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Multi-excitons in self-assembled InAs/GaAs quantum dots:
A pseudopotential, many-body approach
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Abstract. — We use a many-body, atomistic empirical pseudopotential approach to predict the
multi-exciton emission spectrum of a lens shaped InAs/GaAs self-assembled quantum dot. We
discuss the effects of (i) The direct Coulomb energies, including the differences of electron and
hole wavefunctions, (ii) the exchange Coulomb energies and (iii) correlation energies given by a
configuration interaction calculation. Emission from the groundstate of the N exciton system
to the N — 1 exciton system involving eg — ho and e; — h; recombinations are discussed. A
comparison with a simpler single-band, effective mass approach is presented.

High-resolution single-dot spectroscopy [ﬂ»ﬂ] of InAs/GaAs self-assembled quantum dots
shows that as the excitation intensity is increased, thus loading more excitons into the dots,
new emission lines appear both to the red and to the blue of the fundamental emission line
observed at low excitation power. “State filling” effects, leading to the recombination of high
energy electron-hole pairs, cannot explain the red-shifted emission lines, nor the fact that the
number of lines exceeds the number of allowed single-particle transitions. In this letter we
present a theory of self-assembled semiconductor quantum-dots, based on a pseudopotential
many-body expansion that demonstrates that it is multi-exciton transitions that are responsi-
ble for this complex observed spectral structure. We isolate and clarify three distinct physical
effects; (i) electron-hole wavefunction asymmetry, leading to a blue shift of the fundamen-
tal exciton transition as the number of spectator excitons loaded into the dot increases, (ii)
electron-electron and hole-hole exchange interactions which red shift all even multiexciton de-
cays (biexciton, four-exciton) and split the odd multiexciton decays (tri-exciton, five-exciton)
into multiple-lines and (iii) correlation effects which red shift the biexciton leading to its
binding with respect to the monoexciton.

We will first describe the qualitative picture of multi-excitons and then describe a quan-
titative model. The essential physics of such transitions can be understood by considering
what happens to the ground-state recombination of the lowest electron level, ey, and the low-
est hole level, hg, if other electrons and holes are present in the dot as “spectators”. The
schematic figures in the center of Fig. [l| depict the fundamental ey — hy recombination in the
presence of 0 to 5 “spectator” electron-hole pairs (we assume here that all levels are spatially
non-degenerate [ﬂ]) We distinguish here two exciton series; (i) when the initial number of
excitons, N is even, the initial electron configuration is “closed shell”, e.g. (e3)(hZ) for N = 2,
whereas (ii) when N is odd, the initial configuration has an open shell both in the electron
and in the hole manifold, e.g. (e?)e}(hZ)h} for N = 3, (parentheses are used for the closed
shell orbitals). The distinction between the “closed shell” and “open shell” multiexciton is
important, since in the initial state of the N=even, “closed shell” series the spectator levels
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can be occupied in only a single unique manner by the spectator spins, while in the N=odd,
“open-shell” series, many spin arrangements are possible in the initial and final states. This
will lead to a large number of exciton lines.

To understand qualitatively the effects of spectator electrons and holes, let us consider
the Hartree-Fock (HF) energy of a single configuration of electrons and holes. We denote
the direct Coulomb interaction between carriers in levels ¢ and j by J;; and the exchange
interactions as K;;. The recombination energy of the mono-exciton is given by

E;oﬁhg = (680 - Eho) - Jeoyho ) (1)

where €., and €y, are the single particle levels and Eel(ng denotes the energy associated with

decaying from a single exciton to the groundstate. Neglecting the electron-hole exchange
(NB. it is included in the calculation) the eq — hg recombination energy in the presence of Nj
electrons and holes is

