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as a constrained optimization problem. The constraints relate to the model
which is expressed in terms of the feature map. From the conditions for
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1. Introduction

The use of kernel methods has a long history and tradition in mathematics and
statistics with fundamental contributions made by Moore, Aronszajn, Krige,
Parzen, Kimeldorf and Wahba, and others [7, 20, 45, 56, 69, 86]. Kernels have
been employed in methods of non-parametric statistics, estimation in Reproduc-
ing Kernel Hilbert Spaces (RKHS), Gaussian processes and Kriging. A further
increasing interest in kernel-based methods has taken place in relation to meth-
ods of Support Vector Machines (SVM) [85], which have largely stimulated the
research on kernel-based learning in general [21, 23, 41, 64, 69–71, 77, 85]. Es-
pecially on problems with a large number of input variables, many successful
results in different application areas have been reported, also with the emergence
of new technologies that generate high dimensional data such as for microarrays,
proteomics, textmining and others.

For black-box modelling applications there has been interest in making use of
universal approximators, such as with the use of multilayer perceptrons in the
area of neural networks. Due to the often large amount of unknown coefficients,
there is a high risk for overfitting the data. However, one can overcome this
problem by making use of regularization. One obtains then an effective num-
ber of parameters (degrees of freedom) that is much smaller than the number
of coefficients. Such regularization mechanisms are also prominently present in
methods of support vector machines. A minimization of the regularization term
corresponds in the context of classification problems to maximizing the margin.
By making use of universal kernels like the Gaussian radial basis function kernel
one obtains a flexible class of models. Model selection then typically amounts
to the choice of regularization constants and kernel tuning parameters, aim-
ing to achieve a good bias-variance trade-off. In a RKHS interpretation this
corresponds to penalizing a norm defined on the unknown function which is
restricted to belong to a reproducing kernel Hilbert space. The use of positive
definite kernels allows one then to plug-in a large variety of kernel functions
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including linear, polynomial, radial basis, splines, wavelets, kernels extracted
from graphical models, textmining kernels and others.

Methods of SVMs for classification and regression relate to convex optimiza-
tion theory [14]. The specification of the estimation problem at the primal level
is done by formulating a constrained optimization problem, where the model is
expressed in terms of a feature map. The optimal model representation is ob-
tained together with the solution from the conditions for optimality. At the dual
level (problem in the Lagrange multipliers) the model is expressed in terms of
a positive definite kernel function. For given tuning parameters the problem is
convex. Through the choice of an appropriate loss function one obtains a sparse
representation in SVMs. A subset of the given training data constitutes the set
of support vectors, which follows from solving a convex quadratic programming
problem.

Given these attractive properties of SVMs, both conceptually and compu-
tationally, how might these be further extended in a systematic and construc-
tive way, beyond problems of classification and regression? At this point Least
Squares Support Vector Machines (LS-SVMs) [77] can be considered as core
models for a wide range of problems in supervised and unsupervised learning
and beyond. By making use of the L2 loss and equality constraints, the con-
ditions for optimality (Karush-Kuhn-Tucker conditions) for LS-SVMs become
much simpler than for SVMs. Some key objectives of this approach are to:

• extend support vector machine methodologies to a wide range of problems
in supervised and unsupervised learning (regression, classification, princi-
pal component analysis, canonical correlation analysis, spectral clustering)
and in dynamical systems (identification of different model structures, re-
current networks, optimal control) and others;

• formulate problems in terms of constrained optimization with explicit use
of regularization leading to a good generalization performance and to nu-
merically well-conditioned methods;

• achieve primal and dual model representations, relevant for out-of-sample
extensions and solving large scale problems;

• consider weighted versions towards statistical robustness and handling
general loss functions;

• plug-in different loss functions and positive definite kernels;
• incorporate prior knowledge through additional constraints and conceive
hierarchical modelling schemes using convex optimization techniques.

The emphasis of this paper is on illustrating the main concepts and potential
of models with primal and dual representations, in particular for LS-SVMs and
in connection to other methods. In general this may contribute to achieving
an integrative understanding of the subject given its multi-disciplinary nature,
being at the intersection of machine learning and neural networks, mathematics
and statistics, pattern recognition and signal processing, systems and control,
optimization and others. It also leads to a generic framework that can be ap-
plied to a large variety of application areas, especially towards high-dimensional
problems.
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This paper is organized as follows. Section 2 outlines function estimation in
RKHS. Section 3 discusses primal and dual problems in support vector machine
classifiers. In Section 4 LS-SVM core models are explained for classification,
regression and kernel principal component analysis, together with sparseness,
robustness and variable selection. Section 5 gives examples on additional con-
straints to the core models. In Section 6 weighted kernel PCAmodels for spectral
clustering are discussed, including aspects of model selection and sparse repre-
sentations. Section 7 focuses on dimensionality reduction and data visualization
using kernel maps with a reference point. In Section 8 primal and dual problems
for kernel canonical correlation analysis are explained, together with its use for
independent component analysis.

2. Function estimation in RKHS

Kernel-based function estimation problems are commonly characterized as fol-
lows [23, 62, 86]: for a given training data set {(xi, yi)}Ni=1 of N training data
with input data xi ∈ R

d and output data yi ∈ R, find a function f that mini-
mizes the objective

min
f∈H

1

N

N
∑

i=1

L(yi, f(xi)) + ν‖f‖2K (2.1)

where L(·, ·) denotes the chosen loss function and ‖f‖K the norm in the re-
producing kernel Hilbert space (RKHS) H defined by the kernel K. From the
beginning, the unknown function f is restricted here to belong to a reproducing
kernel Hilbert space. The positive value ν denotes the regularization constant.

For any convex loss function, it can be shown that the solution to (2.1) is of
the form

f(x) =

N
∑

i=1

αiK(x, xi) (2.2)

which is called the representer theorem. The model has the reproducing property

f(x) = 〈f,Kx〉K (2.3)

with Kx(·) = K(x, ·).
By plugging-in different loss functions one obtains among the special cases:

L(y, f(x)) = (y − f(x))2: regularization network
L(y, f(x)) = |y − f(x)|ǫ: support vector regression

where | · |ǫ denotes the ǫ-insensitive loss function with ǫ ≥ 0 (which is defined
as |y − f(x)|ǫ equals 0 if |y − f(x)| ≤ ǫ and equals |y − f(x)| − ǫ otherwise),
containing a region around the origin of width 2ǫ where the loss function equals
zero. This region results into a sparse representation, meaning that many αi

coefficients are zero. For the case ǫ = 0 it corresponds to an L1 estimator.
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The regularization constant ν controls the bias-variance trade-off. Taking ν
too small might result in overfitting the data, while ν too large might give
a model that is not sufficiently flexible to explain the data. A common and
practical approach to set ν is based e.g. on cross-validation or generalized cross-
validation [36]. Usually one is interested in estimating a model that minimizes
the generalization error

E[f ] =

∫

X×Y

L(y, f(x))dP (x, y) (2.4)

under the i.i.d. assumption, with random variables x ∈ X , y ∈ Y drawn from
an unknown probability distribution P (x, y) which is assumed to be unknown
but fixed. Different upper bounds and lower bounds on the generalization error
have been derived, which are expressed in terms of the model complexity (e.g.
VC dimension, Rademacher complexity) [22, 23, 69, 78, 85]. It has been shown
that the leave-one-out error plays a vital role with respect to stability and
generalization [13, 63]. Robust model selection criteria based on the influence
function have been investigated in [27].

3. Support vector machine classifier

3.1. Primal and dual problem

While in a functional analysis setting (2.1) a support vector machine solution can
be interpreted as plugging in a suitable loss function, SVMs have been originally
conceived in a different way within the context of convex optimization theory
[19, 85].

For a classifier problem with given training data {(xi, yi)}Ni=1 with input data
xi ∈ R

d and class labels yi ∈ {−1, 1} one estimates the class labels using the
model

ŷ = sign[wTϕ(x) + b]

where the feature map ϕ(·) : Rd → R
nh maps the data from the input space

to a high dimensional feature space. The classifier model corresponds to ŷ =
sign[

∑nh

j=1 wjϕj(x) + b] with ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕnh
(x)]T . This feature

map is usually not explicitly defined at the beginning, but implicitly through
choosing a positive definite kernel at the dual level.

The training problem for the SVM classifier is formulated as a constrained
optimization problem. The primal problem (P ) is stated as:

(P ) min
w,b,ξ

1

2
wTw + c

N
∑

i=1

ξi

subject to yi[w
Tϕ(xi) + b] ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N,

(3.1)

where the objective function aims at achieving a trade-off between minimiza-
tion of the regularization term (corresponding to maximization of the margin
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2/‖w‖2) and the amount of tolerated misclassifications, controlled by the regu-
larization constant c > 0. The model that is expressed in terms of the feature
map appears within the N constraints. The slack variables ξi are needed to tol-
erate misclassifications on the training data, in order to avoid that one would
overfit and just memorize the data.

Conceiving the problem as a constrained optimization problem is important
in order to create a different representation of the model in terms of Lagrange
multipliers αi (dual variables). These are associated with the first set of con-
straints in (3.1). One constructs the Lagrangian for the problem and charac-
terizes the saddle point. The solution is given then by the convex quadratic
programming problem (dual problem (D))

(D) max
α

−
1

2

N
∑

i,j=1

yiyj K(xi, xj)αiαj +

N
∑

j=1

αj

subject to

N
∑

i=1

αiyi = 0

0 ≤ αi ≤ c, i = 1, . . . , N

(3.2)

where a positive definite kernel K(·, ·) is used satisfying

K(x, z) = ϕ(x)T ϕ(z) =

nh
∑

j=1

ϕj(x)ϕj(z) (3.3)

for any pair of points x, z ∈ R
d (which is often called the kernel trick). From the

conditions for optimality it further follows that w =
∑N

i=1 αiyiϕ(xi) such that
one obtains the following dual representation of the model

ŷ = sign

[

∑

i∈SSV

αi yi K(x, xi) + b

]

(3.4)

where SSV denotes the set of support vectors (which is a subset of the training
data set) corresponding to the non-zero αi values. This set automatically follows
from solving the convex quadratic programming problem (3.2). Note that the
size of the kernel matrix in the quadratic programming problem grows with the
number of training data N . On the other hand it is independent of the dimension
d of the input space. For large data sets often chunking and decomposition
methods are applied.

