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DETECTION OF AN ANOMALOUS CLUSTER IN A NETWORK1
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and Université Paris-Sud 11

We consider the problem of detecting whether or not, in a given sensor
network, there is a cluster of sensors which exhibit an “unusual behavior.”
Formally, suppose we are given a set of nodes and attach a random variable
to each node. We observe a realization of this process and want to decide
between the following two hypotheses: under the null, the variables are i.i.d.
standard normal; under the alternative, there is a cluster of variables that are
i.i.d. normal with positive mean and unit variance, while the rest are i.i.d.
standard normal. We also address surveillance settings where each sensor in
the network collects information over time. The resulting model is similar,
now with a time series attached to each node. We again observe the process
over time and want to decide between the null, where all the variables are
i.i.d. standard normal, and the alternative, where there is an emerging cluster
of i.i.d. normal variables with positive mean and unit variance. The growth
models used to represent the emerging cluster are quite general and, in partic-
ular, include cellular automata used in modeling epidemics. In both settings,
we consider classes of clusters that are quite general, for which we obtain a
lower bound on their respective minimax detection rate and show that some
form of scan statistic, by far the most popular method in practice, achieves
that same rate to within a logarithmic factor. Our results are not limited to
the normal location model, but generalize to any one-parameter exponential
family when the anomalous clusters are large enough.

1. Introduction. We discuss the problem of detecting whether or not, in a
given network, there is a cluster of nodes which exhibit an “unusual behavior.”
Suppose that we are given a set of nodes with a random variable attached to each
node. We observe a realization of this process and would like to tell whether all
the variables at the nodes have the same behavior, in the sense that they are all
sampled from a common distribution, or whether there is a cluster of nodes at
which the variables have a different distribution.

1.1. A wide array of applications. The task of detection in networks is critical
for an increasing number of applications, for example, in surveillance and envi-
ronment monitoring. We describe a few of these applications below.
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Detection in sensor networks. The advent of sensor networks [3, 20, 74] has
multiplied the amount of data and the variety of applications where the task of
detection is central. Surveillance and environment monitoring are prime areas of
application for sensor networks. Take, for example, the transport of hazardous ma-
terials. Currently, some major traffic bottlenecks (e.g., airports, subways and bor-
ders) use portal monitoring systems [27, 28]. Sensor networks offer a more flex-
ible, decentralized alternative and are considered for the detection of radioactive,
biological or chemical materials [15, 19, 35]. Sensor networks are also extensively
used in other target tracking settings [11, 50].

Detection in digital signals and images. A digital camera may be seen as a
sensor network, with CCD or CMOS pixel sensors. As imaging systems have been
available for quite some time, the literature on detection in images is quite exten-
sive, spanning several decades, particularly in satellite imagery [18, 29, 58, 65],
computer vision [68, 75] and medical imaging [14, 39, 51, 53].

Disease outbreak detection. The presence of a biological or chemical material
in a given geographical region may also be detected indirectly through its impact
on human health. In this context, early detection of the disease outbreak is crucial
in order to minimize the severity of the epidemic. For that purpose, some specific
information networks are used, with surveillance systems now incorporating data
from hospital emergency visits, ambulance dispatch calls and pharmacy sales of
over-the-counter drugs [34, 60, 70].

Virus detection in a computer network. Diseases affect computers as well, in
the form of viruses and worms spreading from host to host in a computer net-
work [66]. Affected machines may exhibit slightly anomalous behavior (e.g., a loss
of performance or violations of specific rules) which may be hard to detect on an
individual machine.

Detection from field measurements. In [54], the water quality in a network
of streams in Pennsylvania is assessed by field biologists performing a variety
of analyses at various locations along the streams; the objective is to determine
whether there are regions of low biological integrity based on the collected data,
and to identify these regions. Other field measurements include census data and
surveys involving geographical location.

Detection is, of course, closely related to estimation (i.e., the localization or
extraction of the anomalous cluster of nodes), but different. This distinction is
rarely made clear, however. Indeed, reliable detection is possible at lower signal-
to-noise ratios than reliable estimation and it may be important to detect the pres-
ence of signals from noisy data without being able to estimate them. For example,
one could imagine developing a surveillance system performing detection at rela-
tively low energy/bandwidth costs, yet efficient at low signal-to-noise ratios, and
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then switching to estimation mode whenever the presence of a signal is detected.
Another example would be a low cost preliminary survey involving fewer field
measurements, with findings subsequently confirmed by a larger, more expensive
survey.

1.2. Mathematical framework.

1.2.1. Purely spatial model. We loosely model a network with a set of m

nodes, denoted by Vm. In our examples, we will either assume that Vm is em-
bedded in a Euclidean space or we will equip Vm with a graph structure. Our
analysis is in the setting of large networks, that is, m → ∞. To each node v ∈ Vm,
we attach a random variable Xv . The nodes represent the sources of information
(e.g., sensors) and the variables represent the data they collect. In some settings,
the data collected by each unit is multidimensional, in which case Xv is a random
vector. Our discussion readily generalizes to that setting.

The random variables are assumed to be independent. For concreteness, we con-
sider a normal location model, popular in signal and image processing, to model
the noise. Our analysis, however, generalizes to any exponential family under some
conditions on the sizes of the anomalous clusters, such as Bernoulli models which
arise in sensor arrays where each sensor collects one bit (i.e., makes a binary de-
cision) or Poisson models which come up with count data, for instance, arising in
infectious disease surveillance systems [43]. The extension to exponential families
is detailed in Section 4.1.

The situation where no signal is present, that is, “business as usual,” is modeled
as

Hm
0 :Xv ∼ N (0,1) ∀v ∈ Vm.

Let K be a cluster, which we define for now as a subset of nodes, that is, K ⊂ Vm.
In fact, we will be interested in classes of clusters that are either derived from a
geometric shape, when Vm is embedded in Euclidean space, or connected compo-
nents, when Vm has a graph structure. The situation where the nodes in K behave
anomalously is modeled as

Hm
1,K :Xv ∼ N (μK,1) ∀v ∈ K; Xv ∼ N (0,1) ∀v /∈ K,

where μK > 0. We choose to decompose μK as μK = |K|−1/2�K , where |K|
denotes the number of nodes in K and �K is the signal strength. Indeed, with this
normalization, for any cluster K ,

min
T

P(T = 1|Hm
0 ) + P(T = 0|Hm

1,K) = 2P
(

N (0,1) > �K/2
)
,(1.1)

where the minimum is over all tests for Hm
0 versus Hm

1,K and the lower bound is
achieved by the likelihood ratio (Neyman–Pearson) test. We define

�m = max
K∈Km

�K, �m = min
K∈Km

�K.
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FIG. 1. Left: a thick cluster is defined as the nodes within a closed curve, which is a mild deforma-
tion of a circle. Right: corresponding noisy data.