N
— 1/0
ENoNTY = BV 1S (Jege, — Jeuna) 2)
N, N, N
+ > (Jhon, — Jeohs)‘| - [ZKeoes +Y Enn,|
hs es hg

where e, and hy are spectator electrons and holes, such that Zé\’s = ZhNS = N—1. Wesee from
Eq(E) that the eg—ho recombination energy is shifted with respect to the fundamental exciton.
This shift has two sources indicated by the two bracketed terms in Eq(ﬂ) First, the Coulomb
shift, which vanishes if the electrons and holes, ey and hy have the same wavefunctions, i.e. if
Jeges = Jeohy and Jpon, = Jegn,. This “Coulomb shift”, §§°uL, | thus reflects the difference
in the electron and hole wavefunctions. It vanishes artificially in single-band effective-mass
calculations that use an infinite well depth, such as those in Refs. , , E] Second, there is
an exchange shift, (516\}”?]\,71, given by the second term in brackets in Eq(ﬂ) This exchange
shift is familiar from theories of band gap renormalization [E] where the existence of high
carrier densities during high power photoexcitation act to reduce the band gap. In addition,
since the exchange interaction depends on the spin orientation of the carriers, the exchange
contribution [second term in Eq.(J)] can split the excitonic transitions.

In the N=even, “closed shell” series, the initial state contains no open shells while the final
states contains one open shell. This results in one- and four-fold degeneracies for the initial
and final states, and hence 4 transitions. These 4 transitions are split by the small electron-
hole exchange interaction. In contrast, for the N=odd transitions, the initial and final states
contain one and two open shells respectively, resulting in four- and 16-fold degeneracies and
hence a total 64 possible transitions. Different alignments of the spins produce splittings of
the different transitions resulting from electron-electron and hole-hole exchange interactions.
In summary, within the HF approximation the presence of “spectator excitons” will shift the
eo — hg transition in the N=even series and shift and split the eg — hg transition in the N=odd
series.

The above treatment neglects the effects of correlation. These can be conveniently intro-
duced by considering configuration-interaction (CI) effects [[l0]. In other words, instead of
evaluating the energy [Eq()] of the eg — hg monoexciton by considering only the 4 spin ar-
rangements consistent with a single orbital configuration, e}h$, we allow the presence of other
orbital configurations such as e}h{, elhi and elh}. This configuration interaction approach

can shift the Hartree-Fock transitions of Egs.([ll) by a “correlation shift”, 566;20, which includes
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both self-consistent adjustments of the single particle orbitals and correlation. This will, for
example, provide additional binding to the biexciton with respect to the monoexciton

Ego_;t; - Eelo_;LS = [Jsoe eo Jho ho — 2‘]60 ho] 560}10 : (3)
Correlation effects can also add new transitions to the spectrum, due to mixing of new config-
urations into the Hartree Fock configuration. Thus, CI will, in general, also alter the intensity
of the HF transitions.

The purpose of this letter is to make a realistic prediction of the “Coulomb shift”,
the “exchange-splitting’, §¥#¢" * and “correlation shift/splitting”, §¢7, due to the presence
of spectator excitons in a self-assembled semiconductor quantum dot. We adopt the exper-
imentally determined lens shaped dot with a base of 250 A and a height of 35 Aand a PL
peak at 1.1 eV. The optical and electronic properties of this dot geometry have been exten-
sively studied, see Refs. [@,@] and references therein. Recently, alternative dot geometries
for uncapped dots have been proposed, based on {136} facets [@] However, there is strong
evidence of Ga in-diffusion during the capping process which acts to produce a lens shaped
geometry. The single-particle bound states are calculated using an empirical pseudopoten-
tial Hamiltonian [ﬂ] Recent developments in these pseudopotentials enable the full inclusion
of the effects of strain, multi-band couplings, band non-parabolicity and spin-orbit coupling
in the single particle Schrédinger equation. In Ref. [E] we demonstrate that by accurately
fitting the bulk band structure, effective masses and deformation potentials we are able to
use these pseudopotentials to obtain excellent agreement with a wide range of optical and
electronic properties for the lens shaped dots discussed in this paper. These comparisons were
not possible earlier when the shape of the dot and its composition profile were unknown. In
Ref. [ﬂ], we model the shape and composition profile of the dot and then compare calculated
and measured single exciton energies, inter-band energy spacings, electron and hole binding
energies and wetting layer energies, finding excellent agreement. For completeness, we treat
here the same lens-shape, alloyed dot with a 1.1 eV PL peak. Unfortunately, although nu-
merous experiments were conducted on this dot, no multi-exciton spectra were taken since
the lowest PL is outside the range of conventional CCD detection equipment, so quantitative
comparison awaits a future measurement.