3.2. Positive definite kernel and feature map

In (3.3) the choice of a positive definite kernel guarantees the existence of a
feature map. Only inner products on the feature map are appearing in the
derivations, which are replaced then by the positive definite kernel. In fact one
can read to equation in two possible ways: from left to right or from right to left.
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From left to right in (3.3) one fixes the choice of a positive definite kernel. This
guarantees then the existence of an underlying feature map. In this case one does
not need to the know an explicit expression for the feature map. From right to
left in (3.3) one may also explicitly define a feature map and correspondingly
obtain the kernel from K(x, z) := ϕ(x)T ϕ(z).

Some basic choices of commonly used kernels are:

K(x, xi) = xT
i x (linear kernel)

K(x, xi) = (xT
i x+ τ)dp , τ ≥ 0 (polynomial kernel of degree dp)

K(x, xi) = exp(−‖x− xi‖22/σ
2) (Gaussian radial basis function kernel).

(3.5)
These kernels need a careful model selection for the tuning parameters σ, τ, c. In
the case of the linear and polynomial kernel the feature map is finite dimensional.
For a Gaussian kernel it is infinite dimensional1.

The kernel trick has also been further used on its own in order to generate
kernel versions of existing algorithms. For example with respect to cluster algo-
rithms, instead of computing the Euclidean distance ‖x−z‖2 in the input space
between data points x and z, one can create a distance measure by considering
the distance in the feature space as

‖ϕ(x) − ϕ(z)‖22 = K(x, x) +K(z, z)− 2K(x, z)

and use a suitable kernel function then for the given data type. In this context
it is also interesting to see that considering the angle θxz between two vectors x
and z in the input space with cos θxz = xT z/(‖x‖2‖z‖2) becomes a normalized
kernel function K̃(·, ·) when considering this in the feature space:

cos θϕ(x),ϕ(z) =
ϕ(x)Tϕ(z)

‖ϕ(x)‖2‖ϕ(z)‖2
=

K(x, z)
√

K(x, x)
√

K(z, z)
= K̃(x, z). (3.6)

Though such a straightforward application of the kernel trick looks attractive
at first sight, it might be dangerous. When employing e.g. a Gaussian kernel
the model might easily become too flexible (which is often revealed in numerical
ill-conditionings). There is a need then to additionally introduce regularization
in the scheme in order to avoid overfitting and to achieve a good generalization
performance. To avoid such problems often ad hoc regularization schemes are
applied afterwards. A more principled approach is taken with methods of least
squares support vector machines: regularization terms are considered from the
beginning in the primal formulations. These models are also easier to extend to
a wider class of problems in supervised and unsupervised learning than standard
SVMs.

1Since the unknown w in the primal has the same dimensionality as the feature map an
infinite dimensional Hilbert space setting has to be employed then. However, the Lagrangian
approach can also be extended to infinite dimensional problems, see e.g. [47]. An alternative
is to treat this infinite dimensional case within a finite dimensional setting by considering a
very large but finite value nh which leads then to an approximate version of the true Gaussian
kernel (this difference is small given that the series (3.3) converges for nh → ∞). An additional
property of well-conditioning is required then (which can be achieved e.g. by the regularization
mechanism) to ensure that this small perturbation to the true feature map and the kernel also
has a small influence on the overall solution.
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4. LS-SVM core models

4.1. Core models in supervised and unsupervised learning

In least squares support vector machines one works with equality constraints
instead of inequality constraints and an L2 loss function. Advantages are that

• characterizing the conditions for optimality becomes simpler. The core
models are easier extendable with additional constraints;

• it becomes possible to extend support vector methodology to a wide range
of problems in supervised and unsupervised learning and beyond;

• it captures the simple essence while still providing high performant models
(often also with easier software implementations);

• it leads to numerically reliable schemes and problems for which issues like
conditioning are better understood.

These points will be further illustrated in the sequel of this paper.

Classification

The LS-SVM classifier training is formulated as follows [74]

min
w,b,ei

1

2
wTw + γ

1

2

N
∑

i=1

e2i

subject to yi[w
Tϕ(xi) + b] = 1− ei, i = 1, . . . , N.

(4.1)

Instead of considering the value 1 within the constraints as a threshold value,
it is taken here as a target value. This implicitly corresponds to a regression on
the class labels ±1, from which the link between this method and kernel Fisher
discriminant analysis can be understood.

From the Lagrangian

L(w, b, e;α) =
1

2
wTw + γ

1

2

N
∑

i=1

e2i −
N
∑

i=1

αi{yi[w
Tϕ(xi) + b]− 1 + ei}

with Lagrange multipliers αi, one takes the conditions for optimality which are
given by















∂L/∂w = 0 → w =
∑

i αiyiϕ(xi)
∂L/∂b = 0 →

∑

i αiyi = 0
∂L/∂ei = 0 → γei = αi, i = 1, . . . , N
∂L/∂αi = 0 → yi[w

Tϕ(xi) + b] = 1− ei, i = 1, . . . , N.

(4.2)

Eliminating w, e and writing the solution in α, b gives the square linear system

[

0 yT

y Ω(y) + I/γ

] [

b
α

]

=

[

0
1N

]

(4.3)
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where Ω
(y)
ij = yiyj ϕ(xi)

Tϕ(xj) = yiyj K(xi, xj) and column vectors y = [y1; . . . ;

yN ] = [y1 . . . yN ]T , 1N = [1; . . . ; 1] and I the identity matrix. For the LS-SVM
classifier model M evaluated at any point x∗ ∈ R

d, the primal (P ) and dual
(D) model representations and corresponding prediction ŷ∗ are given by

(P ) : ŷ∗ = sign[wTϕ(x∗) + b]
ր

M l
ց

(D) : ŷ∗ = sign[
∑N

i=1 αiyiK(x∗, xi) + b].

(4.4)

The proximal support vector machine classifier [33] has been related to the LS-
SVM. A main difference is that the former regularizes the bias (intercept) term
b as well.

Regression

In a similar way one can perform a ridge regression in the feature space [67, 77]
with additional bias term b

min
w,b,ei

1

2
wTw + γ

1

2

N
∑

i=1

e2i

subject to yi = wTϕ(xi) + b+ ei, i = 1, . . . , N

(4.5)

which gives as dual problem
[

0 1TN
1N Ω+ I/γ

] [

b
α

]

=

[

0
y

]

(4.6)

where Ωij = ϕ(xi)
Tϕ(xj) = K(xi, xj). The corresponding primal and dual

model representations are

(P ) : ŷ∗ = wTϕ(x∗) + b
ր

M l
ց

(D) : ŷ∗ =
∑

i αiK(x∗, xi) + b.

(4.7)

Kernel principal component analysis

Kernel principal component analysis as proposed in [68] can be obtained as the
dual problem to the following LS-SVM formulation [79]:

min
w,b,ei

−
1

2
wTw + γ

1

2

N
∑

i=1

e2i

subject to ei = wTϕ(xi) + b, i = 1, . . . , N.

(4.8)
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The problem in the Lagrange multipliers αi related to the constraints is then
given by

Ω(c)α = λα with λ = 1/γ (4.9)

where Ω
(c)
ij = (ϕ(xi) − µ̂ϕ)

T (ϕ(xj) − µ̂ϕ) denote the elements of the centered

kernel matrix and µ̂ϕ = (1/N)
∑N

i=1 ϕ(xi). The centering of the kernel matrix
is automatically obtained from the conditions for optimality by taking a bias
term b in the model.

The interpretation between (4.8) and kernel PCA is as follows:

1. Pool of candidate components:
Equation (4.8) characterizes the pool of all candidate components. Note
that all eigenvectors which are the solution to (4.9) lead to a value zero for

the objective function − 1
2w

Tw+ γ 1
2

∑N

i=1 e
2
i . The corresponding possible

choices of the regularization constant γ follow from the eigenvalues λ =
1/γ of the different possible solutions.

2. Relevant components:
For the kernel PCA problem one is interested in the components that are
maximizing the variance. The component corresponding to λmax results
in maximizing the second term in the objective γ 1

2

∑N

i=1 e
2
i .

The primal and dual model representations are given by

(P ) : ê∗ = wTϕ(x∗) + b
ր

M l
ց

(D) : ê∗ =
∑

i αiK(x∗, xi) + b.

(4.10)

By means of this underlying model it is also clear how out-of-sample extensions
can be made. When making eigenvalue decompositions on data matrices di-
rectly, as commonly done in the literature, the out-of-sample extension aspects
are mostly unclear. The model with out-of-sample extensions also enables to
evaluate on validation data.

Solving in primal or dual?

In case the feature map is finite dimensional and explicitly known one has the
choice between solving the primal or the dual problem (for the Gaussian kernel
on the other hand one can only solve the dual). Consider e.g. the case of a linear
parametric regression model ŷ = wTx+ b with w ∈ R

d. The dual representation
of the linear model is ŷ =

∑N

i=1 αix
T
i x + b with α ∈ R

N . One distinguishes
between the following cases then:

• Case d small, N large: solving the primal problem in w ∈ R
d is more

convenient.
• Case d large, N small: solving the dual problem in α ∈ R

N is more con-
venient.
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Therefore within a setting of primal-dual model representations one can tailor
the approach towards the given data problem, while preserving the global picture
with parametric interpretations in the primal and kernel representations in the
dual. This view is further exploited in fixed-size kernel models with estimation
in the primal based on general positive definite kernels. In the next subsection
this topic is further addressed.