Figures 1–4 illustrate the setting for various types of clusters.
Let Km be a class of clusters within Vm and define

Hm
1 = ⋃

K∈Km

Hm
1,K .

We are interested in testing Hm
0 versus Hm

1 . In other words, under the alternative,
the cluster of anomalous nodes is only known to belong to Km. We adopt a mini-
max point of view. For a test T , we define its worst-case risk as

γKm(T ) = P(T = 1|Hm
0 ) + max

K∈Km

P(T = 0|Hm
1,K).

The minimax risk for Hm
0 versus Hm

1 is defined as

γKm = inf
T

γKm(T ).

We say that Hm
0 and Hm

1 are asymptotically inseparable (in the minimax sense) if

lim
m→∞

γKm = 1,

FIG. 2. Left: a thin cluster is defined as the nodes within a band around a given curve. Right:
corresponding noisy data.
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FIG. 3. Left: a band defined around a path. Right: corresponding noisy data.

which is equivalent to saying that, as m becomes large, no test can perform substan-
tially better than random guessing, without even looking at the data. A sequence
of tests (Tm) is said to asymptotically separate Hm

0 and Hm
1 if

lim
m→∞γKm(Tm) = 0,

and Hm
0 and Hm

1 are said to be asymptotically separable if there is such a sequence
of tests. For example, in view of (1.1), for any sequence of clusters Km ⊂ Vm,
Hm

0 and Hm
1,Km

are asymptotically inseparable if �Km → 0 and they are asymp-
totically separable if �Km → ∞. For convenience, we assume that no cluster
in the class Km is of size comparable to that of the entire network, that is,
max{|K| :K ∈ Km} = o(m). This simplifies the statement of our results and de-
tecting such clusters can easily be achieved using the test that rejects for large
values of

∑
v∈Vm

Xv .
The situation we just described is purely spatial and relevant in some applica-

tions not involving time. Such situations are common in image processing. In other
applications, especially in surveillance, time is an intrinsic part of the setting. In
the following section, we modify the model above to incorporate time.

FIG. 4. Left: an arbitrary connected component. Right: corresponding noisy data.



DETECTION OF AN ANOMALOUS CLUSTER IN A NETWORK 283

1.2.2. Spatio-temporal model. Building on the framework introduced in the
previous section, we assume that each Xv is now a (discrete) time series,
(Xv(t), t ∈ Tm), where Tm ⊂ [0,∞) is finite with |Tm| → ∞; let tm = max{t ∈
Tm}. Let Km be a class of cluster sequences of the form (Kt , t ∈ Tm) such
that Kt ⊂ Vm for all t ∈ Tm. For example, assuming that Vm is embedded in a
Euclidean space, with norm denoted by ‖ · ‖, a space–time cylinder (e.g., one
used in disease outbreak detection [44]) is a cluster sequence (Kt , t ∈ Tm) of
the form Kt = {v ∈ Vm :‖v − x0‖ ≤ r0} if t ≥ t0, and Kt = ∅ otherwise, so
that t0 is the origin of the cluster in time and x0 its center. Note that the ra-
dius remains constant here. Another example is that of a space–time cone, of
the form Kt = {v ∈ Vm :‖v − x0‖ ≤ C(t − t0)} if t ≥ t0, and Kt = ∅ otherwise,
so that (x0, t0) is the origin of the cluster in space–time. The random variables
{Xv(t) :v ∈ Vm, t ∈ Tm} are assumed to be independent. This spatio-temporal set-
ting is a special case of the purely spatial setting with the set of nodes Vm × Tm.
Understood as such, we are interested in testing Hm

0 versus Hm
1 as before.

1.3. Structured multiple hypothesis testing. Although the detection problem
formulated above seems of great practical relevance, the statistics literature is al-
most silent on the subject, with the notable exception of the closely related topics
of change-point analysis [16] and sequential analysis [64]. Indeed, the former is a
special case of the spatial setting with the one-dimensional lattice, while the latter
is a special case of the spatio-temporal setting where Vm has only one node. In our
context, these two settings are actually equivalent.

What is further puzzling is that a number of publications addressing the task of
detection in sensor networks all assume overly simplistic models. For example, in
[4, 49, 52, 55, 69, 73], the values at the sensors are assumed to all have the same
distribution under the null and the alternative. That is, either all of the nodes are
all right or they are all anomalous—in our notation, Km = {Vm}. First, this is not
a subtle statistical problem since, in such circumstances, it suffices to apply the
optimal likelihood ratio test. Second, this assumption does not make sense in all
of the applications described above, where the event to be detected is expected to
only affect a small fraction of locations in the network.

In stark contrast, in all of the applications described earlier, the set of alterna-
tives is composite. Viewing each node as performing a test of hypotheses, which is
common in the literature on sensor networks, our problem falls within the frame-
work of multiple comparisons. Multiple hypothesis testing is a rich and active line
of research which is receiving a considerable amount of attention within the statis-
tical community at the moment; see [32] and references therein. The vast majority
of the papers assume that the tests are independent of each other, which is clearly
not the case here since, in general, the class contains clusters that intersect. This
is particularly true in engineering applications, although this assumption is often
made [23, 62, 63].
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1.4. The scan statistic. We will focus on the test that rejects for large values
of the following version of the scan statistic:

max
K∈Km

1√|K|
∑
v∈K

Xv.(1.2)

The chosen normalization is such that each term in the maximization is standard
normal under the null and allows us to compare clusters of different sizes. It corre-
sponds to the generalized likelihood ratio test in our context if �K is independent
of K ∈ Km. The scan statistic was originally proposed in the context of cluster
detection in point clouds [30]. This is the method of matched filters which is ubiq-
uitous in problems of detection in a wide variety of fields, sometimes in the form
of deformable templates in the engineering literature [38, 51] or their nonparamet-
ric equivalent, active contours or snakes [72]. Note that the scan statistic is the
prevalent method in disease outbreak detection, with many variations [25, 45–47].

As advocated in [8], we will not use the scan statistic directly in most cases, but
rather restrict the scanning to a subset of Km. More precisely, we will introduce,
on subsets of nodes K,L ⊂ Vm, the metric

δ(K,L) = √
2
(

1 − |K ∩ L|√|K||L|
)1/2

(1.3)

and will restrict the scanning to an ε-net of Km with respect to δ, that is, a subset
{Kj : j ∈ J } ⊂ Km with the property that for each K ∈ Km, there is a j ∈ J such
that δ(K,Kj ) ≤ ε. We will elaborate on this approach in the Supplement. When
J is minimal, we call the resulting statistic an ε-scan statistic. The approximation
precision ε will be chosen appropriately, depending on the situation.

We focus on ε-scan statistics for two reasons. First, their performance is easier
to analyze than that of the scan statistic itself; in fact, the main approach to ana-
lyzing the scan statistic, the chaining method of Dudley [26, 67], is via a properly
chosen ε-scan statistic. Second, some of the classes we consider are rather large
and we believe that it would be computationally impractical to scan through all
of the clusters in the class; furthermore, our results show that, from an asymptotic
standpoint, no substantial improvement would be gained by using the full scan
statistic.

