other test in S’(y). We have
T § S ) dp(x) — T § L) f%) dp()
= 25§ (9ux) — S((fi(x) — cfo(x) dp(x) 2 O,

which proves the theorem.

THEOREM 2. Suppose that there exists a test (¢, - - -, ) € S'(r) defined by
P(x) = 1 when ¢, f(x) > Jo%)
(2.8) =a, when ¢, f(X) = fo(X)

=0 when ¢, f(x) < fo(X)
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where a,, - - -, Gy, C,, - -+, Cy are such that

(2.9) § 6.() (%) dp(x) = infy § 6.(x)fu(%) dp(x) » teT,
andc, =2 0,teT, 1V, ¢, > 0. Then (¢, - - -, ¢y) maximizes
(2-10) inf,. § ¢(x) fi(x) dp(x)

among all tests (¢y, - -+, ¢y) €S'(7)-

ProOF. Let (¢, - - -, ¢) be any other tests in S’(y), and let m be the value
of (2.10) for (¢,, - - -, ¢y). Then

(Ziv=1 Ct)(S ¢t(x)ft(x) dﬂ(x) - m)
= T § gdx)e, fu(x) dp(x) — Tk § gux)e, fu(x) dp(x)
= 2L § ($u(x) — du(X)(e fi(x) — fu(x) dp(x) 2 0 -
Since YJ¥, ¢, > 0 and § ¢,(x)f;(x) dp(x) does not depend upon ¢, the theorem
is proved.

COROLLARY. Let the test (¢, - - -, ¢y) € S'(y) be of the form (2.6) withc > 0,
and hence maximize the minimum average power. If § $,(x) f,(x) dp(x) = constant,
teT, then (¢, - - -, ¢y) also maximizes (2.10) among tests in S'(r).

Proor. Follows trivially from Theorem 2 since (¢, - - -, #,) is of the form
(2.8) and satisfies (2.9).

REMARK 2.1. Ifthe index set T is infinite, we can formulate results similar
to Theorems 1 and 2 if we have a finite measure v defined over 7. Corresponding
to (2.2) we would have § E,¢,(X) du(t) < 7. (2.3) would stand as it is, while
(2.4) would become { (inf,, E,4,(X))dv(t). In Theorem 1 the test defined by
(2.6) would maximize § [§ ¢,(x) f,(x) dp(x)] dv(f) and the test (2.8) would maxi-
mize (2.10) if ¢, = 0, te T, and § ¢, dv(f) > 0. This would, of course, require
that we consider tests such that E,¢,(X) is measurable as a function on 7.

REMARK 2.2. In addition to the constraint (2.2), we could also require
that the expected number of false rejections is always less than 7, not only
under Q. A similar constraint is used by e.g. Scheffé [23] in a situation where
he wants the probability of false rejections to be less than a. It will be seen
that all tests derived in later sections sa'tisfy this additional requirement.

3. Application to comparison of means of normal random variables with common
known variance. Let X;; be N(¢;,1)j=1,---,n,i=1,...,r, and independent.
Hence we assume, without loss of generality, that the known variance is 1.
Consider the following hypotheses about linear functions in the {z,}

(3.1) H,: Y7 a,p, =b, against K;: 37, a,p >b,, teT,

where the {a,;} and {b,} are given constants. Let w, be the set of all parameter
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points such that 7, a,,#, — b, = A,, where A, > 0 is to be fixed later. We
assume that Q, is not empty.

Let X; = (X7¢, X;;)/n;, i =1, -- -, r. For fixed ¢t we transform X,, - -,
to Y,, ---, Y, by a nonsingular linear transformation, ¥, = >;7_,a,X,, ¥; =
Y. by X, j=2,---,r, where the {b;} are chosen so that Cov(Y,, ¥;) =
Yriagbu/n, =0, j=2,...,r. We have that Y, is N(}7_, a};/n;) and Y is
N(Xioa by 2070 b3/my).