4.2. Sparseness and robustness

Though the use of least squares and equality constraints simplifies the formula-
tions, it also has the drawback that in general no sparse model representation
is obtained and the estimator is non-robust. However, different methods have
been developed to overcome these problems.

Sparseness: Fixed-size kernel models

Reduction and pruning techniques have been used to achieve the sparse repre-
sentation in a second stage, which have been successfully applied [77]. A different
approach which makes use of the primal-dual setting are fixed-size techniques.
The fixed-size method has the following main characteristics:

1. For a given positive definite kernel, estimate an approximate finite dimen-
sional feature map based on a small subset of the training data;

2. Define a selection criterion for obtaining the subset;
3. Estimate the model in the primal leading to a model of the form

ŷ =
∑

i∈S

βiK(x, xi) + b (4.11)

where S is a subset of the training data set.

For fixed-size LS-SVMs proposed in [77] step 1 is based on the Nyström ap-
proximation as proposed in the context of Gaussian processes [88]. A direct
consequence of step 2 is that a sparse representation is obtained with a number
of support vectors and dimensionality of the feature space equal to the size of
the subset. In step 3, instead of taking the subset at random, the support vectors
are chosen such that the sum of the elements of the kernel matrix is optimized,
which characterizes the quadratic Renyi entropy. In this way the support vec-
tors act as prototypes for the underlying input data distribution, as in vector
quantization methods. While vector quantization approaches have been stud-
ied in the past for placing the centers of radial basis function networks, the
fixed-size techniques are applicable to a broader class of positive definite ker-
nels. It is also based on the existing connection between kernel PCA and density
estimation [35].

Optimized versions of fixed-size LS-SVMs are currently applicable to large
data sets with a million of data points for training and tuning on a personal
computer [26]. Successful applications in electricity load forecasting have been
reported in [31].
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Robust regression: Weighting

For linear parametric models it is well-known that outliers may breakdown the
quality of the estimated model when using a least squares estimator. A key
element at this point is that the derivative of the loss function is not bounded,
which on the other hand is the case when using e.g. the Huber loss function.
When using an L2 loss function with kernel-based models the situation is not
as bad as in the linear parametric case. When using a bounded kernel such as
the Gaussian kernel the model quality will rather be locally instead of globally
destroyed. Nevertheless, it might be important to further improve the estimates.
A procedure proposed for use in LS-SVM regression [76] is to first estimate with
an L2 loss function and then further apply (an) additional weighting step(s) by
weighted least squares:

min
w,b,ei

1

2
wTw + γ

1

2

N
∑

i=1

vie
2
i

subject to yi = wTϕ(xi) + b+ ei, i = 1, . . . , N.

(4.12)

The influence of outlier points is down-weighted in this scheme by associating
a small weight vi to them in view of robust statistics [42, 65]. The choice of the
weights is based on the distribution of the residuals ei from the first (unweighted)
estimation step. In [28] fast convergence and robust estimation by means of using
a logistic weighting and bounded kernels has been reported. Further theoretical
studies on robust model selection and conditions on the weighting, loss function
and kernel have been made in [27, 28].

In general, with respect to the choice of the loss function, one has two possible
ways to proceed: top-down or bottom-up. Either one chooses the loss function
in a top-down fashion and, in case of a convex loss function L(·), in

min
w,b,ei

1

2
wTw + γ

1

2

N
∑

i=1

L(ei)

subject to yi = wTϕ(xi) + b+ ei, i = 1, . . . , N

(4.13)

one applies a convex optimization procedure to compute the unique solution to
the problem. Otherwise, in a bottom-up way as described above in (4.12), one
starts from the simpler LS-SVMmodel and further improves the estimates by re-
weighting. In both approaches least squares plays a central role. In the top-down
procedure, when using e.g. an interior point algorithm for convex optimization
(and other methods as [61]) the reduced Karush-Kuhn-Tucker system to be
solved at one iteration step has the same structure as one single LS-SVM. In
the bottom-up approach few re-weighting steps are needed, in practice often
one additional step is satisfactory [25]. Besides producing robust estimates the
bottom-up approach might also give a computational advantage. The applied
weighting will implicitly correspond to a modified loss function (with bounded
derivative). Also in sparse recovery problems the importance of iteratively re-
weighted least squares has been stressed [24].
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Kernel component analysis: Robustness and sparseness

Also in unsupervised learning, the issue of robustness has been studied. New
methods of Kernel Component Analysis (KCA) [2] have been studied, with ro-
bust and sparse modifications to kernel PCA. This is done by starting from the
LS-SVM formulation to kernel PCA and plugging-in different loss functions L(·):

min
w,b,ei

−
1

2
wTw + γ

N
∑

i=1

L(ei)

subject to ei = wTϕ(xi) + b, i = 1, . . . , N.

(4.14)

Kernel component analysis has been studied for the Huber loss function and
weighted least squares. In the weighted least squares approach one takes L(ei) =
1
2vie

2
i . The components are computed then in different stages, where in stage

k the new component is made orthogonal with respect to the k − 1 previous
components. The knowledge of the previous components is incorporated by ad-
ditional orthogonality constraints to the primal problem. It leads to solving
a sequence of generalized eigenvalue problems [2]. When employing a Huber
loss with epsilon-insensitive zone, sparse and robust KCA models are obtained,
which is illustrated in Figure 1. In contrast with regression problems, the dif-
ferent components have different degrees of sparseness in this case [2].

original image corrupted image

KPCA reconstruction KCA reconstruction

Fig 1. Robust denoising using Kernel Component Analysis: (Top-left) Original digit; (Top-
right) digit corrupted by outliers and Gaussian noise; (Bottom-left) KPCA reconstruction
result; (Bottom-right) KCA reconstruction result using a Huber loss function with epsilon-
insensitive zone. The algorithms were trained on 300 images from the CI “multiple features”
dataset. The number of components used was 32.
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4.3. Variable selection

With the use of Gaussian kernels a common method for classification and re-
gression is automatic relevance determination [50] where instead of one single
kernel parameter σ a diagonal weighting matrix W is considered by taking
K(x, z) = exp(−(x−z)TW (x−z)) where the elements of W are positive. Using
Bayesian inference these elements are inferred at a higher level of inference [77].
For the linear kernel one can take in a similar way K(x, z) = xTWz. Note that
leaving out the j-th variable from the model corresponds to setting Wjj = 0.
One typically searches then for a subset of variables that minimizes e.g. the
leave-one-out error or cross-validation error, which results into solving a combi-
natorial optimization problem. Common heuristics that are used as alternative
to the latter are forward or backward subset selection methods. In kernel-based
modelling, the process of variable selection is usually time-consuming. Computa-
tionally efficient techniques based on low-rank updates for fast variable selection
have therefore been proposed in [55]. Currently these can be applied for the case
of linear and polynomial kernels. An overview of filtering, wrapper and embed-
ded methods for variable selection in support vector machine classifiers with
applications in chemometrics has been reported in [49].

A number of methods for variable selection are based on convex optimization.
While in a linear parametric setting one has a large flexibility in taking different
loss functions and regularization terms, in SVM and LS-SVM formulations the
2-norm based regularization term wTw is crucial in order to generate the kernel-
based representation in the dual from the conditions for optimality. The choice
of other norms on w (like e.g. L1 regularization or LASSO [81]) within the SVM
or LS-SVM primal problem is only possible for an explicitly given expression
of a finite dimensional feature map and provided one directly solves the primal
problem. In this case the problem reduces to estimating the parameters of a
parameterized model for a fixed set of basis functions. In the linear SVM case
one therefore has more flexibility in using different norms for achieving sparse
representations for variable selection (see e.g. [15]). A conceptually different
approach of defining LS-SVM substrates has been proposed as a more general
alternative [59]. It conceives different hierarchical levels where at the basic level
the LS-SVM substrate is taken with an additive (instead of a multiplicative)
regularization trade-off. The variable selection problem is then defined at a
higher hierarchical level e.g. with the use of L1 regularization. Computationally,
the different hierarchical levels are fused into solving a convex optimization
problem.

5. Core models plus additional constraints

The optimization setting enables to add different regularization terms and con-
straints in a systematic way. After conceiving and formulating the problem in
the primal, from the conditions for optimality one obtains the optimal kernel
based model representation and the final model estimate (Figure 2).

Some examples are given here to illustrate this.
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additional constraints

optimal model representation

model estimate

+ 
additional regularization terms

Core model 

Fig 2. Schematical illustration of conceiving the primal problem as a core model that is
systematically extendable with additional constraints and regularization terms. The optimal
model representation and model estimates follow from the conditions for optimality.

Multi-class problems

Multi-class problems have been approached using LS-SVMs by including addi-
tional sets of constraints in the primal formulation. For a given training data
set {(xi, yi)}Ni=1 with xi ∈ R

d and yi ∈ R
ny where ny denotes the number of

output variables with yi = [y
(1)
i ; . . . ; y

(ny)
i ], one formulates

min
w(j),b(j),e

(j)
i

1

2

ny
∑

j=1

w(j)Tw(j) +
1

2

ny
∑

j=1

γj

N
∑

i=1

e
(j)
i

2

subject to y
(1)
i [w(1)Tϕ(1)(xi) + b(1)] = 1− e

(1)
i , i = 1, . . . , N,

y
(2)
i [w(2)Tϕ(2)(xi) + b(2)] = 1− e

(2)
i , i = 1, . . . , N,

...

y
(ny)
i [w(ny)

T
ϕ(ny)(xi) + b(ny)] = 1− e

(ny)
i , i = 1, . . . , N.