We also note that the tuning parameter ε may be dispensed with if we scan
over subsets of different sizes in a multiscale fashion and use a scale-dependent
threshold.

1.5. Existing theoretical results. The vast majority of the literature assumes
that the set of nodes is embedded in some Euclidean space, that is, Vm ⊂ R

d .
This is the case when the nodes represent spatial locations, such as in most sensor
networks. In this context, the cluster class Km is often derived from a class of
domains A in R

d , in the following way:

Km = {K = A ∩ Vm :A ∈ A}.(1.4)
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Most of the literature assumes that the class A is parametric, exemplified by de-
formable templates, for which theoretical results are available, especially in the
case of the square lattice [8, 13, 24, 40, 57, 71]. In particular, with a normal location
model, the scan statistic performs well, in the sense that it is asymptotically mini-
max; this is shown in [8] in a slightly different context tailored to image processing
applications. We also mention the recent work [33], which considers the detection
of multiple clusters (intervals) of various amplitudes in the one-dimensional lat-
tice. As for nonparametric classes of domains, [8] argues that the scan statistic is
asymptotically minimax for the case of star-shaped clusters with smooth bound-
aries.

When Vm is endowed with a graph structure, [7] considers paths of a certain
length. In this setting, the scan statistic is shown to be asymptotically minimax
when the graph Vm is a complete, regular tree and near-minimax for many other
types of graphs, such as the d-dimensional lattice for d ≥ 3. Addario-Berry et
al. [1] considers the same general testing problem with a focus on cluster classes
defined within the complete graph, such as cliques and spanning trees. Note that
part of the material presented here appeared in [5].

1.6. New theoretical results. We describe here in an informal way the results
we obtain.

In Section 2, we focus on situations where the vertex set Vm is embedded in a
Euclidean space and well spread out in a compact domain. Within this framework,
we consider in Section 2.1 a geometric class of clusters obtained as in (1.4) with A
a class of blobs that are mild deformations of the unit ball. The clusters obtained
in this way are “thick,” in the sense that they are not filamentary. See Figure 1.
In particular, this class contains all the common parametric classes obtained from
parametric shapes such as hyperrectangles and ellipsoids, as long as the shape is
not too narrow. Note that the size, the (exact) shape and the spatial location of the
anomalous cluster under the alternative is unknown. In Corollary 1, we show that
(under specific conditions) Hm

0 and Hm
1 are asymptotically inseparable if there is

ηm → 0 slowly enough such that, for all K ∈ Km,

�K ≤ (1 − ηm)
√

2 log(m/|K|);
and conversely, we show that a version of the scan statistic asymptotically sepa-
rates Hm

0 and Hm
1 if there is ηm → 0 slowly enough such that, for all K ∈ Km,

�K ≥ (1 + ηm)
√

2 log(m/|K|).
Note that the detection rate is the same as for the class of balls so that, perhaps sur-
prisingly, scanning for the location (and not the shape) is what drives the minimax
detection risk.

In Section 2.2, we consider “thin” clusters, obtained as in (1.4) with A a class
of “bands” around smooth curves, surfaces or higher-dimensional submanifolds.
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In particular, this class contains hyperrectangles and ellipsoids that are sufficiently
thin; see Figure 2. It turns out that, contrary to what happens for thick clusters,
scanning for the actual shape impacts the minimax detection risk and is, in fact, the
main contributor for some nonparametric classes. The situation is mathematically
more challenging, yet we are able to prove the following in Proposition 3. Consider
the class of bands of thickness rm around C2 curves of bounded curvature. Then
(under specific conditions), Hm

0 and Hm
1 are asymptotically inseparable if

�mr1/4
m (logm)3/2 → 0.

In Theorem 2, we show that, in the same setting, some εm-scan statistic asymptot-
ically separates Hm

0 and Hm
1 if

�mr1/4
m → ∞.

Hence, some form of scan statistics achieves a detection rate within a factor of
(logm)3/2 from the minimax rate.

In Section 2.3, we consider the spatio-temporal setting. We first consider clus-
ter sequences that admit a “thick” limit. Cellular automata, which have been used
to model epidemics [2], satisfy this condition in some cases. In Proposition 5, we
show that scanning over space–time cylinders, as done in disease outbreak detec-
tion, achieves the asymptotic minimax risk. We then consider cluster sequences
with controlled space–time variations, which may be a relevant model for applica-
tions such as target tracking [50]. We consider a fairly general model in Proposi-
tion 7.

In Section 3, we assume that Vm = {0,1, . . . ,m1/d − 1}d , with m1/d an integer,
seen as a subgraph of the d-dimensional lattice. We first consider, in Section 3.1,
bands around nearest-neighbor paths; see Figure 3. We extend the results obtained
in [7] to paths. For example, consider bands of thickness hm around a path of
length �m, both powers of m. The bounds in Theorem 3 imply that Hm

0 and Hm
1 are

asymptotically inseparable if

�m(�m/hm)−1/2(logm)3/2 → 0.

Conversely, Proposition 8 states that an ε-scan statistic asymptotically separates
Hm

0 and Hm
1 if

�m(�m/hm)−1/2 → ∞.

Therefore, some form of scan statistic is again within a factor of (logm)3/2 from
optimal. In Section 3.2, we consider arbitrary connected components, constraining
only the size; see Figure 4. In Proposition 9, we obtain a sharp detection rate for
clusters of very small size.
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1.7. Structure of the paper. We have just described the contents of Sections 2
and 3. Section 4 is our discussion section. We extend the results obtained for the
normal location model to any exponential family in Section 4.1. Other extensions
are described in Section 4.2. We state some open problems in Section 4.5. In Sec-
tion 4.4, we briefly discuss the challenge of computing the scan statistic. The tech-
nical arguments are gathered in the Supplement.

1.8. Notation. For two sequences of real numbers (am) and (bm), am 
 bm

means that am = O(bm) and bm = O(am); am � bm means that am ≤ (1+o(1))bm.
For a, b ∈ R, we use a ∨ b (resp., a ∧ b) to denote max(a, b) [resp., min(a, b)].
For a ∈ R, let [a] be the integer part of a; �a� = [a] if a is not an integer and
[a] − 1 otherwise; and �a� = [a] + 1. For a set A, |A| denotes its cardinality.
Define log†(x) = logx if x ≥ e and = 1 otherwise. All the limits in the text are
when m → ∞. Throughout the paper, we use C to denote a generic constant,
independent of m, whose particular value may change with each appearance. We
introduce additional notation in the text.