Let f, be the density of the observations when p; = p°, i = 1, - - -, r, where
(¢ - -+, 1,0 is any given point in Q,. Let f, be the density when p,, - - -, z,
are the solution of the equations

(3.2) Diaaup =48, 4+ b,
Diabyps = 2 b J=2, 0.

i

Then
log (ft/fo) = (i ah/n) ' [(Y, — bt)At - %Atz] .

Hence c, f, > f; is equivalent to

(3.3) (T ayn) (i au X, — b)) > J(Xr, al/n) A,

+ Aflkt(Zle a?i/ni)i‘ ’
where k, = —logc,. Let ¢, be the test which rejects H, when (3.3) holds. The
power function of ¢, is

(3.4) Blts -+ 5 pt,) = OU X7 aby/n) (X aups — by — A,/2)

- Aflkt(ZLl agi/ni)%) ’
where @ is the cumulative standard normal distribution function. It is seen
that the power is increasing in Y7_, a,;,;, and has its minimum over w, for

Yiaasp — b =A,.
The condition (2.2) on the tests {¢,} becomes

(3'5) Zt q)(_%At(Z;:I a?i/ni)—% - At_lkt(ZLl a?i/ni)&) =r.
Let 6,* in the Lemma correspond to the solution of (3.2). It is then easily seen
by Theorem 1 and the Lemma that the test maximizing the minimum average
power over the alternatives w, is given by the tests {¢,} with k, = k, te T, and
where k is determined so that we have equality in (3.5). By Theorem 2 the
test maximizing minimum power over the alternatives w, is given by the tests
{¢,} where the {k,} are determined so that we have equality in (3.5) and the
powers S3,(y, - - -, pt,) in (3.4) all have the same value when }}7_, a,; ¢, — b, = A,.
From the form of (3.3) it is seen that we are using a ¢-test for the individual
hypothesis, but that the significance level of the individual hypothesis may
vary depending upon {a,;}, {A,} and {r;}. We will now consider three cases.

(a) Z;=1a?i/ni:A’ A¢=A, teT.
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In this case the tests maximizing the minimum average power and minimum
power coincide, and H, is rejected when

(36) AQ(Z =184 z—'b)>zp’
where z, is the upper p-point of the standard normal distribution and p = y/N.
Note that the result holds uniformly in A.

(b) At = A ) te T.

This might seem a reasonable set of alternatives to consider. The computa-
tional work, however, will be greater than under (a). For the test maximizing
minimum average power there is one constant k to determine from (3.5), but
to find the test maximizing minimum power we would have to determine N
constants k,. The tests will also depend upon the alternative A.

(c) A = AZialfn)t teT.
The reason for choosing these values of the {A} is the following: Our “best”
estimate of A, is A, = S, a, X, with varA, = >ir, ai/n;. It seems reasonable
to measure the distances from the hypotheses in terms of the standard devia-
tions of the estimates. This leads to the above {A,}. Also in this case it is
found that the tests coincide, and are given by rejecting H, when

(3.7 (i di/n) (T e, X, — b) > z, .

This holds uniformly in A.
Now look at various special cases.

Differences between means. Here the hypotheses are

(3.8) H;;:p; = p; against K:p, > p, i#j.
The pair (i, j) corresponds to the index ¢, and N = r(r — 1). Note that H, ;
against K;; and H;; against K;; are two different problems; H; is the same as

H;,, but the alternatlves are dlfferent If we had used alternatives p; = iy T
would have }r(r — 1) elements. But since one usually wants to know which
mean is the greater when H,; is rejected, the above formulation of the problem
seems to be the more useful one.

If all n; are equal and A, = A, we have the situation in (a) above. In general
we find that the test maximizing minimum average power and minimum power
over the alternatives p; — p; = A(1/n; 4 1/n;)}, rejects H,; and accepts K;; when
(1/n; 4+ 1/n)"4(X; — X,) > z,, where p = y/r(r — 1).

2. Comparison with a known standard. We want to compare the means
s -+ o1, With a known standard g, (see [19]). More precisely our problem is

H,:p, = p, against K,:p, >y, t=1,...,r.