(5.1)
The classifier is based in this case on a number of ny estimated output values

ŷ
(j)
∗ = sign[w(j)Tϕ(j)(x∗)+b(j)] for j = 1, . . . , ny. For each part one may consider
a different feature map ϕ(j)(·) : Rd → R

nhj . The number ny depends then on
the chosen coding/decoding scheme (e.g. one versus one, one versus all, minimal
output coding) [34, 75, 77, 84]. Also the regression case with multiple outputs
has been handled in a similar way [77].
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Monotonicity constraints

If one has the prior knowledge that the estimated values ŷi (where yi = ŷi + ei)
have to satisfy the ordering ŷ1 ≤ ŷ2 ≤ · · · ≤ ŷN , one can add these constraints
pointwise in a pairwise way at the primal level:

min
w,b,e

1

2
wTw + γ

1

2

N
∑

i=1

e2i

subject to yi = wTϕ(xi) + b+ ei, i = 1, . . . , N
wTϕ(xi) ≤ wTϕ(xi+1), i = 1, . . . , N − 1.

(5.2)

In [57] this has been discussed in the context of estimating cumulative distri-
bution functions, for the case (5.2) and the case of monotone Chebyshev kernel
regression. Related work of knowledge incorporation has also been addressed
in [51].

Structure detection

L1 regularization is a common tool in parametric methods to achieve a sparse
solution vector (e.g. LASSO estimator, compressed sensing). In [58] an L1 reg-
ularization mechanism has been used on top of an LS-SVM core model:

min
w(p),e,tp

1

2

P
∑

p=1

w(p)Tw(p) + γ
1

2

N
∑

i=1

e2i + µ

P
∑

p=1

tp

subject to yi =

P
∑

p=1

w(p)Tϕ(p)(x
(p)
i ) + ei, i = 1, . . . , N

−tp ≤ w(p)Tϕ(p)(x
(p)
i ) ≤ tp, i = 1, . . . , N ; p = 1, . . . , P.

(5.3)

In this case an additive or componentwise model is used where each of the
components p = 1, . . . , P is equipped with a feature map ϕ(p). At the dual
level this leads to a sum of kernel functions (as in an additive model [40, 86]).
The structure detection has been done then by inspecting how the solution
changes when varying the regularization constant µ. This is illustrated on a
synthetic example created from the motorcycle data set in Figure 3. In this
method, components which persist with a large non-zero tp value for a wide
range of µ values, are considered to be relevant. Instead of the scheme (5.3)
with multiplicative regularization trade-off, an alternative scheme with additive
regularization trade-off has been investigated in [58, 60].

Semi-supervised learning

In [48] a semi-supervised learning model has been formulated by adding con-
straints that specify whether a point has been labeled or not:
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Fig 3. Illustration of structure detection by (5.3) on a synthetic example based on the univari-
ate motorcycle data set (9 irrelevant input variables have been artificially added with random
and spurious components): (Top) comparison between basic LS-SVM regression (solid line)
and structure detection (dashdot line) (for µ = 3000); (Bottom) Optimal values tp for each
of the p = 1, . . . , P components as a function of the regularization constant µ.

min
w,b,e,ŷ

1

2
wTw + γ

1

2

N
∑

i=1

e2i + η
1

2

N
∑

i,j=1

vij(ŷi − ŷj)
2

subject to ŷi = wTϕ(xi) + b, i = 1, . . . , N
ŷi = νiyi − ei, νi ∈ {0, 1}, i = 1, . . . , N

(5.4)

with νi = 1 for a labeled point and νi = 0 for an unlabeled point. Related but
different formulations for semi-supervised learning in RKHS have been discussed
in [10, 16] and for graph-based learning in [82].

Colored noise models

In [30, 31] auto-correlated errors have been modelled by adding constraints to
the core model by

min
w,b,r,e

1

2
wTw + γ

1

2

N
∑

i=1

r2i

subject to yi = wTϕ(xi) + b+ ei, i = 1, . . . , N
ei = ρei−1 + ri, i = 2, . . . , N.

(5.5)
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At the dual level this results into an equivalent kernel which depends then on ρ
as an additional tuning parameter.

Structured nonlinear models

An example towards estimating structured nonlinear dynamical systems is found
in the identification of Hammerstein systems. These systems consist of the in-
terconnection of a static nonlinear function applied to the input variable fol-
lowed by a linear dynamical system model. This also relate to problems in
independent component analysis [12]. Kernel-based modelling based on pri-
mal and dual representations of these systems has been addressed in [37, 38].
Suppose a single input single output variable system with a linear ARX part
and a nonlinear function g(·) : R → R as a model for the Hammerstein sys-
tem: ŷk =

∑ny

i=1 aiyk−i +
∑nu

j=1 βjg(uk−j) with the representation g(uk−j) =

wTϕ(uk−j)+ b0. The estimation of ai, βj , w, b0 would lead then to a non-convex
problem with many local minima solutions. This can be rephrased as a convex
problem by making use of overparametrization as

min
wj ,a,b,ek

1

2

nu
∑

j=1

wT
j wj + γ

1

2

d+N
∑

k=d+1

e2k

subject to yk =

ny
∑

i=1

aiyk−i +

nu
∑

j=1

wT
j ϕ(uk−j) + b+ ek, ∀k

N
∑

k=1

wT
j ϕ(uk) = 0, ∀j = 1, . . . , nu.

(5.6)

The solution to the original problem can then be obtained by projecting the
solution onto the Hammerstein model class using a singular value decomposi-
tion [37, 38]. Further extensions have been made to Wiener-Hammerstein sys-
tems [32].

6. Models for spectral clustering

Spectral clustering algorithms have been formulated as relaxations to graph
partitioning problems [17, 54, 72]. For the case of finding two clusters A,B in a
graph G, one considers the minimal cut problem

min
ξi∈{−1,+1}

1

2

N
∑

i,j=1

aij(ξi − ξj)
2 (6.1)

with cluster membership indicator ξi = 1 if i ∈ A, ξi = −1 if i ∈ B. The
values aij of the affinity matrix characterize the links between nodes i and
j where i, j = 1, . . . , N . Relaxing ξ ∈ {−1,+1}N into ξT ξ = 1 leads then
to solving an eigenvalue problem for the given graph Laplacian matrix. The
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clustering information is contained in the eigenvectors of the Laplacian matrix
L = D − A derived from the data with degree matrix D and A = [aij ]. This
type of unsupervised learning method is often considered as a pre-processing
step when mapping the original data to an eigenspace where the clusters become
more evident. An additional clustering step (e.g. by k-means) is needed then to
obtain the final grouping from the eigenvectors. The focus of this Section is now
to describe models of kernel spectral clustering based on a weighted version of
kernel PCA [4].

6.1. Weighted kernel PCA for kernel spectral clustering

Starting from the LS-SVM formulation to kernel PCA without bias term and by
introducing weighting factors vi ∈ R

+, i = 1, . . . , N one has the primal problem

min
w,e

−
1

2
wTw + γ

1

2

N
∑

i=1

vie
2
i

subject to ei = wTϕ(xi), i = 1, . . . , N.

(6.2)

The dual problem in the Lagrange multipliers is given by the following non-
symmetric eigenvalue problem:

V Ωα = λα, λ = 1/γ (6.3)

where V = diag([v1, . . . , vN ]) is the user-defined weighting matrix. The kernel
matrix is playing the role here of the affinity matrix in (6.1). If V is chosen to
be the inverse degree matrix of the graph D−1 = diag([1/d1, . . . , 1/dN ]) with

di =
∑N

j=1 Ωij , i = 1, . . . , N and Ωij = ϕ(xi)
Tϕ(xj) = K(xi, xj), then the dual

problem of the weighted kernel PCA formulation becomes the random walks
algorithm for spectral clustering [52], which is also related to the normalized cut
problem [72]. The non-symmetric eigenvalue problem (6.3) corresponds then to
the generalized eigenvalue problem

Ωα = λDα (6.4)

with λ1 = 1 ≥ λ2 ≥ · · · ≥ λN .
Like in the kernel PCA case, the pool of candidate components is obtained

from specifying the primal (6.2). The relevant components are the ones that

minimize the normalized cut. The estimated cluster indicators ξ̂i are obtained
then by binarizing α(2), which is the eigenvector corresponding to the second
largest eigenvalue of D−1Ω:

ξ̂i = sign(α
(2)
i − θ), i = 1, . . . , N

where θ is a suitable threshold. This interpretation of spectral clustering as a
special case of weighted kernel PCA also allows extending the cluster indica-
tors to unseen data (out-of-sample extension) by means of projections onto the
eigenvectors.
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6.2. Multiway kernel spectral clustering with out-of-sample

extensions

Primal and dual problem

The weighted kernel PCA formulation can be further extended to more than two
clusters. This is achieved by introducing additional score variables and equality
constraints. Bias terms are added for obtaining optimal centering [4]:

min
w(l),e(l),bl

−
1

2

k−1
∑

l=1

w(l)Tw(l) +
1

2N

k−1
∑

l=1

γle
(l)TD−1e(l)

subject to e(1) = ΦN×nh
w(1) + b11N

e(2) = ΦN×nh
w(2) + b21N

...
e(k−1) = ΦN×nh

w(k−1) + bk−11N

(6.5)

where k denotes the number of clusters, e(l) = [e
(l)
1 ; . . . ; e

(l)
N ] the score variables,

ΦN×nh
= [ϕ(x1)

T ; . . . ;ϕ(xN )T ] ∈ R
N×nh is the feature maps matrix evaluated

on the training data, bl the bias terms where l = 1, . . . , k − 1. The equality
constraints of the primal problem (6.5) represent a set of k − 1 binary cluster
decisions from sign(e(l)). These binary cluster indicators can be interpreted as
possible codewords. The final cluster membership is assigned by comparing the
binary cluster indicators with the k codewords of the codebook and selecting
the codeword which minimizes the Hamming distance. Note that a related cod-
ing/decoding approach has been taken for multi-class classification problems
(see Section 5), but in a supervised instead of unsupervised learning context.