2. Clusters as geometric shapes in Euclidean space. We assume that the
nodes are embedded in �d ⊂ R

d , a compact set with nonempty interior. Let
‖ · ‖ denote the corresponding Euclidean norm. For A ⊂ �d and x ∈ �d , let
dist(x,A) = infy∈A‖x − y‖ and for r > 0, define

B(A, r) = {x ∈ R
d : dist(x,A) < r}.

In particular, B(x, r) denotes the (open) Euclidean ball with center x and radius r .
On occasion, we will add a subscript d to emphasize that this is a d-dimensional
ball.

We consider a sequence (Vm) of finite subsets of �d , of size |Vm| = m, that are
evenly spread out, in the following sense: there is a constant C ≥ 1, independent
of m and a sequence r∗

m → 0 such that

C−1mrd ≤ |B(x, r) ∩ Vm| ≤ Cmrd ∀r ∈ [r∗
m,1],∀x ∈ �d.(2.1)

In words, the number of nodes in any ball that is not too small is roughly propor-
tional to its volume. For the regular lattice with m nodes in �d = [0,1]d , condition
(2.1) is satisfied for r∗

m >
√

dm−1/d . This is the smallest possible order of mag-
nitude; indeed, for some constant C > 0 and r small enough, there is a set with
more than Cr−d disjoint balls with centers in �d , and, by (2.1), they are all non-
empty if r ≥ r∗

m, which forces r∗
m ≥ Cm−1/d . Another example of interest is that

of Vm obtained by sampling m points from the uniform distribution, or any other
distribution with a density with respect to the Lebesgue measure on �d , bounded
away from zero and infinity; in that case, (2.1) is satisfied with high probability for
r∗
m ≥ C(log(m)/m)1/d when C is large enough; for an extensive treatment of this

situation, see [56], Chapter 4.
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2.1. Thick clusters. In this section, we consider clusters as in (1.4), where A is
a class of bi-Lipschitz deformations of the unit d-dimensional ball. This includes
the vast majority of all the parametric clusters considered in the literature, such as
hyperrectangles and ellipsoids, as long as the shape is not too narrow. Note that a
slightly less general situation is briefly mentioned in [8].

We start with a lower bound on the minimax detection rate for discrete balls of
a given radius.

PROPOSITION 1. Consider λm → 0 such that λm ≥ r∗
m and let Km be the class

of all discrete balls of radius λm, that is,

Km = {K = B(x,λm) ∩ Vm :x ∈ �d}.
Hm

0 and Hm
1 are then asymptotically inseparable if

�m ≤
√

2d log(1/λm) − ηm,

where ηm → ∞.

We now consider a much larger class of clusters and show that, nevertheless,
a form of scan statistic achieves that same detection rate. For a function f :A ⊂
R

p → R
d , its Lipschitz constant is defined as

λf = sup
x �=y

‖f (x) − f (y)‖
‖x − y‖ .

For κ ≥ 1, let Fd,d(κ) be the subclass of bi-Lipschitz functions f :B(0,1) ⊂
R

d → �d such that λf λf −1 ≤ κ or, equivalently,

sup
x �=y

‖f (x) − f (y)‖
‖x − y‖ ≤ κ inf

x �=y

‖f (x) − f (y)‖
‖x − y‖ .(2.2)

For a function f :A → R
d , define

Kf = im(f ) ∩ Vm, im(f ) := {f (x) :x ∈ A}.
Note that λf is intimately related to the size of im(f ) and therefore of Kf . Indeed,
a simple application of (2.2) implies that, for any f ∈ Fd,d(κ),

B
(
f (0), λf /κ

) ⊂ im(f ) ⊂ B(f (0), λf ).(2.3)

This implies that sets of the form im(f ), with f ∈ Fd,d(κ), are “thick,” in the
sense that the smallest ball(s) containing im(f ) and the largest ball(s) included in
im(f ) are of comparable sizes.

THEOREM 1. Consider λm → 0 such that λm ≥ r∗
m and define

Km = {Kf :f ∈ Fd,d(κ), λf ≥ λm}.
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An εm-scan statistic with εm → 0 and εm(log(1/λm))1/(2d) → ∞ then asymptoti-
cally separates Hm

0 and Hm
1 if

�m ≥
√

2d log(1/λm) + ηm,

where ηm = ε2
m

√
2d log(1/λm). Moreover, if r∗

m 
 m−1/d and

Km = {Kf :f ∈ Fd,d(κ)},
then an εm-scan statistic with εm → 0 and εm(logm)1/(2d) → ∞ asymptotically
separates Hm

0 and Hm
1 if

�m ≥
√

2 logm + ηm,

where ηm = ε2
m

√
2 logm.

Therefore, on a larger class of mild deformations of the unit ball, some form of
scan statistic achieves essentially the same detection rate as for the class of balls
stated in Proposition 1.

We note that the lower bound on �m is driven by the smaller clusters in the class
and that the performance guarantee is subject to a proper choice of εm. A simple fix
for both issues is to combine the tests for different cluster sizes with an appropriate
correction for multiple testing. We summarize the consequence of Proposition 1
and Theorem 1 with this observation in the following result, inspired by [71].

COROLLARY 1. Consider λm → 0 such that λm ≥ r∗
m and define

Km = {Kf :f ∈ Fd,d(κ), λm ≥ λf ≥ r∗
m}.

Hm
0 and Hm

1 are then asymptotically inseparable if, for all K ∈ Km,

�K ≤
√

2 log(m/|K|) − ηm,

where ηm → ∞. Conversely, let T� be an ε�-scan statistic for the subclass {Kf ∈
Km : 2−� ≤ λf < 2−�+1} with ε��

1/(2d) → ∞. There is a test based on {T� :� ≥ 0}
that asymptotically separates Hm

0 and Hm
1 if, for all K ∈ Km,

�K ≥
√

2 log(m/|K|) + ηK,

where ηK = ε2
�K

√
2 log(m/|K|) and �K = log(m/|K|).

The same procedure, that is, combining ε-scan statistics at different (dyadic)
scales, may be implemented in any of the settings we consider in this paper to
obtain a test that does not depend on a tuning parameter like εm and achieves the
same optimal rate at every size. This is simply due to the fact that we only need to
consider the order of logm scales and the fast decaying tails of the scan statistics
under the null.
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Union of thick clusters. In a number of situations, the signal to be detected
may be composed of several clusters. Our results extend readily to this case. Let
jm be a positive integer and consider sets of the form

⋃jm

j=1 Kfj
, where the union

is over some fj ∈ Fd,d(κ) such that, for j, j ′, λfj
≤ Cλfj ′ and

‖fj (0) − fj ′(0)‖ ≤ C(λfj
∨ λfj ′ ),

so that the sets im(fj ) and im(fj ′) are of comparable sizes and not too far from
each other. In that case, Theorem 1 applies unchanged, as long as the number
of clusters is not too large, specifically if jm = o(log(1/λm))1/d . (This can be
improved if the Kfj

’s do not overlap too much.) If the proximity constraint is
dropped, then the term log(1/λm) in Theorem 1 is replaced by jm log(1/λm).