In this case N = r, and the test maximizing minimum average power and
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minimum power over alternatives of the form p, — po > Ant, t =1, ..., r,
consists of rejecting H, when n}(X, — 1)) > z,, where p = y/r. We could, of
course, also have added hypotheses with alternatives with g, < g, if that was
a possible result, and was of interest to the experimenter. In that case N = 2r
and p = y/2r.

3. Comparison with an unknown standard or a control. 1In this case one of the
means, y, say, is a control (see [8] and [9]). The problem is

H:py—p, =0 against K,:p, —p, >0, t=1,...,r—1.

If we consider alternatives of the form p, — ¢, = A(1/n, + 1/n,)}, we will reject
H, when (1/n, + 1/n,)~¥X, — X,) > z,, where p = r/(r — 1). Again we could
have considered alternatives p, — p, < 0 at the expense of decreasing p.

4. Ordered means. Insome situations it is known that ¢, < ... < p,. Then
we would consider the problem (3.8) with i > j. We get the same results with

p = 2y/r(r — 1) instead of p = y/r(r — 1). Hence the power of the test is larger
in this case.

REMARK 3.1. Consider the situation where we are interested in all linear

functions in y,, - - -, ¢,. More precisely, consider the hypotheses (3.1) where
a,, - - -, a,, varies over all constants satisfying
(3.9) Diaan=1.

The set T therefore consists of all points on the sphere (3.9). Making use of
Remark 2.1 with the measure v a probability measure proportional to the area
of the sphere, we will find that the test maximizing minimum power over
alternatives with

Yiaaup — b, = (X ah/n)A,

rejects when (3.7) holds. In this case p is interpreted as the average probability
of false rejections under Q,. The expected number of false rejections is infinite.

The tests (3.7) are the same as the ones derived from Scheffé’s S-method of
multiple comparison; see [22]. The test derived from T-method of multiple
comparison (see [22] page 74) rejects H, when

mt 3t au X, > k3 |y

where m = n, = ... = n, (the T-method can be used only in the case when
the {n;} are equal). This test is not of the form (3.7), hence it has less average
power and less minimum power over the alternatives w,, which in this case are
mt 3T ap = A+ b,

REMARK 3.2. An interesting improvement of the power of multiple tests
in the case where we are interested in all contrasts in the {z,} is derived by
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Scheffé [23]. If the F-test rejects the hypothesis that all means are equal, one
canreject H, in (3.1) for smaller observed values of | }}7_, a,, X;| than one should
expect using the S-method of multiple comparison. The modification does not
change the maximum probability of at least one false rejection. The improve-
ment cannot be used here since it will increase the average number of wrong
decisions under Q,, even if the probability of at least one false rejection is
not changed.

The same is the case with a multiple comparison method like the Newman-
Keuls method (see [20] page 82). The probability of at least one false rejection
is @ under Q,. Obviously the Newman-Keuls method is more powerful than
the 7-method which (for a suitably chosen 7) corresponds to our result in the
case m = ... =n,. The Newman-Keuls method, therefore, has a larger
expected number of false rejections under Q,. If we were willing to use the
same expected number of false rejections as the Newman-Keuls method, we
could improve on it (improve means here to get a greater minimum power)
by using the method derived here.

REMARK 3.3. The alternatives considered above have been one-sided. Sup-
pose that, instead of (3.1), we have

H:3ia,p;=0>5 againSt K.:Yiia,p +b, teT,

and we consider alternatives w, of the form | }}7_, a,; 1, — b,| = A(X7_, a%/m;)t.

Then it is easily shown by using a least favorable distribution over | 37_, a,; 1, —
b,| = A(Xi., a}/n;)} (see [18] page 90) that the test which rejects H, when

(Xia a?i/ni)—éIZZﬂ ati“?i — bl > Zp 5

maximizes both minimum average power and minimum power.