Having obtained the single-particle levels (eq,€;..., hg,hi...) from the pseudopotential
method, we then calculate numerically the screened Coulomb and exchange integrals

Jin = //w r1) ;(re) ¥i(r1) i(ra) dr1drs

6(1‘1 — I‘2)|I‘1 — I‘2|

Kijkl _ //1/1 rlzw.] 1‘2) wk(r2) ’(/Jl(rl) drldrg , (4)

€ ry — I‘Q)|I‘1 — I‘2|

Coul
5ou7
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where € is a size dependent, phenomenological, screened dielectric function [@] Our exchange
automatically includes both short and long range components [[LJ]. In the configuration-
interaction approach, we expand the wavefunction of the N-exciton, ¥, as a linear combination
of Slater determinants, ®, obtained by exciting N electrons from the valence band to the
conduction band. For example, in the N = 2 (biexciton) case we have:

\Ij(rla"'er): Z Avv’,cc/q)vv/,cc’(rly"'7rM) 5 (5)

vv’,cc’

Here M is the total number of electrons in the quantum dot, v,v’ denote the unoccupied
valence band single particle states (holes) and c¢’ denote the conduction band states occupied



4 EUROPHYSICS LETTERS

by the NV excited electrons. To obtain our many-body states, we diagonalize the many-body
Hamiltonian in the basis of .

To clarify and isolate the physical factors contributing to multi-exciton effects we solve the
problem in a series of steps. First, we neglect configuration interaction effects, treating only
single-configurations and set all the exchange integrals to zero, (6¢*" = 0). In this (e + J)
approximation we see the effect of the Coulomb “chemical shift”, §¢°“. Second, we will still
use a single-configuration, but include exchange integrals. In this (e+.J+ K') approximation we
will see the added effects of carrier-carrier exchange, 6°*". Finally, the effects of correlation
are included in the CI calculation.

Figure (a) shows our calculated energies associated with the fundamental recombination
of an electron and hole, ey — hg in the presence of 0 to 5 spectator excitons. These are denoted
as the 1 — 0to 6 — 5 transitions. The N excitons that form the initial state of each transition
are assumed to occupy the groundstate configuration as predicted by the Aufbau principle.
A schematic energy level scheme in the center of each figure, shows this initial occupation,
where the vertical solid line marks the recombination taking place. The spectrum shown in
each panel is obtained from a sum of Gaussians (0.1 meV width) whose means represent the
transition energies and heights are proportional to the calculated dipole transition element.
The zero of energy is taken as the fundamental exciton, €., — €n, — Jegh,- The multiplicity of
each individual group of transitions in the (e+.J) and (e + J + K) approximations are marked
in black and red.

The effect of direct Coulomb interactions: The red lines in Fig. (a) show the transition
energies in the (e + J) approximation which include only single particle and direct Coulomb
energies. Inspection of these lines shows that:

(i) All the observed Coulomb shifts are relatively small, (§7°* ~ 2 meV) and result in a
blue shift of the transition with respect to the fundamental transition. For example, at this
level of approximation, the biexciton is “unbound” with respect to two single excitons, i,e.
E2~>1 > E1~>0'

(ii) As all the transitions involve the same single particle eg — hy recombination, they all
have the same oscillator strength.