2.2. Thin clusters. In this section, we consider clusters that are built from
smooth embeddings in �d of the unit p-dimensional ball, where p < d . The spe-
cial case of curves (p = 1) is, for example, relevant in road tracking [29] and in
modeling blood vessels in medical imaging [36]. As in the previous section, the re-
sults we obtain below are valid for (some) unions of such subsets and, in particular,
for submanifolds with a wide array of topologies.

For a differentiable function f between two Euclidean spaces, let Df denote its
Jacobian matrix. For κ ≥ 1, let Fp,d(κ) be the class of twice differentiable, one-to-
one functions f :B(0,1) ⊂ R

p → im(f ) ⊂ �d satisfying λf λf −1 ≤ κ and λDf ≤
κλf . We consider clusters that are tubular regions around the range of functions in
Fp,d(κ). For a function f with values in R

d and r > 0, define

Kf,r = B(im(f ), r) ∩ Vm.

Again, λf is intimately related to the size of B(im(f ), r) and Kf,r . This relation-
ship is made explicit in the Supplement. We consider classes of clusters of the form
{Kf,r :f ∈ F }, where F is a subclass of Fp,d(κ).

We start with a result on the performance of the scan statistic. For a class F of
functions with values in R

d and for ε > 0, let Nε(F ) denote its ε-covering number
for the sup-norm, that is,

Nε(F ) = min
{
n :∃f1, . . . , fn ∈ F , s.t. max

f ∈F
min

j
‖f − fj‖∞ ≤ ε

}
.

THEOREM 2. Let C be the constant defined in Lemma B.2 in the Supplement.
Consider λm, rm → 0 such that C−1λm ≥ rm ≥ r∗

m and let F be a subclass of
Fp,d(κ). Define

Km = {Kf,r :f ∈ F , λf ≥ λm,C−1λm ≥ r ≥ rm}.
An εm-scan statistic with εm = o(r

1/2
m ) then asymptotically separates Hm

0 and Hm
1

if

�m ≥ (1 + ε2
m)

√
2 logNε2

m
(F ) + 2d log(1/λm).
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Just as in Theorem 1, if r∗
m 
 m−1/d , we can dispense with the restriction rm ≥

r∗
m and replace the factor log(1/λd

m) by logm in the bound.
For a typical parametric class F , logNε(F ) ∼ a(F ) log(1/ε), so the scan sta-

tistic (over an appropriate net) is accurate if

�m ≥ (1 + rm)
√

2a(F ) log(1/rm) + 2d log(1/λm).(2.4)

On the other hand, logNε(F ) 
 (1/ε)a(F ) for a typical nonparametric class F
[42], so the scan statistic (over an appropriate net) is accurate if

�mra(F )/2
m → ∞.(2.5)

Finding a sharp lower bound for the minimax detection rate is more challenging
for thin clusters compared to thick clusters. By considering disjoint tubes around
p-dimensional hyperrectangles, we obtain a lower bound that matches, in order of
magnitude, the rate achieved by the scan statistic when the class F is parametric,
displayed in (2.4).

PROPOSITION 2. Consider λm, rm → 0 with λm ≥ rm ≥ r∗
m. Let U : Rp → R

d

be the canonical embedding so that Ux = (x,0) and let

F = {f :B(0,1) ⊂ R
p → �d,f (x) = λmUx + b, where b ∈ R

d}.
Define

Km = {Kf,rm :f ∈ F }.
Hm

0 and Hm
1 are then asymptotically inseparable if

�m ≤
√

2(d − p) log(1/rm) + 2p log(1/λm) − ηm,

where ηm → ∞.

The proof is parallel to that of Proposition 1 and is therefore omitted.
For at least one family of nonparametric curves (p = 1), we show that the rate

displayed at (2.5) matches the minimax rate, except for a logarithmic factor. For
concreteness, we assume that �d = [0,1]d . Let H(α, κ) be the Hölder class of
functions g : [0,1] → [0,1] satisfying∣∣g(s)(x)

∣∣ ≤ κ ∀x ∈ [0,1],∀s < α;∣∣g(�α�)(x) − g(�α�)(y)
∣∣ ≤ κ|x − y|α−�α� ∀x, y ∈ [0,1].

PROPOSITION 3. Let rm → 0 with rm ≥ r∗
m. Let F be the class of functions of

the form f (x) = (x, g1(x), . . . , gd−1(x)), where gj ∈ H(α, κ), with α ≥ 2. Define

Km = {Kf,rm :f ∈ F }.
Hm

0 and Hm
1 are then asymptotically inseparable if

�mr1/(2α)
m (logm)3/2 → 0.
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Thus, for the detection of curves with Hölder regularity, a scan statistic achieves
the minimax rate within a poly-logarithmic factor. We prove Proposition 3 by re-
ducing the problem of detecting a band in a graph so that we can use results
from Section 3.1. We do not know how to generalize this approach to higher-
dimensional surfaces (i.e., p ≥ 2).

2.3. The spatio-temporal setting. In this section, we consider the spatio-
temporal setting described in Section 1.2.2. This is a special case of the spatial
setting we have considered thus far, with time playing the role of an additional
dimension. For their relevance in applications and concreteness of exposition, we
focus on two specific models. In Section 2.3.1, we consider cluster sequences with
a limit; as we shall see, this assumption is implicit in some popular models for
epidemics. In Section 2.3.2, we consider cluster sequences of bounded variations.

In the remainder of this section, we assume, for concreteness, that Tm =
{0,1, . . . , tm} with tm → ∞. Our results apply without any changes if the set of
nodes varies with time, that is, with index set of the form

∏
t∈Tm

V
t
m, in the case

where each V
t
m satisfies (2.1) with C and r∗

m independent of t .

2.3.1. Cluster sequences with a limit. We focus here on cluster sequences
obeying Ktm �= ∅, that is, the anomalous cluster is present at the last time point.
This is a standing assumption in syndromic surveillance systems [44]. To illustrate
the difference, consider a typical change-point problem setting, where Vm con-
tains only one node and, for simplicity, assume that �K is independent of K and
that �m denotes this common value. First, let the cluster be any discrete interval
(in time), so the signal may not be present at time t = tm. This is a special case
of Section 2.1, with time playing the role of a spatial dimension (d = 1); we saw
in Corollary 1 that the detection threshold is at �m ∼ √

2 log |Tm|. Now, let the
emerging cluster be any discrete interval that includes t = tm. Detecting such an
interval is actually much easier since we do not need to search where the interval is
located, which is what drives the detection threshold for the thick clusters in Sec-
tion 2.1—we need only determine its length. Specifically, the scan statistic over
the dyadic intervals containing t = tm asymptotically separates the hypotheses if
�m 
 √

log log|Tm|.
Regarding the actual evolution of the cluster in time, a number of growth mod-

els have been suggested, for example, cellular automata [37, 61] and their random
equivalent, threshold growth automata [12, 31], which have been used to model
epidemics [2]. The latter includes the well-known Richardson model [59]. Un-
der some conditions, these models develop an asymptotic shape (with probability
one), a convex polygon in the case of threshold growth automata. Less relevant
for modeling epidemics, internal diffusion limited aggregation is another growth
model with a limiting shape [48].