REMARK 3.4. We could also easily extend the results to the case where the
estimates of the {z;} are correlated with known correlations (see Kramer [15]
and Duncan [4]). We would get results analogous to (3.3).

4. Comparison of means of normal random variables with common unknown vari-
ance. In this situation we will restrict attention to unbiased tests, and since we
are concerned with the performance of each individual test we will require
that each test ¢, is unbiased i.e. in the notation of Section 2

(4.1) Supg, E,¢(X) < infg , E,¢,(X), teT.

We will then try to find the family of tests maximizing minimum average
power among unbiased tests. Consider now the problem (3.1) in Section 3
when we assume that the X;; have a common unknown variance ¢°. Suppose
we havea test (¢, - - -, ¢) such that (4.1) is satisfied. Then E, . u.9(X)=
constant, r,, say, for 37, a, ¢, = b,, and any value of ¢. Now consider the
test (¢y, - - -, ¢y) where ¢, rejects H, when (37, a,/n,) (N1, a, X, — b,)/S is
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greater then the upper y,-point of the t-distribution with n — r degrees of
freedom. Here n= Y7_n, and §*= Y7, 3%, (X;; — X,)}(n — r). The
test ¢, is uniformly most powerful unbiased at 7, level, hence it is at least as
powerful as ¢,. They both have the same expected value under Q,. It follows
that we can restrict attention to tests where the test of H, against K, is based
upon (37, ai/m) MLl au X — b)[S = V,.

The density of V, is

(4.2)  Clr,m) §oyexp(—4y) exp[— (v (y/n — r)} — d,)0]dy,

where d, = (X7, a;/n) (X1, a,; ¢, — b))[o, and C(r, n) is a constant. The den-
sity (4.2) has monotone likelihood ratio in v, (see [18] page 223). Consider the
alternatives w, defined by (37_, a,;pr; — b,)/6 = A(X}7_, a%/n;)~* which corre-
sponds to g, = A. Let the density (4.2) with 6, = A correspond to the function
/. in Theorems 1 and 2, and let the density (4.2) with 37_ a,,p;, = b, (which
is a central t-distribution) correspond to the density £,,. Using the fact that
the density (4.2) has monotone likelihood ratio in v, it is easily seen by using
the Lemma and Theorems 1 and 2 that the test maximizing minimum average
power and minimum power among unbiased tests is given by rejecting H, when
V. > t,, where 1, is the upper p-point of the z-distribution with n — r degrees
of freedom and p = 7/N.

If we considered other alternatives w, the form of the solution is easily obtain-
ed by using the Lemma and Theorems 1 and 2, but will lead to considerable
numerical work since we would have to evaluate the integral (4.2).

The application to the special cases considered in Section 3 follows by
replacing the tests obtained there by r-tests.

5. Comparison of variances. Let X, be N(¢;, 6% j=1,...,n,i=1,...,r,

and independent. Consider the hypotheses
(5.1 H;:0®= 0/ against K;:02> 0} i+j.

1] 1 J

Restricting attention to unbiased tests and arguing as in Section 4, we find that
the test of H,; against K;; can be based upon R;; = S?/S;? only, where S =
1 (X — X)) i=1,.-.,r. Leto?o?=A,. Then the density of R;; is

(5.2) Cii At mm ik iy — 1 (ny, — 1)A7r ) H i

where C;; is a constant. Call the density (5.2) for f;; and let f,,; be the density
(5.2) when A;; = 1. The inequality c;; fi; > f,.; is equivalent to

(= 1)(1 — (Al

ig (n; — 1)((Ai};(ni—l)ci—jl)zl(ni—n]‘—Z) _ Aij) ’

(5.3) R, > A

The power function of the test which rejects H,; when (5.3) holds is
(5-4) I —F(a;0/07)

137
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where a,; is the expression on the right-hand side of (5.3) and .+~ is the cumu-
lative F-distribution with n;, — 1 and n; — 1 degrees of freedom.