(iii) All the transitions show only a single degenerate line as neither the initial or the final
state exhibit any exchange splittings in this approximation.

The effect of exchange interactions: The black lines in Fig. m(a) show the transition
energies in the (e + J + K) approximation which includes single particle, direct and exchange
Coulomb energies. Inspection of these lines shows that:

(i) The 1 — 0 and 2 — 1 transitions contain only one or zero spectator excitons and hence
no electron-electron or hole-hole exchange takes place. Therefore, only the small electron-hole
exchange fine splitting is observed. We therefore classify these transitions as essentially 4-fold
multiplets. Due to the lack of correlation the biexciton is still unbound with respect to two
single excitons as in the (e + J) approximation.

(ii) For even — odd there are 4 possible transitions. In each case, 2 — 1, 4 — 3 and
6 — 5 we observe only one 4-fold multiplet. The fine splitting within this group of tran-
sitions arises from electron-hole exchange splittings of the 4 final states. The initial states
contain no unpaired electrons and holes and hence exhibit no exchange splittings. As the
number of spectator excitons increases, there is a red shift of these transitions due to ex-
change interactions. The exchange energy shifts from Eq.(f]) are 6§°" = [Kepe, + Knon,] and
568?:? = [Keoez + Keoel + Khohz + Kh()hl]'

(iii) For odd — even with N > 3 there are 64 possible transitions. In both cases: 3 — 2
and 5 — 4 we see 6 groups of transitions with multiplicities of 4:4:8:12:12:24. The splitting
between the 6 groups arises from electron-electron and hole-hole exchange splittings between
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the final states which contain two unpaired electrons and holes. The 6 groups of transitions in
3 — 2 and 5 — 4 span 23 and 22 meV. This energy span reflects the span of the 16 eigenvalues
of the 16x16 matrix generated by the different spin occupations of the final states.

(iv) The exchange interaction alters the oscillator strength of the transitions so that they
are not all identical as in the (e + J) approximation.

Comparison with previous calculations: Previous calculations of multi-excitons in quantum
dots include the works of Hu ],Takagahara , Barenco and Dupertuis || ] Dekel et. al.
mﬂ Landinet. al. [ﬂ] and Hawrylak [E Refs. [[I} ,ﬁ % %amd‘ adopt single-band effective-
mass models with either an infinite potential barrler B, , | or a parabolic potential [E]
both of which artificially force the electron and hole wavefunctions to be identical. Therefore,
in all these calculations the Coulomb shift, 69, is zero and the electron-hole exchange
vanishes, K.,,; = 0. To obtain realistic single particle energy spacings in Refs. m ﬂ an
unrealistic cuboidal shape had to be assumed and the size of the dots was treated as adjustable
parameters. By choosing different lengths for all three dimensions both the measured s-p and
p-p splittings can be reproduced. The two-dimensional parabolic potential adopted in Ref. [E]
can also be adjusted to reproduce the correct s-p splitting, but will always produce degenerate
p states. It has recently been shown [E] that only models which can split this p level degeneracy
can provide a realistic interpretation of experimental results. In addition to approximating
the single particle states, Refs. [[I,B,[,H,[L6,[[7] neglect the effects of strain and the spin-orbit
interaction.

To calculate the exchange and correlation contribution to the excitonic energies Ref. [E]
uses path integral quantum Monte Carlo techniques which provide an exact (to within statis-
tical error) determination of the exchange and correlation energy. However, quantum Monte
Carlo methods are currently restricted to single band Hamiltonians and cannot therefore pre-
dict the Coulomb shift, §“°%  discussed above. Ref. [E] adopts a limited basis CI to estimate
correlation energies. Refs. [El», ﬂ,] use only a single configuration approach which does not
include correlation effects.