The dual problem is given by the following eigenvalue problem

D−1MDΩα
(l) = λlα

(l), l = 1, . . . , k − 1, (6.6)

where MD = IN − (1N1TND−1/1TND−11N ) and λl = N/γl, l = 1, . . . , k − 1
ordered as λ1 ≥ λ2 ≥ · · · ≥ λN . The primal and dual model representations
evaluated at a point x∗ are given by

(P ) : sign[ê
(l)
∗ ] = sign[w(l)Tϕ(x∗) + bl], l = 1, . . . , k − 1

ր
M l

ց

(D) : sign[ê
(l)
∗ ] = sign[

∑

j α
(l)
j K(x∗, xj) + bl], l = 1, . . . , k − 1.

(6.7)
In classical spectral clustering, the extension of the clustering results to new
points (out-of-sample points) relies on approximations such as the Nyström
method. A main advantage of using a weighted kernel PCA model for spec-
tral clustering lies in extending the clustering results to out-of-sample points
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naturally via projections onto the eigenvectors, without having to rely on ap-
proximations. For evaluation at a new point x∗, the cluster indicators can be

obtained by binarizing the score variables sign[ê
(l)
∗ ], l = 1, . . . , k − 1 which rep-

resents the (k− 1)-dimensional codeword of x∗. It is decoded by assigning x∗ to
the cluster that minimizes the Hamming distance with respect to the codewords
in the codebook.

As demonstrated in [5] additional prior knowledge of must-link and/or cannot-
link clusters can be incorporated into the primal (6.5) by adding constraints.

Model selection

The out-of-sample extension also allows model selection in a learning framework
with training, validation and test parts. When the clusters present in the data
are well-separated, the leading eigenvectors of the dual problem (6.6) are piece-
wise constant for an appropriate choice of the kernel parameter. This property
means that the clusters are represented as single points in the eigenspace and
hence easy to cluster using e.g. k-means. However, this structural property only
holds for the eigenvectors which are representing the training data. In the case
of out-of-sample data, the clusters can become represented as lines in the score
variables space.

The Balanced Line Fit (BLF) criterion proposed in [4] can be used to obtain
the number of clusters k and the kernel parameters such that the projections are
as collinear as possible together with balanced clusters. This can be evaluated
on a validation set or cross-validation can be applied to it. The BLF value
ranges between zero and one, taking its maximal value when the projections are
perfectly collinear and zero when the projections are spherically distributed.
Figure 4 shows a model selection experiment with the BLF on a toy data set.
The score variables and the corresponding clustering results are shown for two
different RBF kernel parameters. The BLF is optimal for σ2 = 0.16 in this
example which leads to correctly detecting the three clusters.

Sparse kernel models

For large scale problems, the cost of storing the matrix D−1MDΩ and com-
puting its eigendecomposition can be prohibitive. Sparse kernel models using
the incomplete Cholesky decomposition have been studied in [3]. This sparse
model aims at approximating the full eigenvectors by solving a smaller eigen-
value problem. The incomplete Cholesky decomposition also gives a set of pivots
which can serve as support vectors to approximate the expansions for the es-
timation of the cluster indicators. The kernel matrix can be decomposed as
Ω ≈ GGT where G ∈ R

N×R is the lower triangular incomplete Cholesky fac-
tor. R denotes the number of pivots which is controlled via a user-defined error
threshold and R ≪ N . Instead of solving (6.6), the following approximation is
taken then

UTD−1MDUΛ2ρ(l) = λlρ
(l), l = 1, . . . , k − 1 (6.8)
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Fig 4. Model selection in multiway kernel spectral clustering based on weighted kernel PCA:
(Right) Weighted kernel PCA for spectral clustering illustrated on a toy data set; (Left)
Application of the balanced line fit (BLF) criterion for model selection using a Gaussian
kernel. (Top) Score variables on validation data with σ2 = 0.5 and corresponding clustering
result; (Bottom) optimal value σ2 = 0.16 corresponding to a clear line structure in the model
selection.

with ρ(l) = UTα(l). U ∈ R
N×R is the matrix of left singular vectors of G and

Λ ∈ R
R×R the diagonal matrix of singular values. Note that (6.8) involves the

eigendecomposition of a R×R matrix which can be much smaller than the full
N × N matrix in (6.6). The cluster indicators can also be expressed in terms
of the pivots by using a reduced set method and solving a linear system of size
R × R [3]. Figure 5 shows the method on an image segmentation application.
The image is from the Berkeley image dataset http://www.eecs.berkeley.edu/

Research/Projects/CS/vision/grouping/segbench. The total number of pixels is
154, 401 from which only 175 compose the support pixel set.

Highly sparse representations

Highly sparse kernel models for spectral clustering have been discussed in [6]. In
this case, the pivots are selected by choosing specific points from the line struc-

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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original image

sparse kernel model

binary clustering

Fig 5. Sparse kernel model for spectral clustering: (Top) Original 321× 481 pixels image for
a total of 154, 401 pixels; (Center) 175 Support pixels found by the sparse kernel model using
the incomplete Cholesky decomposition with error tolerance η = 0.8 and a χ2-kernel with
χ2 = 2.5 × 10−3; (Bottom) Segment-label image indicating the clustering results with k = 2
found using the BLF on validation data.
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ê
(1)ê
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Fig 6. Highly sparse representations in kernel spectral clustering, illustrated on a toy data
set: (Top) the kernel based model is represented in terms of 12 support vectors, by inspecting
the line structures in the space (ê(1), ê(2), ê(3)); (Bottom) clustering results obtained from
the predictive model. The different colors indicate the estimated regions for the four obtained
clusters, obtained by making out-of-sample extensions.

tures that represent the clusters in the projections space. Since the estimated
cluster membership depends on the orthant of the projected data, points that
are far away from the origin are more certain to belong to the corresponding
cluster. The tips of the lines can therefore serve as prototypes of the clusters.
As shown in [6], the pivots can be chosen by selecting both the endpoints of
the lines and the median point. This leads to highly sparse kernel-based models
where the predictive model is based upon 3k data points with k denoting the
number of clusters. In Figure 6 a toy example with 4,000 data is shown to il-
lustrate the method. The tuning parameter σ of the Gaussian kernel is selected
using the BLF criterion evaluated on a validation set of 800 points, 600 data
points were used for training.

7. Dimensionality reduction and data visualization

While traditionally methods as principal component analysis, multi-dimensional
scaling and self-organizing maps [44, 46] are frequently applied for dimension-
ality reduction and data visualization, in recent years there has been many
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interest in exploring new avenues. More recent approaches include e.g. locally
linear embedding, Hessian locally linear embedding, Laplacian eigenmaps, dif-
fusion maps and others [9, 18, 66]. For many of these approaches which are
commonly known under the umbrella of kernel eigenmap methods and mani-
fold learning, the solution is characterized by an eigenvalue problem. However,
most methods require setting regularization and/or tuning constants for which
it is often unclear how to select them [10]. This can easily lead to discovering
fake structures when projecting high dimensional data to two dimensional or
three dimensional coordinates. Most of the proposed techniques are also only
formulated on the training data. The issue of making out-of-sample extensions
of the method is then unclear or one has to rely on approximate techniques for
this purpose [11]. Another relevant issue is also the computational complexity
of the scheme. While convex optimization methods with semi-definite programs
[87] have been studied, these have the drawback that the method does not scale
well in terms of the number of training data.

In [80] a method of kernel maps with a reference point has been proposed.
This reference point converts the eigenvalue problem into solving a linear sys-
tem, which is desirable from a computational complexity point of view [73].
The formulation makes use of an LS-SVM core model for mapping the input
data to the unknown coordinates to the low dimensional space. It takes a mod-
ified form of locally linear embedding as an additional regularization term. The
method enables to make out-of-sample extensions exactly. The determination
of all regularization and tuning constants has been successfully performed by
cross-validation approaches [80].

The primal problem for realizing a dimensionality reduction R
d → R

p : x 7→ z
with coordinates z in a p = 2 dimensional space (a 3D projection goes similarly)
is formulated as follows

min
z,w1,w2,b1,b2,ei,1,ei,2

1

2
(z − PDz)T (z − PDz) +

ν

2
(wT

1 w1 + wT
2 w2)+

η

2

N
∑

i=1

(e2i,1 + e2i,2)

subject to cT1,1z = q1 + e1,1
cT1,2z = q2 + e1,2
cTi,1z = wT

1 ϕ1(xi) + b1 + ei,1, i = 2, . . . , N
cTi,2z = wT

2 ϕ2(xi) + b2 + ei,2, i = 2, . . . , N.

(7.1)

The non-zero reference point is denoted by q = [q1; q2] ∈ R
2
0 and is chosen by

the user. It approximately fixes the z coordinates of the first data point x1.
This point x1 is sacrificed in the visualization. The first feature map ϕ1(·) :
R

d → R
nh1 is used in mapping the x data to the first component of the z

coordinates. A second feature map ϕ2(·) : Rd → R
nh2 is used for mapping to

the second component of the z coordinates. The ci,1, ci,2 vectors consist of 0
and 1 elements to specify the projections for each of the data points, where
z = [z1; z2; . . . ; zN ] ∈ R

pN . The additional regularization term equals (z −
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PDz)T (z − PDz) =
∑N

i=1 ‖zi −
∑N

j=1 sijDzj‖22 with D a diagonal matrix and

sij = exp(−‖xi − xj‖22/σ
2) which encourages that input data that are close in

x coordinates will also be close to each other in their z coordinates [80]. The
mapping to the z coordinates admit errors, which are characterized by ei,1, ei,2
for the training data. The model also contains bias terms b1, b2 for optimal
centering. Finally, η, ν are positive regularization constants.