In the case where n, = ... = n, = m, and we choose w,; as the set of all
points such that ¢./¢,> = A > 0, it is easily seen that the test which rejects
H;; when R;; is greater than the upper p-point (0 = r(r — 1)) of the F-distri-
bution with m — 1 and m — 1 degrees of freedom maximizes both minimum
average power and minimum power over the alternatives w,;. If the n, are not
all equal, we could still find the optimum tests by adjusting the constants C;j
in (5.3) and (5.4). The numerical work, however, will be extensive. The tests
will also depend upon the alternatives w;; chosen.

If we had a problem where we wanted to compare variances with a control
or standard (see Bechhofer [1]), we could use an approach analogous to the one
in Section 3.

6. How to choose y. 7 is the upper bound for the expected number of wrong
rejections. If y had been a significance level, we would not have any problems
since it seems that many statisticians have become used to using significance
level .05 or .01 without ever questioning it. Therefore, relying upon tradition,
we will relate the value of y to the expected number of false rejections we have
when using a traditional multiple comparison method with a guaranteed prob-
ability 1 — a of no false rejections. Take problem (3.8) in Section 3, and assume
n, = ... =n, =m and ¢® unknown. Let S? be an estimate of ¢ such that
vS?/o? has a chi-square distribution with v degrees of freedom. Suppose we base
the solution upon the T-method of multiple comparison, then we reject H,; if

(6.1) (MUK, — XIS > 274,

where ¢,., , is the upper a-point of the studentized range with parameters r and
v. The probability of at least one false rejection is a or smaller. The expected
number of false rejections is ’

T(Q" r, V) = r(r - 1)(1 - Gu(z_é‘]u;r,v)) ’
where G, is the cumulative s-distribution with v degrees of freedom. 1n Table
6.1 is given the y(a, r, v) corresponding to the traditional significance levels .01
and .05. The conclusion seems to be that we should choose y of approximately
the same size as we choose a. .
The expected value y does not tell us how frequent the different numbers of
wrong rejections are. We can, however, obtain a crude bound as follows. We

TABLE 6.1

r 2 3 4 5 6 7 8 9 10 11 12

7(.05, r, c0) .050 .058 .061 .064 .066 .067 .068 .069 .070 .071 .072
7(.01, r, o) .0100 .0108 .0111 .0114 .0116 O0.117 .0118 .0119 .0120 .0121 .0121
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have y = Y7, kP[k false rejections], from which we easily obtain
P[k or more false rejections] < r/k .

In particular, P (at least one false rejection) < 7.

For a discussion of topics related to this section, see, e.g., Miller [20] and
Duncan [5], who also consider the error rate which is y/N. The present author
prefers to think in terms of y and not in terms of the error rate. Suppose, for
example, that r = 10 and we reject H,; if (6.1) holds with the right-hand
side replaced by the upper 0.25 point of the ¢-distribution with v degrees of
freedom (this is called a multiple comparison method based upon the least sig-
nificance difference, see [20]). The error rate is then .25, but y = 10-9..025 =
2.25. Hence the expected number of false rejections if all H; are true is 2.25.
If it turned out that two of the hypotheses H,; were rejected, we would hesi-
tate to attribute this to real departures from these hypotheses, since we have
observed exactly what we should expect if all H;; were true.

7. An example. To see how the method described in the previous sections
can be applied, consider the following example taken from [2] pp. 96-97. The
example refers to an experiment on the effects of applications of sulphur in
reducing scab disease of potatoes. Three amounts of dressing were compared,
300, 600 and 1200 Ibs. per acre, and both fall and spring applications were
tested. Furthermore a control was used. The layout was a completely ran-
domized design, hence we have a one-way layout with r = 7. The result of
the experiment is given in Table 7.1. The estimate of ¢* was 44.9 with 25
degrees of freedom. The observations are the

TABLE 7.1

Treatment 0 F3 S3 F6 S6 F12 S12
n; 8 4 4 4 4 4 4
i 22.6 9.5 16.8 15.5 18.2 5.8 14.2

measured scab index. Since the control has 8 replications and the other 4
replications, most multiple comparison methods based upon range cannot be
used. (Though there exist approximate methods which are modifications of
the traditional methods see, e.g., [4], [14], and [15]).