The simplest cluster sequences with limiting shape are space–time cylinders, for
which we have the equivalent of Proposition 1. (The proof is completely parallel
and we omit details.)
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PROPOSITION 4. Consider λm → 0 with λm ≥ r∗
m and let Km be the class of

all space–time cylinders of the form Kt = B(x,λm) ∩ Vm,∀t = 0, . . . , tm, where
x ∈ �d . Hm

0 and Hm
1 are then asymptotically inseparable if

�m ≤
√

2d log(1/λm) − ηm,

where ηm → ∞.

With only one possible shape and known starting point, such a model is rather
uninteresting. We now consider a much larger class of cluster sequences with some
sort of limit [in the sense of (2.6)] and show that, nevertheless, a form of scan
statistic achieves that same detection rate. For a cluster sequence K = (Kt , t ∈
Tm), let tK = min{t :Kt �= ∅}, which is the time when K originates. The following
is the equivalent of Theorem 1. The metric δ appearing below is defined in (1.3).

PROPOSITION 5. Consider sequences λm → 0 with λm ≥ r∗
m and log log tm =

o(log(1/λm)), and a function ν(t) with limt→∞ ν(t) = 0 and ν(t) ≤ 1 for all t ≥ 0.
Let Km be a class of cluster sequences such that tm−max{tK :K ∈ Km} → ∞ and,
for each K = (Kt , t ∈ Tm) ∈ Km, there exists f ∈ Fd,d(κ) with λf ≥ λm such that

δ
(
Kt, im(f ) ∩ Vm

) ≤ ν(t − tK) ∀t ∈ Tm.(2.6)

There is then a scan statistic over a family of space–time cylinders that asymptoti-
cally separates Hm

0 and Hm
1 if

�m ≥ (1 + ξm)
√

2d log(1/λm),

where ξm → 0 slowly enough.

If the starting time is uniformly bounded away from tm and the convergence
to the thick spatial cluster [in the sense of (2.6)] occurs at a uniform speed, then
all of the cluster sequences in the class have sufficient time to develop into their
“limiting” shapes. The space–time cylinders over which we scan are based on an
ε-net for the possible limiting shapes, that is, the class of thick clusters.

Scanning over space–time cylinders (with balls as bases) is advocated in the dis-
ease outbreak detection literature [44]. Although seemingly naive, this approach
achieves, in our asymptotic setting, the minimax detection rate if the cluster se-
quences develop into balls and, in general, falls short by a constant factor.

We mention that the equivalent of Corollary 1 holds here as well, in that we can
combine the different scans at different space–time scales to obtain a test that does
not depend on a tuning parameter (implicit here) and which achieves the same rate
for the cluster class defined as above, but with λm ≥ λf ≥ r∗

m, which is the class
that appears in Corollary 1.
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2.3.2. Cluster sequences of bounded variation. In target tracking [11, 50], the
target is usually assumed to be limited in its movements due to maximum speed
and maneuverability. With this example in mind, we consider classes of cluster
sequences of bounded variation, meaning that the cluster is limited in the amount
it can change in a given period of time. As the rates we obtain in this subsection are
the same with or without the condition Ktm �= ∅, we do not make that assumption.
Let t+K = max{t :Kt �= ∅}.

We consider space–time tubes around Hölder space–time curves. For α ∈ (0,1]
and κ > 0, let H∞(α, κ) be the Hölder class of functions g : [0,∞) → [0,1] satis-
fying

|g(x) − g(y)| ≤ κ|x − y|α ∀x, y ∈ [0,∞).(2.7)

The following is the equivalent of Proposition 3.

PROPOSITION 6. Assume that �d = [0,1]d . Consider sequences rm → 0 with
rm ≥ 2r∗

m and ξm such that 1 ≤ ξm ≤ tm. Let Km be the class of all cluster se-
quences Kg of the form Kg,t = B(g(t/ξm), rm) ∩ Vm for all t = tK, . . . , t+K , for
some g = (g1, . . . , gd) with gj ∈ H∞(α, κ). Then, Hm

0 and Hm
1 are asymptotically

inseparable if

�m(tm/�ξmr1/α
m �)−1/2 log(tm/�ξmr1/α

m �)(log(ξm) + log log(tm)
)1/2 → 0.

Conversely, an ε-scan statistic with ε <
√

2 asymptotically separates Hm
0 and Hm

1
if

�m

(
(tm/�ξmr1/α

m �) log†(ξ
−1
m r−1/α

m ) + logm
)−1/2 → ∞.

For simplicity, assume that tm is a power of m. If ξmr
1/α
m = O(1), then the de-

tection threshold is roughly of order t
1/2
m , while if ξmr

1/α
m is large, yet small enough

that tm/(ξmr
1/α
m ) is still a power of m, then the detection threshold is roughly of

order (tm/(ξmr
1/α
m ))1/2.

A form of scan statistic is actually able to attain the same detection rate when the
radius is unknown, but restricted to r ≥ rm. In fact, another form of scan statistic
achieves a slightly different rate over a much larger class of cluster sequences with
bounded variations. Let S(r, κ) be the set of subsets S ⊂ �d such that B(x, r) ⊂
S ⊂ B(x, κr) for some x ∈ �d .

PROPOSITION 7. Consider a sequence ξm such that 1 ≤ ξm ≤ tm and a con-
stant η > 0. Define Km as the class of cluster sequences K such that, for each
t = tK, . . . , t+K , Kt = St ∩ Vm, where St ∈ S(rt , κ) for some rt ≥ r∗

m, and, for any
s, t = tK, . . . , t+K ,

δ(Kt ,Ks) ≤ η if |t − s| ≤ ξm.(2.8)
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Then, for η small enough, an ε-scan statistic with ε <
√

2 asymptotically separates
Hm

0 and Hm
1 if

�m

(
(tm/ξm)(logm) + log tm

)−1/2 → ∞.

Consider the condition

δ(Kt ,Ks) ≤ ν(|t − s|/ξm) ∀s, t ∈ {tK, . . . , t+K },(2.9)

for a function ν : [0,∞) → [0,
√

2]. Then, (2.8) is satisfied with η = ν(1) and the
same ξm. The requirement in Proposition 7 is that ν(1) be small enough. In partic-
ular, the cluster sequences considered in Proposition 6 satisfy, for some constant
C > 0,

δ(Kt ,Ks) ≤ Cr−1/2
m

(
r∗
m ∨ (|t − s|/ξm)α

)1/2 ∀s, t ∈ {tK, . . . , t+K }.
This comes from Lemma C.1 in the Supplement and (2.7). Therefore, assuming
ξm � (r∗

m)−1/α , (2.9) is satisfied with ν(u) = uα/2 and ξm replaced by ξmr
1/α
m . In

that case, the detection rates obtained by the scan statistics of Propositions 6 and 7
are of comparable orders of magnitude.