To assess the above approximations used in [El, , E,E,@] we show in Fig. El(b) a repeat of
our calculations for the transition energies within the (e 4+ J) and (e + J + K) approximations
applying the assumptions adopted in Refs. [ﬂ, E,ﬁ,, namely Je,e; = Jnin; = Jeiny, Keje; =
Kpin;y Ke;n; =0 and AS9 = 0. We observe that:

(i) Within the (e + J) approximation, the chemical shift, §¢°%! is zero by definition so
all the red lines lie on the zero of energy. (ii) Within the (e + J + K) approximation for
even — odd, there are 4 possible transitions that are exactly degenerate as K., = 0. (iii)
For odd — even, there are 64 possible transitions, split into 4:24:36 multiplets, compared to
the 4:4:8:12:12:24 multiplets obtained in the pseudopotential calculations. The reduction in
the number of multiplets arises form the assumptions 1., = 1, and ASY = 0. Other than
these changes we find that many of the qualitative feature noted in the calculations of Dekel
et. al. [EI, are retained in the pseudopotential description.

The effect of CI interactions: In Fig. E we contrast the transition energies from our
pseudopotential calculations within the (e + J + K) approximation (black lines) with those
from a CI calculation (red lines) which includes single particle, direct and exchange Coulomb
and “correlation” effects.

In the CI calculations we expand the many-body wavefunction in a basis of Slater deter-
minants constructed from all possible orbital and spin occupations of the lowest 10 (including
spin degeneracy) electron and lowest 10 hole single particle levels. For example, the biexci-
ton basis contains 1°C5.19Cy = 2025 Slater determinants, and the 3-exciton basis contains
10031005 = 14400 Slater determinants. This basis neglects the contributions for higher lying
bound states and continuum states. To investigate the effects of adopting this limited CI ba-
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sis [[[§] we have compared the results of diffusion quantum Monte Carlo calculations (DMC)
and CI calculations for the exciton correlation energy in a model, single band system with
equivalent size, band offsets and number of bound states. We find that our CI calculations
retreive approximately 50-60% of the 5-6 meV of correlation energy obtained in the DMC
calculations and can therefore be used as a lower bound for the effects of correlation. Using
these calculations we find that

(i) Correlation effects lower the energy of both the initial and final state of a transition.
Our calculated correlation varies from 2-3 meV for a single exciton to 10 meV for multiple
excitons. For all the transitions shown here, the correlation shift, §¢Z, for the initial state
with IV excitons is greater than that for the final N — 1 exciton state. Therefore, all the CI
transition peaks are red shifted with respect to those from the (e + J+ K) approximation. (ii)
This (697) red shift is larger for the 2 — 1 transition than for the 1 — 0 transition and is able
to overcome the Coulomb blue shift and “bind” the biexciton. (iii) As the number of spectator
excitons increases, the difference in the red shift for the initial and final states decreases, so
that the red shift of the transition energy decreases. For 3 — 2 and 4 — 3 transitions the
red shifts of the transitions rapidly decrease. (iv) The mixing of configurations within the CI
results in both additional peaks in the CI spectra and changes in the relative magnitude of
the peaks, e.g. for 4 — 3 the single (e + J 4+ K) peak is split into two equally strong multiplets
of peaks in the CI spectra. The additional peaks result from the mixing in of excited states
within the CI calculation. For example, the additional CI peaks blue shifted from the main
peaks in the 4 — 3 spectra result from excited states configurations mixed into the N = 3
exciton.

In conclusion, we present results of the first pseudopotential, many-body calculation of
multi-exciton states within InAs/GaAs quantum dots. We are able to isolate the effects
of the direct and exchange Coulomb interactions and correlation on the energies of N —
N — 1 excitonic transitions. We find that direct Coulomb energies introduce small blue shifts.
Electron-electron and hole-hole exchange splittings which are responsible for the majority of
the observed structure, introduce both red shifts and splittings. Correlation effects red shift
all transitions and change the relative energies of transitions (e.g. bind the biexciton).