Suppose that we would like to make all pairwise comparisons which are 42,
all pairwise comparisons between 300, 600, and 1200 Ibs. and the control which
are 12, all pairwise comparisons between fall application, spring application
and control which are 6, and finally two comparisons of application of sulphur
with the control. Hence, we get N = 62. We will use y = .062, which cor-
responds (by Section 4) to test each comparison with a one-sided -test at .001
significance level. Doing this, we find that F12, fall application, 1200 Ibs.



MULTIPLE COMPARISON PROCEDURES 409

application and application of sulphur is better than the control. If we had
used Scheffé’s S-method as .05 significance level (.062 would not have made
any difference) we would have found one significant difference, namely F12
versus the control. The 7-method cannot be used.

Some statisticians would perphaps, in addition to the above 62 comparisons,
have wanted to compare linear and quadratic terms in the amount of sulphur.
That would have added at most 8 comparisons which would have changed
to .070.

8. Simultaneous confidence intervals. In this section we shall use the optimal
tests derived in the previous sections to construct confidence sets with a cor-
responding optimality property. Suppose we are interested in confidence sets
for certain functions a,(4), te T. If S,(x), te T, is a family of confidence sets
such that S,(x) is a confidence set for a,(f) when x is observed, we will require

(8.1) YiPa0) e S(X)] =N — 7.

This means that the expected number of confidence sets covering only false
values should be less than or equal to 7.

To construct the confidence sets we will (similar to [18] page 79) start with
tests of the hypotheses

H,:a,(0) =0, against K,:a/(f0) +9,, teT.

Let A,(d,, ---,dy), teT, be the acceptance regions of the test maximizing
the minimum power (possibly among unbiased tests) over alternatives with
la,(0) — 6,) = A,, teT, (see Remark 3.3). Call these alternatives w,(d,, A,).

Suppose that there exists such a test for all g,, --., d,, and suppose that
A0, - - -, 6y) depends upon 4, alone, so we can write 4,(9,). (This is the crucial
assumption.) We have

8.2) SINiP[XeA(a@)] =N —7, for all ¢ .

Since the test maximizes the minimum power over the alternatives w,(d,, 4,),
(8:3) SUP7 SUPy, 3, 5 Pol X € 4,(0,)]
is minimized among sets 4,(d,) satisfying (8.2).
Define the set S,(x) by l
(8.4) Sy (x) = {0,: xe A,9,)} -
We have that d, € S,(x) if and only if x e 4,(3,). Hence by (8.2)
N, Pila(0) e S(X) =N —7.

Hence S,(x), te T, is a family of confidence sets satisfying (8.1).
Let S,*(x) be any other family of confidence sets such that

(8.5) L PJa(0)eSHX)] =N~ 7.
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Define 4,%(3,) by 4,%(3,) = {x: 4, & S*(x)}. Then by (8.5)
L P[Xe A @O)] =N 7,

and hence since 4,(d,) minimizes (8.3) subject to conditions (8.1) and (8.5) we
must have

SUp, Sup,,;,.a,) Pol X € 4,(9,)] < sup, SUP,,, 5,4, PolX € 4,%(0,)] ,
and thereby
SUpy SUP,, (5,4, Pold, € S(X)] < sup, sup,,;,.a,, Po[0, € S*(X)] .

This shows that the sets {S,(x)} minimize the maximum probability of covering
a false value when this has a distance A, from the true value.

9. Other applications. Multiple comparison problems which can be treated
in a way similar to that of the problems in Sections 3 and 4 arise when com-
paring proportions in multinomial trials and contingency tables, see [10], [11],
[12], [13], [21], where normal approximations to multinomial probabilities are
used. For comparison of pairs of proportions it will also be possible by the
methods used here to obtain exact results, so that one does not have to rely
upon the large sample results.
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