3. Clusters as connected components in a graph. In this section, we model
the network with the d-dimensional square lattice; specifically, we assume that
m1/d is an integer (for convenience) and consider Vm = {0,1, . . . ,m1/d − 1}d ,
seen as a subgraph of the usual d-dimensional lattice. We assume that d ≥ 2 since
the case where d = 1 is treated in Section 2.1. We work with the �1-norm, which
corresponds to the shortest-path distance in the graph; let B(v,h) denote the corre-
sponding open ball with center v and radius h so that B(v,h) = {v} for h ∈ (0,1],
and, for a subset of nodes V , let B(V,h) = ⋃

v∈V B(v,h).

3.1. Paths and bands. A nearest-neighbor band of length � and width h is of
the form B(V,h), where V = (v0, . . . , v�) forms a path in Z

d . A band with unit
width (h = 1) is just a path.

We say that a path (v0, . . . , v�) in Z
d is nondecreasing if, for all t = 1, . . . , �,

vt − vt−1 has exactly one coordinate equal to 1 and all other coordinates equal
to 0. The case of paths was treated in detail in [7]; it corresponds to taking hm = 1
below.

THEOREM 3. Suppose that d ≥ 2 and let Km be the class of bands of width
hm generated by nondecreasing paths in Vm of length �m, starting at the origin,
with m1/d ≥ �m ≥ hm. Then, Hm

0 and Hm
1 are asymptotically inseparable if

�m(�m/hm)−1/2 log†(�m)(loghm + log† log�m)1/2 → 0 for d = 2,

�m(�m/hm)−1/2(log† hm)(log† loghm) → 0 for d ≥ 3.
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Conversely, an ε-scan statistic with ε <
√

2 fixed asymptotically separates Hm
0 and

Hm
1 if

�m(�m/hm)−1/2 → ∞.

For the case of nondecreasing paths, a form of the scan statistic achieves the
minimax rate in dimension d ≥ 3, while it falls short by a logarithmic factor in
dimension d = 2. In the latter setting, Arias-Castro et al. [7] introduces a test that
asymptotically separates Hm

0 and Hm
1 if

�m(�m/hm)−1/2 log†(�m)1/2 → ∞,(3.1)

coming slightly closer to the minimax rate.
In fact, even when the band has unknown length, width and starting location,

and when the path is not restricted to be nondecreasing, a form of scan statistic
achieves the same rate, except for a logarithmic factor.

PROPOSITION 8. Suppose that d ≥ 2 and let Km be the class of all bands
of width h and length �, where �m ≥ � ≥ h ≥ hm, that are within Vm and gen-
erated by paths that do not self-intersect. An ε-scan statistic, with ε <

√
2, then

asymptotically separates Hm
0 and Hm

1 if

�m

(
�m/hm + log(m/hd

m) + log† log�m

)−1/2 → ∞.

3.2. Arbitrary connected components. We consider here classes of connected
components with a constraint on their sizes. Arbitrary connected components in
the square lattice are sometimes called animals or polyominoes (polycubes in di-
mension d ≥ 3), which are well-studied objects in combinatorics, where the goal
is to count the number of polyominoes [41]. We mention in passing the results
in [22] which provide a law of large numbers for the scan statistic under the null.
Otherwise, such objects are fairly new to statistics. Detecting animals is, of course,
harder than detecting paths since paths are themselves animals. The result below
offers a sharp detection threshold for connected components of sufficiently small
size.

PROPOSITION 9. Let Km be the class of animals of size km = o(m) within Vm.
Hm

0 and Hm
1 are then asymptotically inseparable if

�m ≤
√

2 logm − ηm,

where ηm → ∞. Conversely, let Km be the class of animals of size not exceeding
k+
m = o(logm) within Vm. The actual scan statistic then asymptotically separates

Hm
0 and Hm

1 if

�m ≥
√

2 logm.
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Note that, in general, we can obtain a quick (naive) upper bound on the detection
rate for large clusters by considering the simple test that rejects for large values of∑

v∈Vm
Xv (this is the “average test” in [1]). This test asymptotically separates Hm

0

and Hm
1 if �mk

1/2
m m−1/2 → ∞, assuming the clusters in Km are of size bounded

below by km. An open question of theoretical interest is whether, for the class of
animals of size km = √

m in the two-dimensional lattice, there is a test that asymp-
totically separates Hm

0 and Hm
1 when �mk

−1/2
m → 0 slowly enough. In dimension

three or higher, Theorem 3 implies that this is not possible, even for paths.

4. Discussion.

4.1. Extension to exponential families. Although the previous results were
stated for the normal location model, they extend to any one-parameter expo-
nential model if the anomalous clusters are large enough. For example, consider
a Bernoulli model where the variables are Bernoulli with parameter 1/2 under
the null and with parameter pK > 1/2 when they belong to the anomalous clus-
ter K ; or, a Poisson model where the variables are Poisson with mean 1 under the
null and μK > 1 when they belong to the anomalous cluster K . In general, trans-
forming the variables and/or the parameter if necessary, we may assume that the
model is of the form Fθ , with density fθ (x) = exp(θx − logϕ(θ)) with respect
to F0, where, by definition, ϕ(θ) = E0[exp(θX)], where E0 denotes the expecta-
tion under F0. We always assume that ϕ(θ) < ∞ for θ in a neighborhood of 0. Let
σ 2 = Var0(X), the variance of X ∼ F0. In the Bernoulli model, the correspondence
is θ = log(p/(1 − p)) and σ 2 = 1/4; in the Poisson model, θ = logλ and σ 2 = 1.
Under the null hypothesis, all of the variables at the nodes have distribution F0,
that is,

Hm
0 :Xv ∼ F0 ∀v ∈ Vm.

Under the alternative, the variables at the nodes belonging to the anomalous cluster
K ∈ Km have distribution FθK

with θK := σ�K |K|−1/2, that is,

Hm
1,K :Xv ∼ FθK

∀v ∈ K; Xv ∼ F0 ∀v /∈ K.

As before, the variables are assumed to be independent.
If the clusters in the class are sufficient large, then the results presented for the

normal location family hold unchanged. Intuitively, large enough clusters allow for
the sums over them to be approximately normally distributed. Details are provided
in the Supplement. For example, we have the following equivalent of Corollary 1
in the context of thick clusters as in Section 2.1. Consider λm ≥ rm ≥ r∗

m with
mrd

m(log 1/rm)−3 → ∞ (which guarantees that the clusters in the class are large
enough) and define the class

Km = {Kf :f ∈ Fd,d(κ), λm ≥ λf ≥ rm}.
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In this setting, under the Bernoulli model, the detection threshold is at

pK = 1

2
+ 1

8|K|1/2

(
2 log(m/|K|))1/2;

under the Poisson model, the detection threshold is at

μK = 1 + 1

|K|1/2

(
2 log(m/|K|))1/2

.