We thank E. Dekel and D. Gershoni for many useful discussions. This work was supported
DOE - Basic Energy Sciences, Division of Materials Science under contract No. DE-AC36-
99G010337. AZ acknowledges support from the Binational US-Israel Science Foundation
(453/97).

*Present Address: Lawrence Livermore National Laboratory, CA 94550

REFERENCES
[1] E. Dekel et al., Phys. Rev. Lett. 80, 4991 (1998).
[2] E. Dekel, D. Gershoni, E. Ehrenfreund, J. Garcia, P. Petroff, Phys. Rev. B 61, 11009.
[3] L. Landin et al., Phys. Rev. B 60, 16640 (1999).
[4] Y. Toda, O. Moriwake, M. Nishioda, Y. Arakawa, Phys. Rev. Lett. 82, 4114 (1999).
[5] A. Zrenner, J. Chem. Phys. 112, 7790 (2000).
[6] A. Williamson, L.-W. Wang, A. Zunger, submitted to Phys. Rev. B (2000).
[7] A. Barenco and M. Dupertuis, Phys. Rev. B 52, 2766 (1995).
[8] P. Hawrylak, Phys. Rev. B 60, 5597 (1999).
[9] R. Ambigapathy et al., Phys. Rev. Lett. 78, 3579 (1997).
[10] A. Franceschetti, H. Fu, L.-W. Wang, A. Zunger, Phys. Rev. B. 60, 1819 (1999).
[11] H. Drexler, D. Leonard, W. Hansen, J. Kotthaus, P. Petroff, Phys. Rev. Lett. 73, 2252 (1994).
[12] R. Warburton et al., Phys. Rev. B 58, 16221 (1998).



Al

[13]
[14]
[15]
[16]
[17]
(18]

Fig.

WILLIAMSON, A.FRANCESCHETTI and A.ZUNGER: MULTI-EXCITONS IN SELF-ASSEMBLED INAS/GAAS QUANTUM DOTS

H. Lee, R. Lowe-Webb, W. Yang, P. Sercel, Appl. Phys. Lett. 72, 812 (1998).
A. Williamson and A. Zunger, Phys. Rev. B 61, 1978 (2000).

A. Franceschetti, L.-W. Wang, A. Zunger, Phys. Rev. B 58, R13367 (1998).
Y. Hu et al., Phys. Rev. Lett. 18, 1805 (1990).

T. Takagahara, Phase Transitions 68, 281 (1999).

J. Shumway, A. Franceschetti and A. Zunger, In preparation.

‘ (a) Pseudopotential (b) Single-band

1.0 a4 4 a4 4
gl2-1] A a == P
s —
£ —
% (3~ 2] . 8 12 240 4 = 24 36 | 4
=1 4 12 4
2 LA A J\ f\ e 1
3]
&Hl4 -3 h =
(2 a4 68)((: a 4 éexch 4
2 —

5. 4 e
g , 1212 A24 H 2 ﬂ24 36 4

4g il i == i
6 - 5 !\4 aexch ” 4 —— A4 6exch 4

-40 -30 -20 -10 -30 -20 -10 [0}

-40
Energy (meV)

1 — Energy of eg — ho, recombinations in the presence of 0 to 5 spectator excitons. Energies

calculated in the (e + J)(red) and (¢ + J 4+ K) (black) approximations are shown. (a) Shows our
pseudopotential calculations and (b) shows calculations with the assumptions from Refs. [,E,E] The
multiplicities of each line is labelled.

1 - O e+IJ+K
6CI
—
|
> . 1 biexciton binding =——]|

A

3 - 2

=N

4 . 3 '

Fig.

Xz Y I | Y
o

-40 -30 -2

Energy (mevV)

2 — Energy of eg — ho, recombinations in the presence of 0 to 3 spectator excitons. The black

and red lines show energies calculated in the (e + J + K) and CI approximations.

: A PSEI