Note that in this estimation problem one jointly optimizes over the unknown
mappings, the training data errors and the coordinates z. The unique solution
to this problem first involves solving the linear system





U −V1M
−1
1 1 −V2M

−1
2 1

−1TM−1
1 V T

1 1TM−1
1 1 0

−1TM−1
2 V T

2 0 1TM−1
2 1









z
b1
b2



 =





η(q1c1,1 + q2c1,2)
0
0





(7.2)
with U = (I−PD)T (I−PD)−γI+V1M

−1
1 V T

1 +V2M
−1
2 V T

2 +ηc1,1c
T
1,1+ηc1,2c

T
1,2,

M1 = 1
ν
Ω1 +

1
η
I, M2 = 1

ν
Ω2 +

1
η
I, V1 = [c2,1 . . . cN,1], V2 = [c2,2 . . . cN,2] and

kernel matrices Ω1,Ω2 ∈ R
(N−1)×(N−1) where Ω1,ij = K1(xi, xj) = ϕ1(xi)

Tϕ1(xj),
Ω2,ij = K2(xi, xj) = ϕ2(xi)

Tϕ2(xj) with positive definite kernel functions
K1(·, ·),K2(·, ·).

The solution to (7.2) is finally used to find the Lagrange multipliers to the last
two set of constraints in (7.1). One solves the dual problem in α1, α2 ∈ R

N−1

M1α1 = V T
1 z − b11N−1

M2α2 = V T
2 z − b21N−1

(7.3)

which are linear systems with a unique solution. In a dimensionality reduction
to a 2-dimensional space for any point x∗, the estimated coordinates used for
visualization are ẑ∗ = [ẑ∗,1; ẑ∗,2]. These are delivered by the kernel-based pre-
sentations of the model at the dual level:

(P ) : ẑ∗,1 = wT
1 ϕ1(x∗) + b1

ẑ∗,2 = wT
2 ϕ2(x∗) + b2

ր
M l

ց

(D) : ẑ∗,1 = 1
ν

∑N

i=2 αi,1K1(x∗, xi) + b1
ẑ∗,2 = 1

ν

∑N

i=2 αi,2K2(x∗, xi) + b2.

(7.4)

An illustration of the method on 3D visualization of microarray data is given in
Figure 7 (see [80] for details).

8. Kernel CCA and ICA

A link between correlation in the feature space and independence in the input
space was first discussed in [8]. If two random variables are uncorrelated in the
feature space induced by a universal kernel, then these variables are independent
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Fig 7. 3D visualization of the Alon colon cancer microarray data set using kernel maps with
a reference points [80]: (blue) training genes; (black) validation genes; (red) test genes. An
advantage of this approach is that one can validate or cross-validate the underlying model for
visualization.

in the input space. Several contrast functions for kernel-based independent com-
ponent analysis (ICA) have been proposed [1, 8, 39]. For the case of more than
two variables, the contrast functions are characterizing pairwise independence.

Regularization is a critical aspect in kernel canonical correlation analysis
(kernel CCA). It is well known that un-regularized kernel CCA yields too non-
informative correlation estimates: ill-conditioning takes place since the kernel
matrices can be singular or near-singular. Typical kernel CCA algorithms start
from an un-regularized scheme and adding regularization afterwards in an ad-
hoc manner. The scheme proposed in [1] corresponds to a multivariate version of
the LS-SVM formulation to kernel CCA. One of the advantages of this method
lies in the fact that regularization is incorporated naturally into the primal
problem leading to a better conditioned generalized eigenvalue problem in the
dual.

8.1. Multivariate kernel CCA

Given a number of m variables (called sources), the primal problem can be
written as [1]

min
w(l),e(l)

1

2

m
∑

l=1

w(l)Tw(l) +
1

2

m
∑

l=1

νle
(l)T e(l) −

γ

2

m
∑

l=1

m
∑

k 6=l

e(l)
T

e(k)

subject to e(l) = Φ
(l)
N×nhl

w(l), l = 1, . . . ,m.

(8.1)

The objective function can be interpreted as an extension to the expression
for two sources ||e(1) − e(2)||22 towards

∑m

l=1

∑m

k 6=l ||e
(l) − e(k)||22 for m sources
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with e(l) = [e
(l)
1 . . . e

(l)
N ]T where e

(l)
i = w(l)T ϕ(l)(x

(l)
i ) (typically also a bias term is

added or a centering on the feature space is taken instead). The l-th feature map

matrix is given by Φ
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N×nhl

= [ϕ(l)(x
(l)
1 )T ;ϕ(l)(x

(l)
2 )T ; . . . ;ϕ(l)(x

(l)
N )T ] ∈ R

N×nh .

The l = 1, . . . ,m feature maps ϕ(l)(·) : Rd → R
nhl are potentially different. νl

are regularization constants.
The dual problem in the Lagrange multipliers is characterized by the gener-

alized eigenvalue problem
Kα = λRα (8.2)

with
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where R(l) = (IN + νlΩ
(l)), l = 1, . . . ,m and λ = 1/γ. For the elements of the

l-th kernel matrix one has Ω
(l)
ij = ϕ(l)(x
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i , x
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The primal and dual model representations evaluated at new points x
(l)
∗ are

given by
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M l
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(8.3)

8.2. Kernel CCA and independence

The Kernel Regularized Correlation (KRC) corresponds to a regularized correla-
tion measure in the feature space induced by universal kernels [1]. This contrast
function can be used to find estimates of demixing matrices such that the vari-
ables are uncorrelated in the feature space which leads to pairwise independence
in the input space. The training equations given by the generalized eigenvalue
problem (8.2) can be rewritten as:

(K +R)α = ζRα (8.4)

with ζ = 1 + λ such that the smallest eigenvalue ζmin ∈ [0, 1]. The KRC on
training data corresponds then to

KRC = 1− ζmin.

This correlation measure can also be extended to out-of-sample points via pro-
jections onto the eigenvector solution. Note that the size of the matrices in (8.4)
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source images

mixture of sources

estimated independent components

Fig 8. Image demixing using the KRC with parameters σ2 = 0.37, ν = 0.68 found using model
selection on validation data. (Top) Source images; (Center) Mixtures of the sources using a
random mixing matrix; (Bottom) Estimated independent components.

is mN ×mN . This can be problematic for large-scale problems. Therefor, ap-
proximation techniques via the incomplete Cholesky decomposition have been
proposed in order to reduce the computational burden of computing the KRC.
Figure 8 shows an image demixing experiment using the KRC with a Gaus-
sian kernel and tuned parameters using validation data. Kernel-based measures
for independence have been shown to perform better than other ICA algorithms
with respect to near-Gaussian sources, increasing number of independent compo-
nents and robustness to outliers [8]. The KRC outperforms well known methods
for ICA such as Fast ICA and Jade and compares favorably in terms of Amari
error and computation times to similar kernel-based measures for independence.

9. Conclusions

In this paper we have discussed problems in supervised and unsupervised learn-
ing which can be conceived in terms of primal and dual model representations,
respectively involving a high dimensional feature map and positive definite ker-
nel functions. It can be viewed as a methodology for kernel-based modelling
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which is complementary to functional analysis approaches in RKHS and prob-
abilistic approaches with Gaussian processes. Least squares support vector ma-
chine formulations play a central role as core problems in regression, classi-
fication, principal component analysis, canonical correlation analysis, spectral
clustering and others2. Other related developments are in ranking problems and
survival analysis [83]. The model representations provide both connections to
parametric statistics (the primal world) and non-parametric statistics (the dual
world).

The core models, which naturally embody regularization in the primal prob-
lem for model complexity control, can be systematically extended by adding
additional sets of constraints and additional regularization mechanisms. From
the conditions for optimality follow both the optimal model representations and
the model estimates. A future perspective is that this also enables developing a
new generation of software tools where the optimal model representations and
solutions can be derived in a symbolic way. Also from a computational point of
view, the primal and dual characterizations have led to new efficient algorithms
such as fixed-size kernel models for very large data sets.

Acknowledgements

Research supported by Research Council K.U. Leuven: GOAAMBioRICS, GOA-
MaNet, CoE EF/05/006, OT/03/12, PhD/postdoc & fellow grants; Flemish
Government: FWO PhD/postdoc grants, FWO projects G.0499.04, G.0211.05,
G.0226.06, G.0302.07; Research communities (ICCoS, ANMMM, MLDM); AWI:
BIL/05/43, IWT: PhD Grants; Belgian Federal Science Policy Office: IUAP
DYSCO. The authors are grateful to Grace Wahba for inviting to contribute
this manuscript. An earlier version of this work has been presented by Johan
Suykens at the Workshop on Learning Theory and Approximation (organizers:
Kurt Jetter, Steve Smale, Ding-Xuan Zhou) Mathematisches Forschungsinstitut
Oberwolfach Germany www.mfo.de July 2008 [43].

References

[1] Alzate C. and Suykens J.A.K. (2008). “A Regularized Kernel CCA
Contrast Function for ICA”, Neural Networks, 21(2–3), 170–181.

[2] Alzate C. and Suykens J.A.K. (2008). “Kernel Component Analysis
using an Epsilon Insensitive Robust Loss Function”, IEEE Transactions
on Neural Networks, 19(9), 1583–1598.

[3] Alzate C. and Suykens J.A.K. (2008). “Sparse Kernel Models for
Spectral Clustering using the Incomplete Cholesky Decomposition”, IEEE
World Congress on Computational Intelligence (WCCI-IJCNN 2008), Hong
Kong, pp. 3555–3562.