Note that without a lower bound on the minimum size of the anomalous clusters,
the general analysis breaks down and the results depend on the specific exponential
model. For example, unless min{|K| :K ∈ Km} → ∞ fast enough, detection is
impossible in the Bernoulli model, even if the anomalous nodes have value 1 under
the alternative.

4.2. Other extensions. The array of possible models is as wide as the breadth
of real-world applications. We mention a few possible variations below.

Beyond exponential families. Using an exponential family of distributions al-
lows us to obtain sharp detection lower bounds. Otherwise, similar results, al-
though not as sharp, may be obtained for essentially any family of distribution Fθ ,
where the distance between the null θ = 0 and an alternative θ is in terms of the
chi-square distance between F0 and Fθ ; see [7], Section 5.

Different means at the nodes. We could consider a situation where the mean
varies over the nodes of the anomalous cluster. This situation is considered in [33]
for the case of intervals, and the constant in the detection rate is indeed differ-
ent. We implicitly considered a worst case scenario where the mean is bounded
below over the anomalous cluster and subsequently assumed it was equal to that
lower bound everywhere over the anomalous cluster. However, our results hold
unchanged if we allow Xv to have any mean above θK , for every v ∈ K , K being
the anomalous cluster.

Dependencies. Also of interest is the case where the variables are dependent.
In the spatial setting, the same paper [33] solves this problem for the case of the
one-dimensional lattice, with the correlation between Xv and Xw decaying as a
function of distance between v and w. We postulate that the same result holds in
higher dimensions. In the spatio-temporal setting, variables could be dependent
across time as well, involving a higher degree of sophistication. We plan on pursu-
ing these generalizations in future publications.

Unknown variance or other parameters. We assumed throughout that the vari-
ance was known (and equal to 1 after normalization). This is, in fact, a mild as-
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sumption, as one can consistently estimate the variance using a robust estimator,
say the median absolute deviation (MAD), with the usual

√
m-convergence rate,

assuming that the anomalous cluster corresponds to a small part of the entire net-
work. When dealing with one-parameter families such as Bernoulli or Poisson, the
issue is to estimate the parameter under the null and a robust version of the maxi-
mum likelihood (e.g., trimmed mean for these two examples) can be used for that
purpose.

4.3. Energy, bandwidth and other constraints. We assume throughout that a
central processor has access to all the information measured at the nodes and, based
on that, makes a decision as to whether there is an anomalous cluster of nodes in
the network or not. This assumption is reasonable in, for example, the context of
image processing or syndromic surveillance. However, real-world sensor networks
of the wireless type are often constrained by energy and/or bandwidth considera-
tions. A growing body of literature [50] is dedicated to designing efficient (e.g., de-
centralized) communication protocols for sensor networks under such constraints.
As mentioned in Section 1.3, the papers we are aware of consider very simplistic
detection settings. In the context of the present paper, it would be interesting to
study how the detection rates change when different communication protocols are
used.

We also assume that we have infinite computational power. However, all real-
world systems operate under finite energy and processing resources. In the same
way, it would be interesting to know what detection rates are achievable under such
computational constraints.

4.4. On computing the scan statistic. In all of the settings we consider in this
paper, the scan statistic comes close to achieving the minimax detection rate. Turn-
ing to computational issues, however, it is very demanding, even when scanning
for simple parametric clusters such as rectangles. For general shapes, Duczmal,
Kulldorff and Huang [25] suggests a simulated annealing algorithm, which, from
a theoretical point of view, is extremely difficult to analyze. For parametric shapes
and blobs, Arias-Castro, Donoho and Huo [8] advocates the use of εm-scan sta-
tistics based on multiscale nets built out of unions of dyadic hypercubes; similar
ideas appear in [71]. Partial results suggest that this approach yields, in theory, a
near-optimal algorithm for detecting the more general thick clusters considered in
Section 2.1.

For the thin clusters of Section 2.2, or for the bands of Section 3.1, the situation
is quite different. Take the latter. After pre-processing the data by performing a
moving average with an appropriate radius, it remains to find the maximum over
a restricted, yet exponentially large, set of paths. Without further restriction, this
problem, known as the “bank robber problem” or “reward budget problem” [21], is
NP-hard. Note that DasGupta et al. [21] suggests a polynomial time approximation
that deserves further investigation. The case of thin clusters is even harder. In the



300 E. ARIAS-CASTRO, E. J. CANDÈS AND A. DURAND

context of point clouds, Arias-Castro, Efros and Levi [10] introduces multiscale
nets that could be adapted to the setting of a network. It remains to compute the
scan statistic over this net, which seems particularly challenging for surfaces of
dimension p ≥ 2, which no longer correspond to paths. In the spatio-temporal
setting of Section 2.3, dynamic programming ideas could be used, as done in [9]
in the context of point clouds and in [17] in the context of a harmonic analysis
decomposition of chirps.

4.5. Open theoretical problems. The paper leaves two main theoretical prob-
lems unresolved. The first one concerns obtaining sharper bounds for the detection
of thin clusters. This is in the context of Section 2.2. For parametric classes, the
challenge is to match constants in the rate, while, for nonparametric classes, the
challenge is to obtain sharper lower bounds, perhaps closer to what a scan statistic
is shown to achieve in Theorem 1. We were only able to do the latter for curves;
see Proposition 3.

The second one concerns comparing the detection rates for arbitrary connected
components and for paths. At a given size, the thicker the band (relative to its
length), the easier it is to detect it; see Theorem 3. It seems, therefore, that the
most difficult connected components to detect are paths or unions of paths. But is
this true? In other words, are the minimax detection rates for arbitrary connected
components and paths of a similar order of magnitude?

Acknowledgments. The authors are grateful to the anonymous referees for
suggesting an expansion of the discussion section, for encouraging them to obtain
sharper bounds and for alerting them of the possibility of improving on the per-
formance of the scan statistic by using a different threshold for each scale, which
resulted in Corollary 1.

SUPPLEMENTARY MATERIAL

Supplement: Technical Arguments (DOI: 10.1214/10-AOS839SUPP; .pdf).
In the supplementary file [6], we prove the results stated here. It is divided into
three sections. In the first section, we state and prove general lower bounds on
the minimax rate and upper bounds on the detection rate achieved by an ε-scan
statistic. We do this for the normal location model first and extend these results
to a general one-parameter exponential family. In the second section, we gather a
number of results on volumes and node counts. In the third and last section, we
prove the main results.
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