2For software see e.g. www.esat.kuleuven.be/sista/lssvmlab/ and www.kernel-

machines.org/

www.mfo.de
www.esat.kuleuven.be/sista/lssvmlab/
http://www.kernel-machines.org/
http://www.kernel-machines.org/


J.A.K. Suykens et al./Model representations in kernel-based learning 178

[4] Alzate C. and Suykens J.A.K. (2010). “Multiway Spectral Clustering
with Out-of-Sample Extensions through Weighted Kernel PCA”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(2): 335–
347

[5] Alzate C. and Suykens J.A.K. (2009). “A Regularized Formulation for
Spectral Clustering with Pairwise Constraints”, International Joint Con-
ference on Neural Networks (IJCNN 2009), Atlanta, 141–148.

[6] Alzate C. and Suykens J.A.K. (2010). “Highly Sparse Kernel Spec-
tral Clustering with Predictive Out-of-Sample Extensions”, Proc. of the
18th European Symposium on Artificial Neural Networks (ESANN 2010),
Bruges, Belgium, pp. 235–240.

[7] Aronszajn N. (1950). “Theory of reproducing kernels”, Trans. American
Mathematical Soc., 68, 337–404. MR0051437

[8] Bach F.R. and Jordan M.I. (2002). “Kernel independent component
analysis”, Journal of Machine Learning Research, 3, 1–48. MR1966051

[9] Belkin M. and Niyogi P. (2003). “Laplacian Eigenmaps for Dimension-
ality Reduction and Data Representation”, Neural Computation, 15(6):
1373–1396.

[10] Belkin M., Niyogi P. and Sindhwani V. (2006). “Manifold Regulariza-
tion: a Geometric Framework for Learning from Labeled and Unlabeled Ex-
amples”, Journal of Machine Learning Research, 7: 2399–2434.MR2274444

[11] Bengio Y., Paiement J.-F., Vincent P., Delalleau O., Le Roux

N. and Ouimet M. (2004). “Out-of-Sample Extensions for LLE, Isomap,
MDS, Eigenmaps, and Spectral Clustering,” Advances in Neural Informa-
tion Processing Systems, 16, 2004.

[12] Bissacco A., Chiuso A. and Soatto S. (2007). “Classification and
Recognition of Dynamical Models: The Role of Phase, Independent Com-
ponents, Kernels and Optimal Transport”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(11): 1958–1972.

[13] Bousquet O. and Elisseeff A. (2002). “Stability and Generalization”,
Journal of Machine Learning Research, 2, 499–526. MR1929416

[14] Boyd S. andVandenberghe L. (2004). Convex Optimization, Cambridge
University Press. MR2061575

[15] Bradley P.S. and Mangasarian O.L. (1998). “Feature Selection via
Concave Minimization and Support Vector Machines”, Machine Learning
Proceedings of the Fifteenth International Conference (ICML98), (Ed. J.
Shavlik), Morgan Kaufmann, San Francisco, California, 82–90.

[16] Chapelle O., Schölkopf B. and Zien A. (Eds.) (2006). Semi-Supervised
Learning, MIT Press. MR2441315

[17] Chung F.R.K. (1997). Spectral Graph Theory, CBMS Regional Conference
Series in Mathematics, 92. MR1421568

[18] Coifman R.R. and Lafon S. (2006). “Diffusion maps”, Applied and Com-
putational Harmonic Analysis, 21(1), 5–30. MR2238665

[19] Cortes C. and Vapnik V. (1995). “Support vector networks”, Machine
Learning, 20, 273–297.

http://www.ams.org/mathscinet-getitem?mr=0051437
http://www.ams.org/mathscinet-getitem?mr=1966051
http://www.ams.org/mathscinet-getitem?mr=2274444
http://www.ams.org/mathscinet-getitem?mr=1929416
http://www.ams.org/mathscinet-getitem?mr=2061575
http://www.ams.org/mathscinet-getitem?mr=2441315
http://www.ams.org/mathscinet-getitem?mr=1421568
http://www.ams.org/mathscinet-getitem?mr=2238665


J.A.K. Suykens et al./Model representations in kernel-based learning 179

[20] Cressie N. (1993). Statistics for Spatial Data, John Wiley & Sons, New
York. MR1239641

[21] Cristianini N. and Shawe-Taylor J. (2000). An Introduction to Support
Vector Machines, Cambridge University Press.

[22] Cucker F. and Smale S. (2002). “On the mathematical foundations of
learning theory”, Bulletin of the AMS, 39, 1–49. MR1864085

[23] Cucker F. and Zhou D.-X. (2007). Learning Theory: an Approximation
Theory Viewpoint, Cambridge University Press. MR2354721

[24] Daubechies I., DeVore R., Fornasier M. and Gunturk S. (2010).
“Iteratively re-weighted least squares minimization for sparse recovery”,
Communications on Pure and Applied Mathematics, 63(1): 1–38.

[25] De Brabanter K., Pelckmans K., De Brabanter J., Debruyne M.,
Suykens J.A.K., Hubert M. and De Moor B. (2009) “Robustness of
Kernel Based Regression: a Comparison of Iterative Weighting Schemes”,
Proc. of the 19th International Conference on Artificial Neural Networks
(ICANN 2009), Limassol, Cyprus, pp. 100–110.

[26] De Brabanter K., De Brabanter J., Suykens J.A.K. and De Moor

B. (2010), “Optimized Fixed-Size Kernel Models for Large Data Sets”,
Computational Statistics & Data Analysis, 54(6): 1484–1504.

[27] Debruyne M., Hubert M. and Suykens J.A.K. (2008). “Model selec-
tion for kernel regression using the influence function”, Journal of Machine
Learning Research, 9, 2377–2400. MR2452631

[28] Debruyne M., Christmann A., Hubert M. and Suykens J.A.K.

(2010). “Robustness of reweighted least squares kernel based regression”,
Journal of Multivariate Analysis, 101(2): 447–463. MR2564353

[29] Donoho D.L. and Grimes C. (2003). “Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data”, Proc. Natl. Acad. Sci.
U.S.A, 100(10): 5591–5596. MR1981019

[30] Espinoza M., Suykens J.A.K. and De Moor B. (2006). “LS-SVM Re-
gression with Autocorrelated Errors”, Proc. of the 14th IFAC Symposium
on System Identification (SYSID 2006), Newcastle, Australia, pp. 582–587.

[31] Espinoza M., Suykens J.A.K., Belmans R. and De Moor B. (2007).
“Electric Load Forecasting using kernel based modeling for nonlinear
system identification”, IEEE Control Systems Magazine, 27(5), 43–57.
MR2350944

[32] Falck T., Pelckmans K., Suykens J.A.K. and De Moor B. (2009).
“Identification of Wiener-Hammerstein Systems using LS-SVMs”, Proceed-
ings of the 15th IFAC Symposium on System Identification (SYSID 2009),
Saint-Malo, France, pp. 820–825.

[33] Fung G. and Mangasarian O.L. (2001). “Proximal support vector ma-
chine classifiers”, Proceedings KDD-2001, 77–86.

[34] Fung G. and Mangasarian O.L. (2005). “Multicategory proximal sup-
port vector machine classifiers”, Machine Learning, 59: 77–97.

[35] Girolami M. (2002). “Orthogonal series density estimation and the kernel
eigenvalue problem”, Neural Computation, 14(3), 669–688.

http://www.ams.org/mathscinet-getitem?mr=1239641
http://www.ams.org/mathscinet-getitem?mr=1864085
http://www.ams.org/mathscinet-getitem?mr=2354721
http://www.ams.org/mathscinet-getitem?mr=2452631
http://www.ams.org/mathscinet-getitem?mr=2564353
http://www.ams.org/mathscinet-getitem?mr=1981019
http://www.ams.org/mathscinet-getitem?mr=2350944


J.A.K. Suykens et al./Model representations in kernel-based learning 180

[36] Golub G.H., Heath M. and Wahba G. (1979). “Generalized cross-
validation as a method for choosing a good ridge regression parameter”,
Technometrics, 21, 215–223. MR0533250

[37] Goethals I., Pelckmans K., Suykens J.A.K. and De Moor B.

(2005). “Identification of MIMO Hammerstein Models using Least Squares
Support Vector Machines”, Automatica, 41(7), 1263–1272. MR2160126

[38] Goethals I., Pelckmans K., Suykens J.A.K. and De Moor B.

(2005). “Subspace Identification of Hammerstein Systems using Least
Squares Support Vector Machines”, IEEE Transactions on Automatic Con-
trol, 50(10), 1509–1519. MR2171870

[39] Gretton A., Herbrich R., Smola A., Bousquet O. and Schölkopf

B. (2005). “Kernel Methods for Measuring Independence”, Journal of Ma-
chine Learning Research, 6, 2075–2129. MR2249882

[40] Hastie T. and Tibshirani R. (1990). Generalized Additive Models, Chap-
man & Hall/CRC. MR1082147

[41] Hastie T., Tibshirani R. and Friedman J. (2001). The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction, Springer series
in statistics. MR1851606

[42] Huber P.J. (1981). Robust Statistics, Wiley, New York. MR0606374
[43] Jetter K., Smale S. and Zhou D.-X. (Eds.) (2008). Learning Theory

and Approximation, Oberwolfach Reports, 5(3): 1655–1706. MR2524072
[44] Jolliffe I.T. (1986). Principal Component Analysis, Springer Series in

Statistics, Springer-Verlag. MR0841268
[45] Kimeldorf G.S. and Wahba G. (1971). “A correspondence between

Bayesian estimation on stochastic processes and smoothing by splines”,
Ann. Math. Statist., 2, 495–502. MR0254999

[46] Kohonen T. (1990). “The self-organizing map,” Proceedings of the IEEE,
78(9): 1464–1480.

[47] Luenberger D.G. (1969). Optimization by vector space methods, Wiley,
New York. MR0238472

[48] Luts J., Suykens J.A.K. and Van Huffel S. (2007). “Semi-supervised
learning: avoiding zero label assumptions in kernel based classifiers”, Inter-
nal Report 07-122, ESAT-SISTA, K.U.Leuven (Leuven, Belgium).

[49] Luts J., Ojeda F., Van de Plas R., De Moor B., Van Huffel S.

and Suykens J.A.K. (2010). “A tutorial on support vector machine-based
methods for classification problems in chemometrics”, Analytica Chimica
Acta, 66(2): 129–145.

[50] MacKay D.J.C. (1998). “Introduction to Gaussian processes” in Neural
networks and machine learning (Ed. C.M. Bishop), Springer NATO-ASI
Series F: Computer and Systems Sciences, Vol.168, 133–165.

[51] Mangasarian O.L. and Wild E.W. (2008). “Nonlinear Knowledge-
Based Classification”, IEEE Transactions on Neural Networks, 19, 1826–
1832.

[52] Meila M. and Shi J. (2001). “A random walks view of spectral segmen-
tation”, Artificial Intelligence and Statistics (AISTATS 2001).

http://www.ams.org/mathscinet-getitem?mr=0533250
http://www.ams.org/mathscinet-getitem?mr=2160126
http://www.ams.org/mathscinet-getitem?mr=2171870
http://www.ams.org/mathscinet-getitem?mr=2249882
http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=0606374
http://www.ams.org/mathscinet-getitem?mr=2524072
http://www.ams.org/mathscinet-getitem?mr=0841268
http://www.ams.org/mathscinet-getitem?mr=0254999
http://www.ams.org/mathscinet-getitem?mr=0238472


J.A.K. Suykens et al./Model representations in kernel-based learning 181

[53] Mercer J. (1909). “Functions of positive and negative type and their
connection with the theory of integral equations”, Philos. Trans. Roy. Soc.
London, 209, 415–446.

[54] Ng A.Y., Jordan M.I. and Weiss Y. (2002). “On spectral clustering:
Analysis and an algorithm”, in T. Dietterich, S. Becker and Z. Ghahramani
(Eds.), Advances in Neural Information Processing Systems (NIPS), 14.

[55] Ojeda F., Suykens J.A.K. andDe Moor B. (2008). “Low rank updated
LS-SVM classifiers for fast variable selection”, Neural Networks, 21(2–3),
437–449.

[56] Parzen E. (1970). “Statistical inference on time series by RKHS methods”,
Dep. Statist. Stanford Univ. Tech. Rep.14, Jan. MR0275616

[57] Pelckmans K., Espinoza M., De Brabanter J., Suykens J.A.K. and
De Moor B. (2005). “Primal-Dual Monotone Kernel Regression”, Neural
Processing Letters, 22(2), 171–182.

[58] Pelckmans K., Goethals I., De Brabanter J., Suykens J.A.K. and
De Moor B. (2005). “Componentwise Least Squares Support Vector Ma-
chines”, Chapter in Support Vector Machines: Theory and Applications,
(Wang L., ed.), Springer, 2005, pp. 77–98.

[59] Pelckmans K., Suykens J.A.K. and De Moor B. (2005). “Building
Sparse Representations and Structure Determination on LS-SVM Sub-
strates”, Neurocomputing, 64, 137–159.

[60] Pelckmans K., Suykens J.A.K. and De Moor B. (2006). “Additive
Regularization Trade-off: Fusion of Training and Validation levels in Kernel
Methods”, Machine Learning, 62(3), 217–252.

[61] Perez-Cruz F., Bousono-Calzon C. and Artes-Rodriguez A.

(2005). “Convergence of the IRWLS Procedure to the Support Vector Ma-
chine Solution”, Neural Computation, 17(1), 7–18.

[62] Poggio T. and Girosi F. (1990). “Networks for approximation and learn-
ing”, Proceedings of the IEEE, 78(9), 1481–1497.

[63] Poggio T., Rifkin R., Mukherjee S. and Niyogi P. (2004). “General
conditions for predictivity in learning theory”, Nature, 428(6981), 419–422.

[64] Rasmussen C.E. and Williams C.K.I. (2006). Gaussian Processes for
Machine Learning, MIT Press. MR2514435

[65] Rousseeuw P.J. and Leroy A. (1997). Robust Regression and Outlier
Detection, John Wiley & Sons, New York. MR0914792

[66] Roweis S. and Saul L. (2000). “Nonlinear dimensionality reduction by
locally linear embedding”, Science, 290 (5500), 2323–2326.

[67] Saunders C., Gammerman A. and Vovk V. (1998). “Ridge regression
learning algorithm in dual variables”, Proc. of the 15th Int. Conf. on Ma-
chine Learning, Madison-Wisconsin, 515–521.

[68] Schölkopf B., Smola A. and Müller K.-R. (1998). “Nonlinear com-
ponent analysis as a kernel eigenvalue problem”, Neural Computation, 10,
1299–1319.

[69] Schölkopf B. and Smola A. (2002). Learning with Kernels, MIT Press,
Cambridge, MA.

http://www.ams.org/mathscinet-getitem?mr=0275616
http://www.ams.org/mathscinet-getitem?mr=2514435
http://www.ams.org/mathscinet-getitem?mr=0914792


J.A.K. Suykens et al./Model representations in kernel-based learning 182

[70] Schölkopf B., Tsuda K. and Vert J.P. (Eds.) (2004). Kernel Methods
in Computational Biology 400, MIT Press.

[71] Shawe-Taylor J. and Cristianini N. (2004). Kernel Methods for Pat-
tern Analysis, Cambridge University Press.

[72] Shi J. and Malik J. (2000). “Normalized Cuts and Image Segmentation”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8),
888–905.

[73] Smale S. (1997), “Complexity theory and numerical analysis,” Acta Nu-
merica, 523–551. MR1489262

[74] Suykens J.A.K. and Vandewalle J. (1999). “Least squares support vec-
tor machine classifiers”, Neural Processing Letters, 9(3), 293–300.

[75] Suykens J.A.K. and Vandewalle J. (1999). “Multiclass Least Squares
Support Vector Machines”, Proc. of the International Joint Conference on
Neural Networks (IJCNN’99), Washington DC, USA.

[76] Suykens J.A.K., De Brabanter J., Lukas L. and Vandewalle J.

(2002). “Weighted least squares support vector machines: robustness and
sparse approximation”, Neurocomputing, 48(1–4), 85–105.

[77] Suykens J.A.K.,Van Gestel T.,De Brabanter J.,De Moor B. and
Vandewalle J. (2002). Least Squares Support Vector Machines, World
Scientific, Singapore.

[78] Suykens J.A.K., Horvath G., Basu S., Micchelli C. and Vande-

walle J. (Eds.) (2003). Advances in Learning Theory: Methods, Models
and Applications, vol. 190 NATO-ASI Series III: Computer and Systems
Sciences, IOS Press.

[79] Suykens J.A.K., Van Gestel T., Vandewalle J. and De Moor B.

(2003). “A support vector machine formulation to PCA analysis and its
kernel version”, IEEE Transactions on Neural Networks, 14(2): 447–450.

[80] Suykens J.A.K. (2008). “Data Visualization and Dimensionality Reduc-
tion using Kernel Maps with a Reference Point”, IEEE Transactions on
Neural Networks, 19(9), 1501–1517.

[81] Tibshirani R. (1996). “Regression shrinkage and selection via the lasso”,
J. Royal. Statist. Soc B., 58(1), 267–288. MR1379242

[82] Tsuda K., Shin H.J. and Schölkopf B. (2005). “Fast protein classifi-
cation with multiple networks”, Bioinformatics (ECCB’05), 21(Suppl.2):
ii59–ii65.

[83] Van Belle V., Pelckmans K., Suykens J.A.K. and Van Huffel S.

(2010). “Additive survival least squares support vector machines”, Statis-
tics in Medicine, 29(2): 296–308.

[84] Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De

Moor B. and Vandewalle J. (2002). “Multiclass LS-SVMs: Moderated
outputs and coding-decoding schemes”, Neural Processing Letters, 15(1):
45–48.

[85] Vapnik V. (1998). Statistical Learning Theory, Wiley, New York.
MR1641250

[86] Wahba G. (1990). Spline Models for Observational Data, Series in Applied
Mathematics, 59, SIAM, Philadelphia. MR1045442

http://www.ams.org/mathscinet-getitem?mr=1489262
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=1641250
http://www.ams.org/mathscinet-getitem?mr=1045442


J.A.K. Suykens et al./Model representations in kernel-based learning 183

[87] Weinberger K.Q. and Saul L.K. (2004). “Unsupervised learning of im-
age manifolds by semidefinite programming,” Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR-04), Wash-
ington D.C.

[88] Williams C.K.I. and Seeger M. (2001). “Using the Nyström method to
speed up kernel machines”, In T.K. Leen, T.G. Dietterich, and V. Tresp
(Eds.), Advances in neural information processing systems, 13, 682–688.


	Introduction
	Function estimation in RKHS
	Support vector machine classifier
	Primal and dual problem
	Positive definite kernel and feature map

	LS-SVM core models
	Core models in supervised and unsupervised learning
	Sparseness and robustness
	Variable selection

	Core models plus additional constraints
	Models for spectral clustering
	Weighted kernel PCA for kernel spectral clustering
	Multiway kernel spectral clustering with out-of-sample extensions

	Dimensionality reduction and data visualization
	Kernel CCA and ICA
	Multivariate kernel CCA
	Kernel CCA and independence

	Conclusions
	Acknowledgements
	References

